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ABSTRACT 

Fishery-independent surveys are subject to unavoidable fluctuations in sampling effort 

over time, creating a need for efficient and flexible survey designs. Here we use simulation to 

evaluate the performance of stratified random survey designs in the Gulf of Alaska (GOA) 

bottom trawl groundfish survey using alternative stratifications and sampling effort allocations 

relative to the status quo stratified random sampling design across a range of total sampling 

effort scenarios (corresponding to 1, 2, or 3 survey boats). In the new approach, we combined a 

genetic algorithm to optimize the placement of stratum boundaries (defined by depth and 

longitude) over the simulated data with a multivariate optimal allocation algorithm. This method 

minimized total survey sample size subject to target precision constraints on abundance indices 

for a suite of species of high commercial or ecological relevance. Given the proposed and status 

quo survey designs, performance metrics of bias, precision, and uncertainty of precision were 

computed across repeated simulations using independent draws with observation error. To 

determine how the spatial scale of optimization may produce the most precise and accurate 

abundance estimates at the scale required for informing management decisions, we conducted 

the optimization at two spatial scales: across the entire GOA and a finer scale within each of five 

GOA NMFS management areas. In general, newly optimized survey designs at both spatial 

scales produced abundance estimates with similar precision to the status quo survey, yet also 

increased the accuracy of abundance estimates and both precision and accuracy of their 

associated variances by reducing biases present for some species relative to the status quo 

approach. Overall, the proposed optimal survey effort allocation indicated that higher sampling 

rates in the western and central GOA and lower sampling rates in southeast GOA helped achieve 
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precision targets across species. The proposed optimized survey is expected to be practically 

feasible given that the distance between stations and total expected cruise duration is similar to 

the status quo. We conclude that the proposed design is expected to improve the accuracy of 

abundance indices and their variances for many species while requiring similar survey resources 

to the status quo GOA groundfish bottom trawl survey design. 
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INTRODUCTION 
 

 
Fishery-independent surveys provide the data that form the foundation of the science 

informing fisheries management. Specifically, these data inform the stock assessment models 

and ecosystem analyses that guide policy decisions for a diversity of fisheries throughout the 

United States and the world. Among the largest of these fisheries is Alaska groundfish, which 

accounted for nearly half of overall U.S. domestic landings and 88% of Alaska’s total catch in 

2018, generating nearly $1 billion in revenues (Fissel et al. 2019). Maintaining high-quality 

surveys and establishing evidence-based decision-making tools for responding to changes in 

survey resources and logistics are major priorities for survey teams internationally (ICES 2020). 

Abundance indices from surveys are commonly used in stock assessments and fisheries research 

(Hilborn and Walters 2013); thus, it is important that fisheries surveys are designed and 

conducted such that the estimated abundance index and associated variance are both accurate and 

precise across a multitude of species of interest. For example, abundance index variance 

estimates are commonly used for weighting data in stock assessment models (Francis  

et al. 2011, Kotwicki and Ono 2019). Further, due to their influence on stock assessments, survey 

precision and bias are used as quality and performance metrics for comparing survey data 

products and survey sampling designs (Overholtz et al. 2006, Cao et al. 2014). 

Most fishery-independent surveys are multispecies in nature, thus tradeoffs in sampling 

efficiency among species will affect the total efficacy of the key limiting resource that is survey 

effort. While groundfishes sampled by demersal surveys share some similarities in that they are 

found near the seafloor, these assemblages consist of numerous species across disparate families 

with diverse life histories, population dynamics, spatial distributions, and specific habitat 
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affinities (e.g., Rooney et al. 2018, Zimmermann 2006, Meuter and Norcross 2002). In addition 

to the challenge of these inherent tradeoffs among species is the added complication that survey 

planners may want to prioritize data collection efforts for particular species in a given survey 

year. For example, if a stock is approaching an overfished state, it may be prudent to modify the 

survey to increase the expected survey precision for that species. In that case, an objective and 

explicit means of modifying the survey and evaluating the tradeoffs among the precisions of the 

lower priority species are needed to guide survey planning.  

The Alaska Fisheries Science Center (AFSC) Gulf of Alaska (GOA) bottom trawl survey 

(BTS) is the primary source of biological data for monitoring over 150 fishes and 360 

invertebrates in the region (see von Szalay and Raring 2018 for technical details on existing 

survey operations). The survey follows a stratified-random survey (STRS) design, consisting of 

59 strata defined primarily by depth, bottom terrain (e.g., shelf, gully, slope), and statistical areas 

originally defined by the International North Pacific Fisheries Commission (INPFC), which were 

since adopted by NMFS as management areas (Tables 1, 2). Allocations of survey effort across 

strata are calculated using separate univariate (i.e., single-species) Neyman allocations (Cochran 

1977). This allocation of effort was optimized with respect to historical stratum variability, haul 

costs, stratum area, and total sample size averaged across survey years since 1990 for each 

species. A weighted mean of the sample allocation was then calculated using the product of the 

mean biomass of a species and its ex-vessel value as the weighting variable. Historically the 

GOA BTS typically used three boats (except for 1993 and 2001, which used 4 and 2 boats, 

respectively), sampling simultaneously over the duration of the summer field season (~ end of 

May through early August). In 2011 the total effort was reduced to two boats due to budgetary 
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constraints (von Szalay and Raring 2018) and all surveys since then have typically been carried 

out with two boats, except for one partial three-boat survey that occurred in 2015 (where the 

third boat started later and sampled fewer stations than typical). With the change to a two-boat 

sampling design, strata deeper than 700 m were excluded. These deeper areas accounted for 

approximately 4% of the total survey area and were allocated 1.7% of the stations in the three-

boat design. 

Limitations of the existing stratified design restrict its flexibility and quality with respect 

to producing precise estimates of uncertainty in abundance indices. The strata boundaries were 

created early in the history of the survey, with little documentation as to how boundaries were 

delineated. Many strata have been allocated few samples limiting the ability to obtain precise 

estimation of stratum variances. When total sampling effort was reduced in 2011, deeper strata 

were removed from the survey because one boat was historically capable of sampling the outer 

shelf and slope areas (von Szalay et al. 2008). Furthermore, there is limited flexibility to adjust 

sample allocation and strata boundaries to account for changes in survey resources and 

management needs in the existing design.  

Here, we apply a multivariate optimization approach to multispecies survey design in the 

GOA BTS to determine whether it can provide an improved framework for abundance 

estimation that is feasible to implement and flexible to changes in survey effort and management 

needs. We use a simulation approach to compare the precision and accuracy of abundance 

estimates across a suite of groundfish between proposed and existing GOA BTS designs. To 

determine whether the proposed designs are feasible to implement with the same resources as the 

existing design, we compare the distances traveled among stations between designs. We also 
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conducted multiple additional survey optimizations to test and compare optimized survey 

solutions with different stratum variables, spatial scales, and additional sources of uncertainty 

(observation and estimation error) in the survey optimization data inputs. Finally, proposed 

future GOA BTS survey designs are recommended, in addition to highlighting opportunities for 

promising extensions of this optimization framework to other surveys.  

 

MATERIALS AND METHODS 
 
 

The stratified survey optimization approach was based on Oyafuso et al. (2021) and is 

first overviewed here before detailing in the subsequent method sections. An operating model 

(OM) was created to predict population densities in space and time for 26 representative 

groundfish taxa by fitting univariate vector autoregressive spatiotemporal (VAST) models to 

survey catch and effort data from the GOA BTS. These density predictions were used as the 

main data inputs into a stratified survey optimization, which utilized a genetic algorithm to 

search for candidate stratified survey designs. Depth and longitude were used as stratum 

variables along which the algorithm searched for optimal strata boundaries. The algorithm also 

employs the Bethel algorithm (Bethel 1989) to find the optimal allocation of survey effort across 

strata that minimizes total effort according to prespecified precision constraints (i.e., maximum 

abundance index CVs) across species. Both algorithms work in concert to iteratively search 

towards more optimal stratified survey designs. The optimization was tuned to find optimal 

solutions under three different levels of sampling effort, expressed as the total sample size 

conferred by one, two, or three boats operating simultaneously. Surveys were then simulated 
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using these proposed optimized survey designs as well as the existing survey design, and the 

abundance index and CVs were calculated for each species and survey replicate. Bias, precision, 

and uncertainty of precision estimates of the abundance estimates were calculated and used as 

performance metrics to compare these proposed STRS designs to the existing STRS design 

across the species set. Lastly, to evaluate the logistical feasibility of the proposed survey designs, 

the expected total duration (based on distances between stations) of these surveys was compared 

between proposed and existing stratified survey designs. The code used to conduct this analysis 

is available as a code repository on Z.S. Oyafuso’s GitHub page: (https://github.com/zoyafuso-

NOAA/Optimal_Allocation_GOA).  
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Table 1. -- Overview of survey characteristics of the existing and proposed optimized stratified 
survey designs for the Gulf of Alaska bottom trawl survey. 

 

Characteristic Existing setting Proposed setting 

Number of 
strata 59 (54 without strata > 700 m) 

10, 15 (gulf-wide 
optimizations); 
3, 5 per area (area-wide 
optimizations) 
 

Number of 
species 52-57 species      

26 species/species complexes, 
15 of which were included in 
survey optimization 
 

Strata 
characteristics 

Depth zone, habitat (slope/shelf/gully), INPFC 
reporting areas 

Depth, longitude (with 
contemporary management 
areas reflected in area-level 
optimizations)     

Pre-specified 
precision 
constraints 

Not integrated in allocation      Specified a priori 

Operational 
assumptions 

The deepest stratum in each INPFC reporting 
area was not sampled for the one boat and two 
boat-effort scenarios; all stations are considered 
to be trawlable within the sampled strata for the 
purposes of simulation 

All stations are considered 
trawlable 
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Survey Area and Species Included 

 
 

Before conditioning a spatiotemporal model on the available data from the existing 

survey, the first step in the analysis is to define the species to include and the boundaries of the 

spatial domain. Twenty-six groundfish species groups comprising cods, flatfishes, rockfishes, 

sharks, skates, sculpins, and octopods were included in the analysis. This species set 

encompasses the target species within the GOA groundfish Fisheries Management Plan (NPFMC 

2020) except for Pacific halibut, which is managed separately by the International Pacific 

Halibut Commission (IPHC). Fifteen of the 26 species were prioritized for inclusion in the 

survey optimization algorithm (hereafter “design species”) based on commercial importance and 

the dependence of stock assessment models on survey-derived abundance indices. The other 

seven species groups were excluded from the survey optimization but included when simulating 

surveys and obtaining indices of abundance (hereafter “non-design species”).  

The spatial domain consisted of the GOA BTS survey area (continental shelf and slope 

waters less than 1,000 m deep) within the 200 nm Exclusive Economic Zone of the United States 

from approximately 132ºW-170ºW. Including the entire range of the GOA survey domain in our 

optimization framework allows testing the effect of the historical practice of not allocating 

samples to the deepest (> 700 m) strata in the existing one- and two-boat effort survey designs 

(Table 2). 
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Table 2. -- Sample allocation for three total sample size scenarios across the existing strata, 
defined by depth range, management area [common names with area numbers in 
parentheses: Shumagin (610), Chirikof (620), Kodiak (630), Yakutat (640), Southeast 
(650)], and bottom terrain (e.g., banks, shallows, gullies, shelf, slopes).  

Depth 
range (m) 

Management 
area 

Stratum 
label Stratum name One-boat 

allocation 
Two-boat 
allocation 

Three-boat 
allocation 

1 - 100 Shumagin 10 Fox Islands  5 9 13 
  11 Davidson Bank 15 30 44 
  12 Lower Alaska Peninsula  7 14 20 
  13 Shumagin Bank 11 22 33 
 Chirikof 20 Upper Alaska Peninsula  6 12 18 
  21 Semidi Bank 5 10 15 
  22 Chirikof Bank 12 23 35 
 Kodiak 30 Albatross Shallows 7 13 19 
  31 Albatross Banks 14 27 40 
  32 Lower Cook Inlet  5 9 14 
  33 Kenai Peninsula  5 10 16 
  35 Northern Kodiak Shallows 3 6 8 
 Yakutat 40 Yakutat Shallows 5 9 13 
  41 Middleton Shallows 3 6 9 
 Southeast 50 Southeastern Shallows 4 7 10 
       

101 - 200 Shumagin 110 Sanak Gully 3 5 7 
  111 Shumagin Outer Shelf 11 22 32 
  112 West Shumagin Gully 2 3 4 
 Chirikof 120 East Shumagin Gully 7 13 20 
  121 Shelikof Edge 10 20 30 
  122 Chirikof Outer Shelf 10 20 29 
 Kodiak 130 Albatross Gullies 11 21 31 
  131 Portlock Flats 12 24 35 
  132 Barren Islands  7 14 21 
  133 Kenai Flats 6 12 17 
  134 Kodiak Outer Shelf 10 19 28 
 Yakutat 140 Middleton Shelf 4 7 10 
  141 Yakataga Shelf 3 6 8 
  142 Yakutat Flats 4 7 11 
  143 Fairweather Shelf 5 10 15 
 Southeast 150 Baranof-Chichagof Shelf 5 10 15 
  151 Prince of Wales Shelf 7 14 21 
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Table 2. – Continued. 
 

201 - 300 Shumagin 210 Shumagin Slope 7 14 21 
 Chirikof 220 Lower Shelikof Gully 5 9 14 
  221 Chirikof Slope 4 7 10 
 Kodiak 230 Kenai Gullies 5 10 15 
  231 Kodiak Slope 3 5 8 
  232 Upper Shelikof Gully 2 3 5 
 Yakutat 240 Yakutat Gullies 4 7 11 
  241 Yakutat Slope 5 9 13 
 Southeast 250 Baranof-Chichagof Slope 2 3 5 

  251 Prince of Wales 
Slope/Gullies 5 10 14 

       
301 - 500 Shumagin 310 Shumagin Slope 2 4 6 

 Chirikof 320 Chirikof Slope 2 4 6 
 Kodiak 330 Kodiak Slope 3 5 8 
 Yakutat 340 Yakutat Gullies 2 2 2 
  341 Yakutat Slope 3 5 7 
 Southeast 350 Southeastern Deep Gullies 2 4 6 
  351 Southeastern Slope 2 4 6 
       

501 - 700 Shumagin 410 Shumagin Slope 2 2 3 
 Chirikof 420 Chirikof Slope 2 3 4 
 Kodiak 430 Kodiak Slope 2 2 3 
 Yakutat 440 Yakutat Slope 2 2 2 
 Southeast 450 Southeastern Slope 2 2 3 
       

701 - 
1000 Shumagin 510 Shumagin Slope 0 0 2 

 Chirikof 520 Chirikof Slope 0 0 2 
 Kodiak 530 Kodiak Slope 0 0 4 
 Yakutat 540 Yakutat Slope 0 0 2 
 Southeast 550 Southeastern Slope 0 0 2 
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     Conditioning and Operating Models 

 
 

We conditioned univariate spatiotemporal distribution models on historical survey catch 

rate data for each species using a predictive process framework (Banerjee et al. 2008) as 

implemented by a vector-autoregressive spatiotemporal model using the VAST R Package  

(v. 3.6.1; Thorson and Barnett 2017, Thorson 2019a). In general, these models relate the 

observed response to covariates and latent spatial processes. Specifically, we implement a 

spatiotemporal generalized linear mixed‐effects model where random effects describe spatial and 

spatiotemporal variation (spatial variation that is constant or time-varying, respectively) in 

population density while temporal variation in the mean density is modeled as a fixed effect of 

survey year. Spatiotemporal fields were modeled as independent and identically distributed 

among years. The model estimates two parameters to approximate geometric anisotropy (Cressie 

and Wikle 2011, Thorson et al. 2016). Continuous spatial and spatiotemporal random fields were 

approximated using a mesh with 500 “knots” (Rue et al. 2009, Lindgren et al. 2011) as 

calculated with the INLA R package (Rue et al. 2009), where the value of spatial variables 

between knot locations was calculated using bilinear interpolation. This spatial resolution of the 

model was chosen after initial sensitivity testing indicated that this produced a good tradeoff 

between computational efficiency and consistency with design-based estimators (here defined as 

the mean density weighted by stratum area and the expansion of this to total biomass, Eqs. 7-9). 

Catch rate data comprised station-specific catch weight per area swept by the trawl gear (von 

Szalay and Raring 2018). Consistent sampling data were available from 1996, 1999, and every 

other year from 2003 to 2019 (11 observed years). The “Poisson-link” reformulation of a 
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conventional delta model was used to model encounter probability and biomass density (Thorson 

2017), where a gamma distribution was specified for modeling biomass density. These models 

were implemented in the R software environment (v. 4.0.2). 

We evaluated models without density covariates and those with covariates for depth and 

the square of depth, as depth often explains substantial variation in groundfish catch rates 

(Johnson et al. 2019). When depth was included in a model, it was first log-transformed, then 

centered and scaled to a standard normal distribution. These depths were derived from high-

resolution bathymetry (100 m2) developed for a new set of species distribution models for the 

2022 EFH 5-year Review (Laman et al. in prep). The primary sources for this bathymetry 

raster were depth soundings from digitized NOAA National Ocean Service smooth sheets from 

early surveys that used a variety of methods (Zimmermann et al. 2019; Zimmermann and 

Prescott 2014, 2015). These depth values were used both in the model fit, at locations where 

samples were present, and for prediction across the entire survey area. 

To evaluate the need for the inclusion of density covariates for a particular species, a ten-

fold cross-validation procedure was used. Folds were partitioned so that each fold had the same 

proportion of data from each observed year as reflected in the full sample. The predictions from 

each of the single species models with the lowest average out-of-sample predictive negative log-

likelihood (NLL) were compiled into a set of predictions representing the multispecies OM. 

Specifically, the population density (𝑦𝑦𝑔𝑔𝑔𝑔𝑔𝑔; in units of kg km-2) of each species or species group g 

(𝑔𝑔: 1, 2, . . . ,𝐺𝐺 = 15 design species; see Table 3 for a list of the species included in the 

optimization) in grid cell i (𝑖𝑖: 1, 2, … ,𝑁𝑁 = 22419 cells) at time t (𝑡𝑡: 1, 2, . . . ,𝑇𝑇 = 11 observed 

survey years) was predicted onto the GOA survey spatial domain at a resolution of two nautical 
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miles (~ 3.7 km; some prediction grid cells had smaller area due to intersections with survey 

domain boundaries) for each species and observed year. Appendix A lists the spatial distributions 

over time as well as other model outputs and diagnostics for each species. These predictions 

were taken to represent “true” densities, which were used as data inputs to the survey 

optimization algorithm and to evaluate the performance of simulated surveys given those 

designs.  
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Table 3. -- Average out-of-sample predictive error (negative log-likelihood, NLL) resulting from 
ten-fold cross-validation compared between univariate models that excluded or 
included depth as a quadratic density covariate. Values in bold indicate the model 
with the smaller predictive error (best-fit model), which was selected for use in the 
operating model. Species not included in the optimization (“non-design species”) are 
shaded in grey. Models that did not converge are indicated by NA. 

  Average predictive error 

Species name Common name Depth excluded Depth included 

Gadus chalcogrammus walleye pollock 3261 3403 

Gadus macrocephalus Pacific cod 2821 2781 

Atheresthes stomias arrowtooth flounder 4180 4114 

Hippoglossoides elassodon flathead sole 2050 1947 

Glyptocephalus zachirus rex sole 2027 1963 

Lepidopsetta polyxystra northern rock sole 1110 1056 

Lepidopsetta bilineata southern rock sole 1503 1393 

Microstomus pacificus Dover sole 1578 1544 

Hippoglossus stenolepis Pacific halibut 3166 3103 

Sebastes alutus Pacific ocean perch 2438 2436 
Sebastes melanostictus and 

Sebastes aleutianus 
blackspotted (BS) and 

rougheye (RE) rockfishes 1044 956 

Sebastes brevispinis silvergray rockfish 425 455 

Sebastes variabilis dusky rockfish 1057 998 

Sebastes polyspinis northern rockfish 1167 1035 

Sebastolobus alascanus shortspine thornyhead 1031 978 

Pleurogrammus monopterygius Atka mackerel 1082 603 

Beringraja binoculata big skate 531 525 

Albatrossia pectoralis giant grenadier 445 426 

Enteroctopus dofleini giant octopus 279 275 

Sebastes variegatus harlequin rockfish 791 547 

Beringraja rhina longnose skate 929 920 

Anoplopoma fimbria Sablefish 1815 1770 

Cottoidea Sculpins 785 773 

Sebastes borealis shortraker rockfish 493 NA 

Squalus suckleyi Pacific spiny dogfish 810 777 

Sebastes ruberrimus yelloweye rockfish NA 138 
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Survey Optimization Problem 

 
 

The goal of the multispecies stratified survey design optimization is to find the strata 

boundaries and sample allocation across strata that minimizes total sample size subject to G 

prespecified precision constraints (𝑈𝑈1,𝑈𝑈2, … ,𝑈𝑈𝐺𝐺):  

 

 𝑚𝑚𝑚𝑚𝑚𝑚∑ 𝑛𝑛ℎ𝐻𝐻
ℎ=1     (1) 

 

𝑠𝑠. 𝑡𝑡. 
 

   𝐶𝐶𝐶𝐶�𝜇𝜇𝑔𝑔� < 𝑈𝑈𝑔𝑔 ∀𝑔𝑔 ∈ {1, … ,𝐺𝐺} (2) 
 
 

  𝐶𝐶𝐶𝐶�𝜇𝜇𝑔𝑔� =  
�𝑣𝑣𝑣𝑣𝑟𝑟𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆(𝜇𝜇�𝑔𝑔)

𝜇𝜇𝑔𝑔
 (3) 

 

 𝑣𝑣𝑣𝑣𝑟𝑟𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆�𝜇̂𝜇𝑔𝑔� = ∑ �𝑁𝑁ℎ
𝑁𝑁
�
2 𝜎𝜎ℎ𝑔𝑔

2

𝑛𝑛ℎ
�1 −  𝑛𝑛ℎ

𝑁𝑁ℎ
�𝐻𝐻

ℎ=1  (4) 

   

 𝜎𝜎ℎ𝑔𝑔2 = 1
𝑇𝑇𝑁𝑁ℎ−1

∑ ∑ �𝑦𝑦𝑔𝑔𝑔𝑔𝑔𝑔 − 𝜇𝜇ℎ𝑔𝑔�
2𝑁𝑁ℎ

𝑖𝑖=1
𝑇𝑇
𝑡𝑡=1  (5) 

 

where 𝑛𝑛ℎ and 𝑁𝑁ℎ are the sample sizes and number of sampling units in stratum h (of H total 

strata), respectively (Eqs. 1-2). By leveraging density predictions provided by the OM, this 

optimization is specified using population-level statistics. 𝜇𝜇𝑔𝑔 (Eq. 3) is the population mean of 

species 𝑔𝑔 averaged over the cells in the spatial domain and over observed years. 𝜇𝜇ℎ𝑔𝑔 (Eq. 5) is 
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the population mean density estimate of species 𝑔𝑔 averaged over the cells in stratum ℎ and over 

observed years. 𝑣𝑣𝑣𝑣𝑟𝑟𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆(𝜇̂𝜇𝑔𝑔) (Eq. 4) is the stratified random sampling variance associated with 

the estimate of the overall population mean, 𝜇̂𝜇𝑔𝑔. Careful consideration is needed for this variance, 

specifically the stratum variance 𝜎𝜎ℎ𝑔𝑔2 , defined in Eq. 5. The OM provides predicted densities 

across all cells and observed years for each species and integrates many sources of variation, 

including that from time (year-to-year), habitat covariates (depth), and additional spatial and 

spatiotemporal variation. A common issue in survey design optimization is how to integrate data 

from previous survey years (Francis 2006), thus the stratum variance in Eq. 5 was modified to 

incorporate both within-stratum (note the summation range between 𝑖𝑖 = 1 to 𝑁𝑁ℎ) density 

variation across space and within-grid cell density variation across years (note the summation 

range between 𝑡𝑡 = 1 and 𝑇𝑇).  

 

Survey Optimization Algorithm 

 

A genetic algorithm is used to optimize the boundaries of strata via user-defined strata 

variables, while the Bethel algorithm (Bethel 1989) is used to optimally allocate samples across 

strata to obtain abundance estimates with precisions at least as high as those prespecified for 

each species. The optimization is conducted within a modified version of the SamplingStrata R 

package (Barcaroli 2014) maintained in a public GitHub repository (https://github.com/zoyafuso-

NOAA/Optimal_Allocation_GOA).  

The genetic algorithm uses evolutionary principles such as fitness-based selection, 

recombination, and mutation to iteratively search for an optimal stratification and sample 
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allocation (Barcaroli 2014). It is initialized with 100 candidate solutions consisting of random 

strata boundary configurations (specified a priori) based on two stratification variables, bottom 

depth (m) and longitude (eastings, km) for a user-defined number of strata (section “Survey 

Optimization Explorations” for specifications). These stratification variables were selected 

because, in the GOA, gradients across both depth and location (e.g., longitude) have been 

observed to describe major patterns in demersal species composition (Mueter and Norcross 

2002). For each candidate solution, the Bethel algorithm (Bethel 1989) is used to optimize the 

allocation of the minimum sample size across strata, subject to Equations 1-2. Fitness is defined 

as the resultant sample size from the Bethel algorithm, with solutions with smaller sample sizes 

having higher fitness. Elitism occurs by taking the solutions with highest fitness (defined a priori 

to be solutions in the top 10th percentile for smallest sample size) and automatically advancing 

them to the next iteration of the algorithm. The remaining solutions are selected with probability 

proportional to their fitness values to “procreate” a new set of candidate solutions by applying a 

“crossover” of the solutions. Random changes in the stratifications, or “mutations”, are then 

applied at a given rate to these new solutions at each iteration. The mutation rate defines how 

often random changes to the solutions occur and was tuned to 1/(1+H), where H is the total 

number of strata, based on previous tuning guidelines to reach reasonable convergence times  

(G. Barcaroli, pers. comm.). The process of procreation occurs until 100 candidate solutions are 

created for the next iteration of the algorithm. The average fitness of the candidate set of 

solutions along with the most fit (i.e., smallest sample size) solution improves over iterations, 

and a large number of iterations are chosen (300 iterations) to ensure that the algorithm has 

searched for an optimal solution.  
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The optimization minimizes total sample size for a given CV constraint, but often it is 

more useful in practice to solve the converse problem, that is, minimize CVs across the species 

for a given sample size. To solve this problem, the CV constraints must be tuned to match the 

total survey effort level of interest, which is often a fixed input for a given survey year dependent 

on how many boats are contracted to conduct the survey. Historically, two or three boats are used 

in the AFSC GOA groundfish bottom trawl survey, so we conducted the optimization given 

sampling effort (implemented as the number of sampled stations n) corresponding to one (n = 

292), two (n = 550), or three (n = 825) survey boats.  

Setting the CV constraints across species to achieve a given level of total effort can be 

difficult due to the multispecies aspect of the survey design. First, it should be clear that a benefit 

of stratified random sampling over simple random sampling is that less sampling intensity is 

needed for a given level of precision (Cochran 1977). Thus, the expected CV under a simple 

random sample (𝐶𝐶𝑉𝑉𝑆𝑆𝑆𝑆𝑆𝑆,𝑔𝑔) for the three desired levels of sampling (i.e., 292, 550, or 825 stations) 

can serve as a reasonable starting point for setting CV constraints across species, calculating 

using the variance for a simple random sample (SRS): 

  𝑣𝑣𝑣𝑣𝑟𝑟𝑆𝑆𝑆𝑆𝑆𝑆�𝜇̂𝜇𝑔𝑔� = �1 − 𝑛𝑛
𝑁𝑁
� 𝜎𝜎𝑔𝑔

2

𝑛𝑛
 , (6) 

where 𝜎𝜎𝑔𝑔2 is calculated similarly to Eq. 5 with 𝐻𝐻 = 1. Second, the extent to which stratification 

improves precision varies by species. The best way to evaluate how well the precision of an 

abundance estimate can be reduced through a stratified survey for a species is to conduct the 

survey optimization for each species independently (hereafter “single-species optimizations”). In 

these optimizations, the CV constraint for a species (expressed in Eq. 2) was tuned to match the 
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three survey effort levels. By focusing on one species at a time, the procedure can fully optimize 

the stratified survey design for a single species. This resulting CV constraint (𝐶𝐶𝑉𝑉𝑆𝑆𝑆𝑆,𝑔𝑔; where SS 

indicates a stratified random design optimized for a single species) represents the most precise 

but still unbiased CV that can be attained and is used as an absolute lower threshold for the CV 

constraint. Given the substantial interspecific variation in spatial distributions observed, these 

levels may not be attainable when conducting a multispecies survey optimization, but they can 

be used as a lower limit on the CV constraint. Taken together, 𝐶𝐶𝑉𝑉𝑆𝑆𝑆𝑆𝑆𝑆,𝑔𝑔 and 𝐶𝐶𝑉𝑉𝑆𝑆𝑆𝑆,𝑔𝑔 represent a 

realistic range of precisions for a given species and are helpful when setting CV constraints 

across species. 

The optimization was initialized using the CV constraint corresponding to 𝐶𝐶𝑉𝑉𝑆𝑆𝑆𝑆𝑆𝑆,𝑔𝑔. Then, 

the CV constraints across species are reduced by a fixed proportion (5%) relative to their current 

values and 𝐶𝐶𝑉𝑉𝑆𝑆𝑆𝑆,𝑔𝑔 and the optimization was conducted with these new CV constraints; this 

produces a slightly higher total sample size. This process is repeated until the desired sample size 

is attained (or adequately approximated). The process of repeatedly optimizing CVs across 

species (𝐶𝐶𝑉𝑉𝑀𝑀𝑀𝑀,𝑔𝑔; MS: multispecies) for a given level of sampling effort is provided in the 

following steps (based on an effort scenario with 550 stations): 

 

1) Compute a vector of SRS CVs (𝐶𝐶𝑉𝑉𝑆𝑆𝑆𝑆𝑆𝑆) for each species. 

2) Find the optimal single-species stratified design for each element of the vector 𝑉𝑉𝑆𝑆𝑆𝑆 . 

3) Run the optimization algorithm with a temporary CV vector (𝐶𝐶𝑉𝑉𝑡𝑡𝑡𝑡𝑡𝑡) set to 𝐶𝐶𝑉𝑉𝑆𝑆𝑆𝑆𝑆𝑆 

(𝐶𝐶𝑉𝑉𝑡𝑡𝑡𝑡𝑡𝑡 ← 𝐶𝐶𝑉𝑉𝑆𝑆𝑆𝑆𝑆𝑆) and record the resulting optimized sample size 𝑛𝑛. 
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4) If n < 550 reduce CV by an increment 5% that of the difference between 𝐶𝐶𝑉𝑉𝑡𝑡𝑡𝑡𝑡𝑡 and 

𝐶𝐶𝑉𝑉𝑆𝑆𝑆𝑆:   

 𝐶𝐶𝑉𝑉𝑡𝑡𝑡𝑡𝑡𝑡 ← 0.95𝐶𝐶𝑉𝑉𝑡𝑡𝑡𝑡𝑡𝑡 + 0.05𝐶𝐶𝑉𝑉𝑆𝑆𝑆𝑆 .  

Rerun optimization with the new vector of CVs (𝐶𝐶𝑉𝑉𝑡𝑡𝑡𝑡𝑡𝑡) and record the resulting 

optimized sample size n. 

5) Repeat step 4 until n = 550. 𝐶𝐶𝑉𝑉𝑀𝑀𝑀𝑀 ← 𝐶𝐶𝑉𝑉𝑡𝑡𝑡𝑡𝑡𝑡, where 𝐶𝐶𝑉𝑉𝑀𝑀𝑀𝑀 is a vector of CVs optimized to 

𝑛𝑛 = 550. 

 
 

Alternative Survey Optimization Scenarios 

A suite of alternative survey optimization explorations was conducted to 1) provide a 

range of solutions for GOA survey planners and 2) determine sensitivities of the survey 

optimization to evaluate the robustness of proposed designs to many sources of uncertainty. 

Table 4 summarizes the differences among the 11 scenarios explored: 

1) Spatial scale of optimization: The optimization was conducted at two spatial scales to 

evaluate which produced the best estimates of abundance at the scale needed for 

management. The two focal scales were 1) across the entire GOA survey domain 

(hereafter “gulf-wide”, scenario A in Table 4), and 2) independently for each 

management area (hereafter “area-level”, scenario B-K in Table 4). For the gulf-wide 

optimizations, 10 and 15 total strata were specified as separate solution scenarios. 

Area-level optimizations were conducted separately within each of the five 

management areas described in the GOA Groundfish Fishery Management Plan 

(NPFMC 2020). The areas are defined by longitude from west to east as follows: 
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Western (159ºW-170ºW); Chirikof (154ºW-159ºW); Kodiak (147ºW-154ºW); West 

Yakutat (140ºW-147ºW); and Southeast (132ºW-140ºW). Three and five strata were 

set for each area as separate solution scenarios. The number of strata in each 

optimization scale was selected to represent a range of options that earlier research 

indicated would produce reasonable survey performance when simulated while 

retaining fewer total strata than the existing design (Oyafuso et al. 2021). The main 

differences between the settings of the current stratified survey and the proposed 

survey optimization are highlighted in Table 1.  

CV constraints were defined across species for each area for the area-level 

optimization. These area-level CVs are not used to produce the final results, as their 

values were incrementally reduced as described in the section above until the desired 

total sampling effort was attained. The expected CVs for each species were calculated 

under SRS for the three sample size scenarios assuming that the number of samples 

within each management area is proportional to its area. These expected CVs are 

initialized as the CV constraints. Similar to the gulf-wide optimizations, CV 

constraints across species and areas were then reduced by a fixed proportion (5%) 

until the desired total sample size was attained. For the single-species optimizations 

employed to provide a lower reference point for the plausible value of CV, ten strata 

were used in the gulf-wide optimizations, and five strata per area were used for the 

area-level optimizations. Subsequent explorations of solutions were done with the 

area-level optimizations. 

jim.lee
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2) Stratum variables (scenario C in Table 4): as an additional option for solution types,

in these optimizations only depth was included as a stratum variable, as opposed to

both depth and longitude as in the base case. The “depth-only” option is explored in a

subsequent section as an additional option (scenarios E, H, I, K).

3) One deep stratum (scenarios D-E in Table 4): In these optimizations, depth values

> 300 m were assumed to be 300 m to force the optimization to create only one deep

(> 300 m) strata per management area. This scenario was selected to determine 

whether constraining the optimization to allow for stratification of the continental 

shelf would improve the configuration of strata and abundance estimates for the 

species most targeted by fisheries, of which most are more abundant on the 

continental shelf than slope. Initial analyses highlighted 300 m as a general cutoff 

separating shelf and slope strata. Further, prior analyses have demonstrated that 300 

m is the approximate depth cutoff at which species diversity begins to decline in the 

GOA, as shallow-dwelling shelf species become less prevalent and slope-associated 

species become more prevalent (e.g., Mueter and Norcross 2002).  

4) Sensitivity of data inputs: the predicted population densities under maximum

likelihood estimation were used as the default data inputs to the optimization. We

conducted a sensitivity analysis on the data inputs to explore how robust these

optimal survey solutions were to additional sources of uncertainty. Alternative inputs

to the optimization included population density values simulated via two methods

within VAST using the function simulate_data: a) simulating measurement error

conditional on the fixed and random effects (scenarios F and H in Table 4) and b)
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simulating fixed and random effects from the joint precision matrix (scenarios G and 

I in Table 4).  

5) Maximum depth cutoff (scenarios J-K in Table 4): the existing stratified survey 

design as recently implemented at the two-boat (550 station) effort level excludes the 

deepest strata in each management area, effectively restricting the survey footprint to 

700 m rather than the original depth limit of 1,000 m. We conducted a series of 

optimizations and simulated surveys excluding sampling units > 700 m from the OM 

that was fitted to the full historical dataset. The purpose of this exploration is to 

evaluate whether switching to a new STRS design would disrupt the continuity of the 

existing two-boat survey design. We calculated ratios of the estimated abundances 

from both designs to evaluate the relative difference, for potential use as a 

catchability correction factor in stock assessments, in addition to the standard 

performance metrics. Scenarios L and M utilize the existing STRS survey design cells 

up to 1,000 m and 700 m, respectively. 

6) Interspecific Tradeoffs of Species-Specific CV Constraints: CV constraints for some 

species may be much lower than the minimum acceptable precision needed for a 

downstream analysis like a stock assessment. Thus, a separate optimization was 

proposed to allocate survey resources to focus on achieving lower CV estimates for 

more variable species. CV constraints were not incrementally reduced once they 

reached some acceptable CV (𝐶𝐶𝑉𝑉𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎) For example, if the 𝐶𝐶𝑉𝑉𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎 =

0.1 and the expected CV (from Eq. 3) for arrowtooth flounder was 0.06, its CV 

constraint was changed to 𝐶𝐶𝑉𝑉𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎 to avoid solutions that may inflate CVs for 
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other species by over-weighting arrowtooth flounder in the sample allocation. For this 

exploration, the Bethel algorithm was used to calculate optimal allocation of sampling 

effort under the area-level, 5 strata per area, two boat-effort solution (scenario B in 

Table 4). Three levels of 𝐶𝐶𝑉𝑉𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎 were evaluated: 0.10, 0.20, and 0.25.  

 

Table 4. -- Summary of the differences in settings used for each alternative explored. Note: 
Scenarios A-K refer to the proposed STRS designs, and L and M refer to the existing 
STRS design. 

 
Survey exploration Scenario option Scenario label   

A B C D E F G H I J K L M 

Spatial scale of 
optimization 

gulf-wide X             

area-level  X X X X X X X X X X X X 

               

Stratum variables  
depth and longitude X X  X  X X   X    

depth only   X  X   X X  X   
 existing STRS design            X X 

               

Sensitivity of data 
inputs 

MLE X X X X X     X X X X 
measurement error 

simulated 
     X  X      

fixed and random 
effects simulated 

      X  X     

               

One deep stratum: cells 
deeper than 300 m are 

set to 300 m 

no X X X   X X X X X X X X 

yes    X X         
               

Maximum depth cutoff  
1,000 m  X X X X X X X X X   X  
700 m          X X  X 
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Survey Simulations and Performance Metrics 

Stratified random surveys were replicated 1,000 times under the proposed survey designs 

(both gulf-wide and area-level) and the existing survey designs under the different strata number 

scenarios and sample sizes. Simulated densities (𝑟𝑟 instead of 𝑦𝑦) included the observation error 

estimated by VAST and were conditional on the fixed (year and depth-covariate effects) and 

random effects (spatial and spatiotemporal random fields). For simplicity, all cells were deemed 

to be available to the survey (i.e., trawlable), although in reality there is a substantial amount of 

untrawlable habitat that is inaccessible to the standard AFSC bottom trawling gear (Baker et al. 

2019, von Szalay and Somerton 2017). The STRS estimated total abundance (𝜏̂𝜏𝑑𝑑𝑑𝑑𝑑𝑑) and 

associated unbiased estimator for the variance was calculated for each survey replicate 𝑑𝑑: 

 

 𝜏̂𝜏𝑑𝑑𝑑𝑑𝑑𝑑 =  ∑ 𝑁𝑁ℎy�𝑑𝑑ℎ𝑔𝑔𝑔𝑔𝐻𝐻
ℎ=1  (7) 

 

 y�𝑑𝑑ℎ𝑔𝑔𝑔𝑔 = 1
𝑛𝑛ℎ
∑ 𝑟𝑟ℎ𝑔𝑔𝑔𝑔𝑔𝑔
𝑛𝑛ℎ
𝑖𝑖=1  (8) 

 

 𝑣𝑣𝑣𝑣𝑣𝑣� (𝜏̂𝜏𝑑𝑑𝑑𝑑𝑑𝑑) =  ∑ 𝑁𝑁ℎ(𝑁𝑁ℎ − 𝑛𝑛ℎ) 𝑠𝑠ℎ
2

𝑛𝑛ℎ
𝐻𝐻
ℎ=1  , (9) 

 

 
where 𝑠𝑠ℎ2 is the sample variance of stratum ℎ. The “true” CV, 𝐶𝐶𝑉𝑉𝑇𝑇𝑇𝑇𝑇𝑇𝑇𝑇(𝜏̂𝜏𝑔𝑔𝑔𝑔), describes the 

precision of the total abundance estimate of species g at time t across survey replicates, defined 
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as the standard deviation of the simulated survey estimates relative to 𝜏𝜏𝑔𝑔𝑔𝑔, the true mean density 

of species g at year t: 

  𝐶𝐶𝑉𝑉𝑇𝑇𝑇𝑇𝑇𝑇𝑇𝑇�𝜏̂𝜏𝑔𝑔𝑔𝑔� =  
�(𝐷𝐷−1)−1 ∑ �𝜏𝜏�𝑑𝑑𝑑𝑑𝑑𝑑−𝜏𝜏�∙𝑔𝑔𝑔𝑔����� �2𝐷𝐷

𝑑𝑑=1

𝜏𝜏𝑔𝑔𝑔𝑔
 ,                 (10) 

 

where 𝜏̂𝜏∙𝑔𝑔𝑔𝑔�����  is the abundance estimate of species g at year t averaged across survey replicates. 

Relative root mean square error of CV, 𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅(𝐶𝐶𝐶𝐶(𝜏̂𝜏𝑔𝑔𝑔𝑔)), is a measure of uncertainty of the 

replicate sample CVs of species g at time t and is a composite measure of the dispersion and bias 

of the replicate sample CVs about the true CV: 

 

 𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅 �𝐶𝐶𝐶𝐶�𝜏̂𝜏𝑔𝑔𝑔𝑔�� =  
�𝐷𝐷−1 ∑ �𝐶𝐶𝐶𝐶�𝜏𝜏�𝑑𝑑𝑑𝑑𝑑𝑑�−𝐶𝐶𝑉𝑉𝑇𝑇𝑇𝑇𝑇𝑇𝑇𝑇(𝜏𝜏�𝑔𝑔𝑔𝑔)�2𝐷𝐷

𝑑𝑑=1

𝐷𝐷−1 ∑ 𝐶𝐶𝐶𝐶�𝜏𝜏�𝑑𝑑𝑑𝑑𝑑𝑑�𝐷𝐷
𝑑𝑑=1

 . (11) 

 

Lastly, relative biases (RB) of the mean density and CV estimates relative to their respective true 

values were calculated as 

 𝑅𝑅𝑅𝑅�𝜏̂𝜏𝑑𝑑𝑑𝑑𝑑𝑑� = 100% �𝜏𝜏�𝑑𝑑𝑑𝑑𝑑𝑑−𝜏𝜏𝑔𝑔𝑔𝑔�
𝜏𝜏𝑔𝑔𝑔𝑔

 .  (12) 

 
 

Distance Traveled: Existing Versus Proposed Survey Designs 
 
 
 

To assess the practical feasibility of the proposed survey designs, one metric we 

considered was the total cumulative distance traveled to complete each station. Historically, in 

situ station selection decisions have been made based on location, timing (i.e., the number of 
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stations a boat can finish in a day), weather, and vessel capabilities (e.g., length of line for 

trawls). In general, boats sample stations from west to east; in some years, they are split up by 

depth in the area around Kodiak. Since we cannot replicate the station decision choices made for 

simulated surveys under the proposed survey design, a couple of simplifications were made to 

allocate stations to boats and the order of stations. First, only the area-level, three strata per area, 

two-boat proposed survey design was evaluated. Second, stations were assigned randomly to 

boats, with each boat visiting half of the total stations in the survey. Station order was 

determined by solving the Traveling Salesperson Problem (TSP) using the TSP R package 

(Hahsler and Hornik 2020) for the set of stations, using the nearest insertion method. This 

approach iteratively solves for the shortest possible total distance traveled, prioritizing the closest 

unsampled station to the previously sampled one at each step (Rosenkrantz et al. 1977). Since we 

do not require that the “traveling salesperson” return to the first station, we modified the problem 

to calculate the shortest Hamiltonian path, similar to a boat starting at its most western station 

and ending in the southeast portion of the GOA. 

Three types of distances were calculated. First, for each survey year, the actual total path 

distance was calculated by summing the distances between the observed order of station 

locations, ignoring port calls and assuming a direct, linear travel path between stations. Second, a 

survey from the proposed design (area-level optimization, three strata per area, two boats) was 

simulated 1,000 times, and the minimal path distance from solving the TSP for each boat was 

calculated for each replicate survey. To compare the historical total path distances to the optimal 

survey path distances, a third calculation was made by solving the TSP for the station set 

historically assigned to each boat for each observed survey year. The historical survey path 
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distances (calculation 1) will be systematically different from the TSP-solved survey path 

distances for the same station assignments (calculation 3) due to differences in the decision-

making process of station choice but are useful for interpretation of the results. 

 
RESULTS 

 
 

Conditioning and Operating Models 

 
 

Gulf of Alaska groundfishes comprised a diverse range of spatial distributions. This 

results in interspecific tradeoffs in the formation of strata boundaries and allocation of samples 

among strata. We summarize these distributions broadly below, with more detailed 

interpretations and figures in Appendix A. Many gadids, flatfishes, and skates were broadly 

geographically distributed and most prevalent along the continental shelf. In contrast, many of 

the rockfishes and other taxa had more restricted spatial distributions (e.g., northern rockfish in 

the western region and silvergray rockfish and Pacific spiny dogfish in the central and eastern 

region) or were more prevalent in deeper waters along the outer shelf and the continental slope 

(e.g., shortraker rockfish, sablefish, and shortspine thornyhead, which had little temporal 

variability in spatial distribution over time). Visual evaluations of the probability integral 

transform residuals (Hartig 2020) showed no aberrant departures from model assumptions 

(Appendix A). 

For 87% of the species selected for optimization (design species) and 100% of the non-

design species for which a comparison was possible, the cross-validation procedure favored the 

inclusion of depth as a population density covariate in the model as it reduced the out-of-sample 
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predictive error (Table 3). The species for which the model without the depth covariate was 

favored included silvergray rockfish and the semi-pelagic walleye pollock. As expected, 

prediction errors for species with patchier distributions such as Atka mackerel and many 

rockfishes were somewhat higher than the flatfishes in the species set.  

Design-based and model-based abundance estimates based on the historical survey data 

were largely similar. Model-based abundance CVs were consistently lower than design-based 

estimators and tended to show lower variability over the time series (Fig. 1). Design-based 

estimators for some of the rockfish species tended to have slightly higher abundance estimates 

than the model-based estimates, but note that the scale of an index can be influenced by multiple 

factors, including the spatial resolution of the model and the choice of likelihood function 

(Thorson et al. 2021). For some of the rockfishes, along with spiny dogfish and Atka mackerel, 

years with anomalously high design-based estimates of abundance were often associated with 

lower sample precisions. Overall, the similarity of temporal trends between design-based and 

model-based abundance estimates, in concert with spatial residual diagnostics (Appendix A), 

supports the use of these models as OMs in subsequent optimization and simulation procedures. 
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Figure 1. -- Estimates (+/- one standard error) of the index of abundance from 1996 to 2019 for a 

subset of species (species names in grey were excluded from the survey 
optimization) using a design-based estimator (DBE; red) and a model-based 
estimator (vector autoregressive spatiotemporal [VAST] model; black). Model-based 
estimates shown here are computed with epsilon bias correction for the sake of 
comparison to design-based estimates. 
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Single-species Optimizations 

Species such as northern and southern rock soles, flathead sole, Pacific cod, walleye 

pollock, and northern and dusky rockfishes produced single-species survey optimization 

solutions with higher sampling density in the central and western GOA where they were most 

abundant, with more stations allocated along the shelf than slope (single-species solutions under 

scenario A are plotted in Fig. 2). Silvergray rockfish was more restricted to the eastern GOA and 

thus had an optimal survey design that reflected that distribution, with a high density of samples 

allocated to the southeastern-most part of the spatial domain (i.e., offshore of Prince of Wales 

Island). Solutions for deeper-dwelling species like Pacific ocean perch, Dover sole, shortspine 

thornyhead, and blackspotted/rougheye rockfishes had higher sampling density on the slope.  

Stratified random sampling tended to provide lower expected CVs across species than 

simple random sampling (Fig. 3). There were slight improvements in the expected CV from 

stratification for many of the flatfishes, regardless of whether the stratification was conducted 

specifically for individual or multiple species. Expected CVs for species with restricted 

distributions like silvergray, dusky, and northern rockfishes, Pacific ocean perch, and Atka 

mackerel were greatly reduced by single-species stratification.  
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Figure 2. -- Single-species optimized stratified survey solutions conducted under scenario A  

(10 total strata) plotted on the spatial domain. Different colors indicate different 
strata. Simulated station locations (black dots) based on the respective solutions 
(two-boat effort survey, 525 stations) are superimposed to show spatial differences 
in sampling densities across strata. Species names in grey were non-design species 
and were excluded from the multispecies survey optimization. 
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Figure 3. -- Expected coefficients of variation (CVs, Eq. 3) resulting from two-boat effort 

surveys (525 stations) under various survey designs. Values are shown across 
species (black: included in the optimization; grey: excluded in the optimization) and 
survey design type (point color), where SRS: simple random sampling; Proposed 
STRS: solution corresponding with the area-level (five strata per area, scenario B 
defined in Table 4) optimization; Existing STRS: existing stratified survey design 
(scenario L defined in Table 4); SS-STRS: single-species ten-strata gulf-wide 
optimization (scenario A defined in Table 4). 
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Multispecies Optimizations 

Some features of the single-species stratifications (Fig. 2) were present in the 

multispecies optimal strata solutions (multispecies solutions under scenarios A and B are shown 

in Figs. 4 and 5). Shelikof Strait was retained as a stratum in most species’ optimal survey 

designs (Fig. 2). This was also reflected in the presence of Shelikof Strait as a unique stratum in 

many of the optimized multispecies survey solutions, even when part of Shelikof Strait was 

divided by the Chirikof and Kodiak management areas in the area-level optimizations (Fig. 4). 

Consistently across gulf-wide and area-level solutions, there were strata that corresponded to 

shelf and upper slope areas (e.g., < 300 m) and deeper waters of the slope (Fig. 5). Deep areas 

were typically assigned to one or two strata for the gulf-wide optimized survey solutions. In 

contrast, shallower shelf areas were more often defined by additional longitudinal cuts or 

breakpoints (Fig. 5). Management area boundaries were largely supported as useful strata 

boundaries, in that gulf-wide solutions demonstrated that longitudinal stratum boundaries were 

proximal to management area boundaries, even when area boundaries were not explicitly 

included in the optimization approach (e.g., the boundaries between Yakutat and Southeast, and 

between Western and Chirikof).  

In additional explorations, we explored different settings of the optimization. Of the 

scenarios defined in Table 4, using depth as the sole stratum variable in a scenario led to the 

most dramatic changes in the strata boundaries (Appendix B). In the Western management area, 

scenario B (Appendix B-1) cut the shelf into four longitudinally defined areas, whereas in 

scenario C (Appendix B-2), the resulting depth stratifications separated a western and eastern 

shelf area. Both scenarios identified the slope area as one stratum. In the Yakutat, Kodiak, and 
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Southeast areas, the depth-only stratifications were more concurrent with the existing 

stratifications, merging many of the existing strata (e.g., slopes and gullies as one stratum, Cook 

Inlet and Albatross Banks as one stratum, the existing strata in the 1-100 m and 101-200 m depth 

zones the existing strata as two separate strata in the Southeast region).  

Exploratory analyses and discussions with AFSC scientists indicated that a two-boat (550 

sample) survey effort scenario was reasonably efficient and the most likely outcome for future 

surveys. Therefore, we present results from other total effort scenarios in the appendices while 

comparing options for distributing these 550 samples in the main text. The expected CVs of the 

proposed optimized (area-level, five strata per area) and existing stratified survey designs 

generally were between the simple random sample and single-species stratified random survey  

CVs (Fig. 3). For Dover and rex soles, yelloweye, blackspotted, and rougheye rockfishes, and 

Pacific spiny dogfish, the expected CVs under the existing survey were higher than those of the 

simple random design. In contrast, except for Pacific spiny dogfish and yelloweye rockfish, 

expected CVs of the proposed survey were below those of the simple random design. For the 

gadids and nearly all flatfish, the expected CVs were below 0.15 regardless of the survey design, 

indicating that abundance estimates for these species are likely highly informative of trends in 

biomass in all two-boat (550 station) scenarios. In contrast, the expected CVs of many of the 

rockfishes were quite high (e.g., CV > 0.25), consistent with the high variability in their 

distributions and sampled catch rates.  
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Figure 4. -- Gulf-wide (panels A and B) and area-level (panels C and D) multispecies optimized 

solutions plotted across the spatial domain. Gulf-wide and area-level optimizations 
were conducted under scenarios A and B, respectively, as defined in Table 4. 
Different colors indicate different strata of the proposed designs. The boundaries of 
the five management areas (labeled at the bottom of the figure) are superimposed.  
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Figure 5. -- Stratum boundary delineations across bottom depth and longitude for the gulf-wide 

(panels A and B) and area-level (panels C and D) multispecies optimized solutions 
plotted across the spatial domain. Gulf-wide and area-level optimizations were 
conducted under scenarios A and B, respectively, as defined in Table 4. The colors 
designate different strata in the maps (top row of panel) and corresponding stratum 
variable phase plots (bottom row of panel). The bottom depth axis is scaled to the 
empirical cumulative distribution function of bottom depths in the prediction 
domain. 
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Survey Comparison: Relative Bias 

 
 

Proposed optimized surveys produced estimates of gulf-wide (Fig. 6) and area-level  

(Fig. 7) total abundances from simulated surveys with low magnitudes of relative bias. The 

existing survey design led to abundance estimates with a small bias that was similar to that 

produced by the gulf-wide optimized design, with the exception of a few species with abundance 

distributions extending to deeper depths along the slope that showed consistent large negative 

biases (e.g., Dover sole, shortspine thornyhead, giant grenadier, and sablefish). Relaxing CV 

constraints for species in areas outside their core distribution (e.g., pollock in the Southeast 

management area) had little effect on outcomes, and therefore such considerations were not 

included in developing the area-level solutions. The effort allocation for a two-boat survey 

design as currently implemented does not sample deep (> 700 m) strata, which contributes to the 

negative bias of the abundance index for those deeper-ranging species. Trends for the 

aforementioned species with negative bias for the existing design were consistent for a one-boat 

design which similarly does not sample deep strata (Appendix C5). However, the negative biases 

were eliminated when utilizing a three-boat design that includes the deep strata (Appendix C6). 

Similarly, when the survey was restricted to 700 m and thus the “true” abundances were 

restricted to those cells shallower than 700 m (scenarios J and K for the proposed designs, and 

Scenario M for the existing design), the negative biases for those species were also eliminated 

(Appendix C7). 
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Figure 6. -- Median (with 90% percentile confidence interval) relative bias of simulated total 

(gulf-wide) abundance indices across time (x-axis) and species. Color rows indicate 
different surveys: existing survey (white), gulf-wide optimized survey under 
scenario A defined in Table 4 (light grey, 15 strata), and area-level optimized survey 
under scenario B defined in Table 4 (dark grey, five strata per area). All survey 
scenarios were two-boat effort operations for comparison.  
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Figure 6. -- Continued. 
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Figure 7. -- Median (with 90% percentile CI) bias ratio of simulated abundance indices across 

time (x-axis) by management area (column panels) and species. Color rows indicate 
different surveys: existing survey (white), gulf-wide optimized survey under 
scenario A defined in Table 4 (light grey, 15 strata), and area-level optimized survey 
under scenario B defined in Table 4 (dark grey, five strata per area). All survey 
scenarios were two-boat effort operations for comparison.  
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Figure 7. -- Continued. 
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Figure 7. -- Continued. 
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Figure 7. -- Continued. 
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Survey Comparison: True CV 

 
The existing survey design generally provided true CVs similar to or slightly lower than 

those of the proposed surveys for most species (Fig. 8). The existing design (scenarios L and M) 

provided more precise abundance estimates for flathead sole and shortspine thornyhead than all 

proposed design scenarios (scenarios A-K). However, all proposed design scenarios provided 

more precise abundance estimates for rex sole, BS and RE rockfishes, and longnose skate. There 

was little variation in true CV distributions across proposed design scenarios for many of the 

species included in the optimization. However, there was some variation across proposed design 

scenarios for species excluded from the survey optimizations like giant grenadier, sculpins, and 

yelloweye rockfish. The inclusion of depth as the only stratum variable (scenarios C, E, H, I, K) 

led to higher true CVs and RRMSE of CVs for giant grenadier but lower values for sculpins.  

The RRMSE of CV for many of the proposed design scenarios was lower than in the 

existing design for many species, including shortspine thornyhead, yelloweye, blackspotted and 

rougheye, and shortraker rockfishes, giant grenadier, big and longnose skates, and Dover and rex 

soles (Fig. 9). The trends in these results were consistent across scenarios with different levels of 

simulated sampling error, but the scale of the values differed with greater (e.g., 3-boat, more 

precise CVs) or lesser (1-boat, less precise CVs) effort (Appendix C1-C4).  
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Figure 8. -- Boxplot distributions of true coefficient of variation (CV; standard deviation of 

estimated abundance indices across 1,000 realized survey simulations divided by the 
true abundance index) across years for each design scenario described in Table 4. 
Gulf-scale proposed designs (Scenario A) include 15 strata, area-level designs 
(Scenarios B-K) include five strata per area, and scenarios L-M utilize the existing 
survey design. Two-boat operations are shown for comparison. Whisker length 
indicates 1.5 times the interquartile range, lower and upper hinges correspond to the 
25th and 75th percentiles. 
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Figure 8. -- Continued. 
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Figure 9. -- Boxplot distributions of the relative root mean square error (RRMSE) of the 

coefficient of variation (CV) across years for each design scenario described in 
Table 3. Gulf-scale proposed designs (Scenario A) include 15 strata, area-level 
designs (Scenarios B-K) include five strata per area, and scenarios L-M utilize the 
existing survey design. Two-boat operations are shown for comparison. Whisker 
length indicates 1.5 times the interquartile range, lower and upper hinges correspond 
to the 25th and 75th percentiles. 
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Figure 9. -- Continued. 
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Lower CV Threshold 

 
 

Setting an explicit lower CV threshold for all species, below which the optimization no 

longer seeks to reduce the spatiotemporal variance in abundance, is effective for revealing how 

to best balance tradeoffs of gains and losses in expected survey performance among species.  

While the specific value of expected CV required to produce an abundance index with adequate 

information to inform a stock assessment model is a topic of ongoing research1, we show the 

expected response to changing the lower CV threshold from 0 (no threshold) to two potentially 

reasonable values of 0.15 and 0.25, given area-level optimization solutions with five-strata per 

area. The results detailed below were similar given alternative thresholds of 0.1 and 0.2. We also 

evaluated the effects of additional combinations of species-specific CV thresholds, which did not 

qualitatively change the tradeoffs detailed here, but may warrant further investigation in future 

efforts. 

In the base case with no threshold (or lower CV threshold = 0), rockfishes generally had 

higher expected CVs than flatfishes and gadids (Fig. 10A). Specifically, expected CVs of Pacific 

ocean perch and northern, dusky, and silvergray rockfish were approximately 0.25 to 0.4, much 

higher than all other species, which had expected CVs of approximately 0.05 to 0.20. When the 

lower CV threshold was set to 0.15 (Fig. 10B), expected CVs decreased for blackspotted and 

rougheye rockfish and the four aforementioned rockfishes with highly uncertain estimates. The 

expected CVs slightly increased or remained constant for the species with expected CVs that fell 

                                                 
1 P.D. Spencer. Alaska Fisheries Science Center, 7600 Sand Point Way NE, Bldg. 4, Seattle, WA 98115. unpubl. 
data. 
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below this value under optimizations conducted without a threshold. When the lower CV 

threshold was further increased to 0.25 (Fig. 10C), the expected CVs for the four rockfishes 

which previously had expected CVs above this threshold decreased more substantially; however, 

tradeoffs were more apparent as these increases in precision for species with high uncertainty in 

abundance estimates led to decreases in precision for flatfishes and gadids, yet the latter set of 

species were still well below the lower CV threshold.  

As the lower CV threshold increased from 0 to 0.25, sample allocation as determined by 

the Bethel algorithm shifted to adjust to changing objectives among species. Sample allocation 

increased primarily in the western and Chirikof areas and in deeper strata within the Yakutat and 

Southeast areas as the allocation algorithm gave greater weight to the rockfishes, some of which 

are most prevalent in the eastern GOA. To compensate for these increases, allocation largely 

decreased in the Kodiak and Yakutat areas. 
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Figure 10. -- Expected coefficients of variation (CV) across species for a two boat-effort (550 

stations), area-level (five strata per area, scenario B defined in Table 4) survey 
optimization under different levels of lower CV thresholds with additional 
constraints: A) 0 or no explicit threshold, B) 0.15, and C) 0.25. Grey points 
reproduce the expected CV when the lower CV threshold is zero (thus are constant 
across panels); black points indicate the expected CV computed for a given CV 
threshold; vertical lines indicate the CV threshold. If a CV constraint (e.g., 
𝑈𝑈1,𝑈𝑈2, …𝑈𝑈𝐺𝐺, Eq. Set 3) for a species is lower than the threshold, then the value of 
the CV constraint for that species is set to the threshold. The expected CV can still 
be below the threshold, as the CV constraint only serves as an upper limit. Plotted 
on the right panels are the corresponding changes in sample allocation across strata 
relative to the no threshold scenario. 
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Travel Distances: Existing Versus Proposed Survey Designs 

 
 

We estimate that the proposed optimized survey design is feasible to implement given the 

similarity between the cumulative distance traveled by each boat in the existing and proposed 

surveys. Cumulative distance traveled by each boat in the survey is provided in Table 5. The 

estimated cumulative distance traveled is not always consistent with the true distance; this is 

because of the way the algorithm chooses the station order. Compared to historical surveys that 

used two boats (2011, 2013, 2017, and 2019), the proposed survey design has a slightly larger 

cumulative distance traveled (8,352 +/- 255 km for boat 1 and 8,340 +/- 257 for boat 2, versus a 

mean of 7,143 +/- 620 km traveled per boat estimated for historical surveys; Table 5). Estimated 

distances tend to be shorter than true distances because real-life station choices are made based 

on proximity, depth, weather, and other factors; the Traveling Salesperson Problem (TSP) 

solution optimizes based on total distance and thus will likely be shorter than the true distance 

traveled (See Appendix D for the survey station paths for the historical observations). 

Cumulative distance for the two-boat optimized survey is slightly longer than the historical 

cumulative distances because stations are randomly assigned to boats, whereas in historical 

surveys, stations were sometimes non-randomly assigned. Distances between neighboring 

stations are also comparable between the historical surveys and the proposed design (Fig. 11).  
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Table 5. -- Cumulative distance (km) traveled by each boat in the survey, based on the Traveling 
Salesperson Problem (TSP) solution for station order, with stations assigned 
randomly to boats. True distance, from historical surveys, is based on the cumulative 
distance traveled in a survey by each boat (not counting trips to and from port). 
Approximate shortest cumulative distance is based on the TSP solution. Optimized 
survey distances are averages from 1,000 realizations of the proposed survey design 
(area-level, five strata per area, scenario B defined in Table 4). 

 
    Boat 1 Boat 2 Boat 3 

Year 
Number 

of 
stations 

True 
cumulative 

distance 
(km) 

Approx. 
shortest 

cumulative 
distance 

(km) 

True 
cumulative 

distance 
(km) 

Approx. 
shortest 

cumulative 
distance 

True 
cumulative 

distance 
(km) 

Approx. 
shortest 

cumulative 
distance 

1996 795 10025 7703 10545 8269 8431 7822 

1999 757 8198 7019 6734 5778 8245 6741 

2003 804 8695 5952 8567 6802 8064 6071 

2005 831 12772 6678 10740 6429 8962 5550 

2007 805 8971 5304 11631 6917 11248 6267 

2009 821 10938 6153 11524 6794 10404 6487 

2011 669 12803 7868 11650 6802 -- -- 

2013 547 11813 7292 10587 6417 -- -- 

2015 768 12475 7688 11346 6401 9117 5306 

2017 534 11564 7309 10210 6278 -- -- 

2019 541 12129 7995 11872 7183 -- -- 

        
Two-boat 
optimized 

survey 
550 -- 8352  

(sd: 255) -- 8340  
(sd: 257) -- -- 
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Figure 11. -- Distribution of distances between each station and the two closest unsampled 

stations, for historical surveys (shown by year at left) and for a single solution from 
the proposed survey design (area-level, five strata per area, scenario B defined in 
Table 4). The solution shown here is from an area-level survey optimization with 
three strata for each area. Whisker length indicates 1.5 times the interquartile range, 
lower and upper hinges correspond to the 25th and 75th percentiles. 
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DISCUSSION 
 
 

The framework illustrated here is useful for providing strategic and tactical guidance for 

survey stratification and sample allocation decisions. Additionally, it can be used to inform 

timely, evidence-based decisions for survey modifications based on quantitative advice, which is 

a vast improvement over ad hoc approaches. The modularity and adaptability of the framework 

make it flexible and extendable for a range of purposes. For example, one can easily change the 

assumptions underlying the population density predictions, or update the original predictions in 

response to observed changes in species distribution and abundance (via the OM). Furthermore, 

the framework can easily accommodate changes in total sampling effort and the number and 

spatial extent of strata (via the stratification algorithm). Finally, the spatial allocation of samples 

among strata can be easily re-optimized to meet a given set of objectives for the precision of 

abundance estimates (via the sample allocation algorithm). The ability to set lower and upper 

constraints on the expected precision of abundance indices, whose values can be constant or vary 

across species, provides a formal framework for addressing prioritization and tradeoffs among 

species in multispecies surveys. 

 
 

Practical Recommendations for Survey Design 

 
 

There were several advantages of the proposed optimized stratified survey designs 

compared to the existing survey design. Area-level solutions exhibited low levels of bias in both 

gulf-wide and area-level abundance indices and thus may be useful for stock assessment and 

management purposes (e.g., total allowable catch apportionment). These solutions were also 
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shown to be as logistically feasible as the existing survey design in terms of the total distance 

traveled between stations given the same sample size. Although true CVs were lower in the 

current survey design relative to the proposed design for many of the deeper-ranging species, 

their corresponding abundance estimates were often negatively biased (due to missing population 

densities in deeper strata) and had higher uncertainty and bias in the CV estimates given the 

existing survey design.  

While we illustrate many potential survey optimization solutions here to provide a range 

of options for survey planning, it is necessary to identify the most desirable of the proposed 

designs upon which to conduct further investigation or modification. For example, since 

solutions were similar across magnitudes of sampling effort (Fig. 4), the two-boat effort (550 

stations) survey design can be utilized and adjusted for different levels of effort using the Bethel 

algorithm to adjust the sampling allocation to the total number of survey stations that can be 

sampled given the time and resources available in a given year. This reduced version of the 

optimization can be done with relative ease and lower computation time while remaining 

consistent with the optimization framework. This was the strategy employed when considering 

different CV thresholds to better balance the optimization gains by tailoring allocation to reduce 

CVs of the species with greater uncertainty in abundance estimates (Fig. 10). The level of the 

lower CV threshold could be species-specific, something for which this optimization framework 

can easily accommodate. Ongoing research will inform the choice of the CV threshold values 

based on how survey index precision affects bias and uncertainty of biomass estimates from 

stock assessment models (Spencer et al. in prep, ICES 2020). A cost-benefit analysis evaluating 

the relationship between total sampling effort, precision, and downstream management quantities 
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such as total allowable catch can more directly address multispecies tradeoffs of surveys as they 

relate to management advice and ultimately the economic value of fisheries (Francis 2006). 

The lower CV threshold analysis highlights another difference between our proposed 

survey design and the existing survey design in how species are prioritized and whether such 

prioritization can be adjusted to suit management needs. The flexibility to prioritize 

improvements in biomass index precision of specific species under the existing design is unclear, 

but likely limited to possibly modifying the species weights used in the Neyman sample 

allocations. The existing survey design prioritizes more economically important and abundant 

species in the effort allocation scheme (von Szalay and Raring 2018), whereas the lower CV 

threshold analysis focuses on achieving more precise estimates for species with greater 

uncertainty, which results in placing more weight on rockfish species in the optimal solutions by 

relaxing CV constraints for species whose abundance is already precisely estimated. Further 

interaction with the North Pacific Fishery Management Council and Plan Teams will need to 

address whether this is considered a desirable outcome from a management perspective. 

Regardless, the methods proposed here provide a framework to facilitate such adjustments to 

species prioritization based on management needs, whereas it is unclear how such adjustments 

can or should be performed in the existing design and allocation approach. In our analysis, the 

mechanism to reduce CVs across species while understanding the limitations and tradeoffs is 

straightforward because it can be evaluated by changing the user-defined CV constraints as an 

input to the optimization. Thus, our approach allows for both long-term strategic planning based 

on stock assessment model needs and short-term tactical adjustments to changes in survey 

resources or species of particular management concern in a given year. 



 

58 

 

Contrasting expected outcomes from simple random sampling (SRS) and stratified 

random surveys optimized for each species to those optimized across species is insightful for 

determining both the influence of each species on multispecies optimization solutions and the 

limit to improvements in estimation that can be gained from sampling design alone. Single-

species optimizations represent a scenario in which all resources are utilized to obtain an optimal 

stratified survey for an individual species in the absence of interspecific trade-offs. Together with 

the expected SRS CV, the range of feasible expected precisions can be calculated, which is 

useful in communicating the interspecific tradeoffs of a multispecies survey optimization (i.e., in 

the context of the minimum expected CV for a given effort level). For example, a majority of the 

species exhibited relatively precise expected CVs (e.g., < 0.15) regardless of survey design type, 

with stratification providing only slight increases in precision. This was the case for many 

broadly distributed and economically important species. In contrast, rockfishes (e.g., silvergray, 

blackspotted and rougheye, northern, and dusky rockfishes) exhibited large increases in precision 

with single-species survey optimization. These large precision improvements are partly due to 

the patchier and restricted spatial distribution of many rockfishes (e.g., the western-dominant 

distribution for northern rockfish and eastern-dominant distribution for silvergray rockfish). 

Thus, strata and allocation of stations are optimized to reflect those distributions in the single-

species solutions. These gains in precision relative to the expected SRS CVs for these species are 

not realized to that extent in the multispecies optimizations (Fig. 4) due to the tradeoffs that 

occur when the optimization incorporates many species with diverse spatial distributions, which 

also change over time. For these rockfishes, precise estimates (i.e., CV between 0.15 and 0.20) 

can only be achieved under a single-species optimization framework. Furthermore, these 
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analyses can help inform difficult decisions regarding which species should be deprioritized if 

improvements in precision are inadequate to produce informative inputs to stock assessments. 

This clarifies the limitations and consequences of maintaining a multispecies, multi-objective 

survey.  

Caveats: Effects of Untrawlable Habitat and Varying Catchability 

 
 

The measure we used to express the true CV encompasses the expected sampling 

variability of a population estimate across multiple realized survey simulations. While we 

demonstrated how differences in spatial availability (attributable to whether the design sampled 

the complete distribution of abundance by depth, particularly in the deepest extent of the OM) 

and observation error contributed to true CV, there are likely other sources of variation in 

sampling efficiency present in the historical and simulated data that are not explicitly considered 

here. These include measurement error and spatial variation in gear efficiency due to density-

dependent population processes, unaccounted environmental processes, and habitat effects that 

could not be quantified due to the presence of untrawlable habitat. For example, we assumed that 

all cells in the spatial domain were available for sampling when in reality, a considerable portion 

of the GOA is untrawlable by the BTS gear due to the complex terrain, high-rugosity rocky reefs, 

steep slopes, and strong currents (Baker et al. 2019). The data used to inform the OM came from 

locations in the spatial domain that were sampled by the survey gear. Thus, it was assumed that 

density in untrawlable areas could be interpolated from a model with observations from only 

trawlable areas. An additional related assumption applies to the design-based estimator in that 

fish densities are assumed not to differ between untrawlable and trawlable cells. This assumption 
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is likely not appropriate for many species, given interspecific differences in species-habitat 

associations. For example, untrawlable habitats may be more likely to have higher densities of 

rockfishes and lower densities of flatfishes given their typical hard substrates with high rugosity 

(Jones et al. 2012, 2021). In summary, the non-random spatial distribution of untrawlable areas 

unaccounted for in our OM survey simulations and the assumption of constant catchability in 

space and time (Kotwicki and Ono 2019, Cordue 2007) are likely significant sources of both 

additional bias and sampling variability.  

 
 

Future Considerations Regarding Timescales of Ecosystem Change and Survey Adaptation 

 
 

It is important to carefully consider three interconnected aspects of time scale that may 

influence future survey performance: 1) how quickly species abundances and distributions are 

changing; 2) how far back in time the historical data input to the OM should extend; and 3) 

whether and how frequently survey designs should be adjusted given new observations. Using all 

the years of observations available integrates the broadest range of frequencies and magnitudes 

of temporal, spatial, and spatiotemporal variation. However, given the fitted spatiotemporal 

distributions of the past may not be reflective of the future, especially under novel environmental 

conditions (Muhling et al. 2020), it is worth considering using only survey data from more recent 

years to condition the OM and inform short-term decisions (Ault et al. 1999). In this case, it may 

also be pertinent to frequently update the design given optimizations incorporating survey 

observations collected after the initial optimization. While this can cause problems for the 

interpretation of long-term time series given some designs, according to sampling theory, 
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stratified random designs produce inherently unbiased estimates and therefore are more flexible 

to changes in stratification and sample allocation. Ratios of estimated abundance calculated 

under proposed and existing designs near unity (Appendix C-7) further support the consistency 

of the time series to changes in STRS designs, with the caveat that the survey footprint is 

consistent between designs. Given the existing two-boat survey design, this meant restricting the 

survey spatial domain to those cells less than 700 m.  

We envision that one frontier of adaptive monitoring of fishery resources may include 

updating survey design or sample allocation based on near-term predictions of future species 

distributions. If species distributions can be skillfully forecasted in the near term using dynamic 

environmental covariates, stratified surveys can be updated to account for expected future 

species distribution shifts. For example, in the eastern Bering Sea, the spatial extent of the cold 

pool (e.g., 2ºC isotherm) has been shown to be predictive of groundfish abundance and 

distribution (Thorson 2019b, Kotwicki and Lauth 2013, Spencer 2008). Given the temporal 

variability of the cold pool extent (e.g., Thorson 2019b), survey designs could be re-optimized to 

adjust to forecasted changes in the distributions of the species due to the expected extent of the 

cold pool. Further evaluation would be needed to determine how such an adaptive approach 

would influence survey efficiency relative to a static approach similar to that described here.   

 

CONCLUSIONS 

 
 

We presented a formalized stratified random survey optimization of the GOA 

multispecies BTS that constrains spatiotemporal variance in abundance. The optimization allows 
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for species to be prioritized based on precision, allowing more flexibility to modify the survey 

design to match species-specific prioritizations based on management and stock assessment 

needs. Proposed solutions from the optimization produced expected precisions of abundance 

estimates comparable to the existing STRS design but with higher accuracy and lower bias. 

Simulated surveys under the proposed designs also had similar total distances travelled between 

stations than the existing survey design, indicating that the proposed design is likely feasible to 

implement with the same number of sampling days per survey season.  

This optimization approach addresses many practical challenges for fishery-independent 

multispecies surveys in the Alaska region and beyond by providing a consistent and objective 

framework for quantifying interspecific tradeoffs and mitigating consequences of reductions in 

sampling effort due to fluctuations in survey resources. Survey effort reduction often requires 

changes to sampling design, and we propose the use of the framework outlined here to determine 

how to adjust when faced with such challenges. The consequences of historical and proposed 

survey effort reductions on the quality of biomass estimates in this and other regions in Alaska, 

and the best approach to mitigating them, will also be informed by ongoing efforts related to 

variation in sampling intensity and survey footprint (ICES 2020, von Szalay et al. in prep), and 

by comparison of effects on both design- and model-based estimators2. The techniques 

developed here will likely be applied to existing Alaska bottom trawl surveys with stratified 

random designs in other regions (e.g., eastern Bering Sea slope survey) and to potentially 

reallocate samples from other survey designs where needed to increase spatial coverage. 

2 E.A. Laman, Alaska Fisheries Science Center, 7600 Sand Point Way NE, Bldg. 4, Seattle, WA 98115. unpubl. 
data. 
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APPENDIX A 

Operating Model Outputs and Diagnostics Plots 

Appendix Figures A1-A26 show model outputs and diagnostic plots from a univariate 

vector autoregressive spatiotemporal (VAST) model. Some species have depth included as a 

quadratic linear effect noted in Table 3. All plots have the same layout: A) spatial random effect, 

B) spatiotemporal random effect on occurrence over time, C) spatiotemporal random effect on

the positive component of the response over time, and D) predicted density over time. E) 

Probability integral transform (PIT) residual QQ plot, F) PIT residual versus ranked transformed 

model predictions, and G) PIT residuals over space. 

Gulf of Alaska groundfishes comprised a diverse range of spatial distributions, as 

summarized in Appendix A. Pacific halibut (Appendix Fig. A-15), arrowtooth flounder 

(Appendix Fig. A-1), flathead sole (Appendix Fig. A-7), rex sole (Appendix Fig. A-17), Pacific 

cod (Appendix Fig. A-14), walleye pollock (Appendix Fig. A-25) and big and longnose skates 

(Appendix Figs. A-3 and A-11) were broadly geographically distributed and most prevalent 

along the continental shelf. Pacific ocean perch (Appendix Fig. A-16), harlequin rockfish 

(Appendix Fig. A-10), and dusky rockfish (Appendix Fig. A-6) were distributed primarily in 

deeper depths, along the outer continental shelf and upper slope, and often with ephemeral 

hotspots of high density. Shortraker rockfish (Appendix Fig. A-20), sablefish (Appendix Fig. A-

18),), and shortspine thornyhead (Appendix Fig. A-21) were most prevalent on the continental 

slope, with less variability in spatial distribution over time than many of the species found more 
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commonly on the continental shelf. A handful of species were restricted to certain parts of the 

spatial domain. Northern rockfish (Appendix Fig. A-13) were most prevalent along the outer 

continental shelf and upper slope in the western area of the domain. Dover sole (Appendix Fig. 

A-5) were prevalent along the continental slope and in deep gullies everywhere except the far

western portion of the domain. The rock soles were distributed shallower and were more shelf-

associated than Dover sole and northern rockfish, with northern rock sole (Appendix Fig. A-12) 

restricted to the western and central portions of the spatial domain, and southern rock sole 

(Appendix Fig. A-23) was distributed similarly with the exception of some isolated hotspots in 

the Southeast GOA. Pacific spiny dogfish (Appendix Fig. A-24) were found at shallow to 

moderate depths and silvergray rockfish (Appendix Fig. A-22) at deeper depths across their 

distributions, which were restricted to the central and eastern GOA. Conversely, Atka mackerel 

(Appendix Fig. A-2) and giant octopus (Appendix Fig. A-9) were restricted to the 

western/central part of the spatial domain. Visual evaluations of the PIT residuals showed no 

aberrant departures from model assumptions. 
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APPENDIX B 

Strata boundaries of the existing stratified random survey superimposed on the proposed survey 
optimization solutions 
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Appendix Figure B-1. --  Stratum boundaries of the existing stratified random design (open 
polygons) superimposed on the proposed optimized strata boundaries 
under scenario B (five strata per area, filled polygons) defined in Table 
4 of the main text. Plots are sectioned by management area. 
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Appendix Figure B-2. -- Stratum boundaries of the existing stratified random design (open 
polygons) superimposed on the proposed optimized strata boundaries 
under scenario C (five strata per area, filled polygons) defined in Table 
4 of the main text. Plots are sectioned by management area. 
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Appendix Figure B-3. -- Stratum boundaries of the existing stratified random design (open 
polygons) superimposed on the proposed optimized strata boundaries 
under scenario D (five strata per area, filled polygons) defined in Table 
4 of the main text. Plots are sectioned by management area. 
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Appendix Figure B-4. -- Stratum boundaries of the existing stratified random design (open 
polygons) superimposed on the proposed optimized strata boundaries 
under scenario E (five strata per area, filled polygons) defined in Table 
4 of the main text. Plots are sectioned by management area. 
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Appendix Figure B-5. --  Stratum boundaries of the existing stratified random design (open 
polygons) superimposed on the proposed optimized strata boundaries 
under scenario F (five strata per area, filled polygons) defined in Table 
4 of the main text. Plots are sectioned by management area. 
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Appendix Figure B-6. -- Stratum boundaries of the existing stratified random design (open 
polygons) superimposed on the proposed optimized strata boundaries 
under scenario G (five strata per area, filled polygons) defined in Table 
4 of the main text. Plots are sectioned by management area. 
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Appendix Figure B-7. -- Stratum boundaries of the existing stratified random design (open 
polygons) superimposed on the proposed optimized strata boundaries 
under scenario H (five strata per area, filled polygons) defined in Table 
4 of the main text. Plots are sectioned by management area. 
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Appendix Figure B-8. -- Stratum boundaries of the existing stratified random design (open 
polygons) superimposed on the proposed optimized strata boundaries 
under scenario I (five strata per area, filled polygons) defined in Table 4 
of the main text. Plots are sectioned by management area. 
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Appendix Figure B-9. --  Stratum boundaries of the existing stratified random design (open 
polygons) superimposed on the proposed optimized strata boundaries 
under scenario J (five strata per area, filled polygons) defined in Table 
4 of the main text. Plots are sectioned by management area. 
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Appendix Figure B-10. -- Stratum boundaries of the existing stratified random design (open 
polygons) superimposed on the proposed optimized strata boundaries 
under scenario K (five strata per area, filled polygons) defined in Table 
4 of the main text. Plots are sectioned by management area. 
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APPENDIX C 

Comparison of Survey Performance Among Designs Given Alternative Total Sample Sizes 

Appendix Figures C1-C4 are similar to Figures 8 (True CV) and 9 (relative root mean 

square error of CV), and Appendix Figures C5 and C6 are similar to Figure 6 (relative bias) in 

the main text, shown for one and three levels of boat effort. Appendix Figure C7 shows the 95th 

percentile distribution of the ratio of the abundance index calculated under a proposed design 

(scenario K as defined in Table 4 of the main text) to the existing survey design (scenario M as 

defined in Table 4 of the main text) for each species where only cells shallower than 700 m in 

the spatial domain are included. 
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Appendix Figure C-1. --  Boxplot distributions of true coefficient of variation (CV; standard 
deviation of estimated abundance indices across 1,000 realized survey 
simulations divided by the true abundance index) across years for each 
design scenario described in Table 3. Gulf-scale proposed designs 
(Scenario A) include 15 strata, area-level designs (Scenarios B-K) 
include five strata per area, and scenarios L-M utilize the existing 
STRS design. One-boat operations are shown for comparison. Whisker 
length indicates 1.5 times the interquartile range, lower and upper 
hinges correspond to the 25th and 75th percentiles.  
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Appendix Figure C-1. -- Continued. 
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Appendix Figure C-2. --  Boxplot distributions of the relative root mean square error (RRMSE) 
of the coefficient of variation (CV) across years for each design 
scenario described in Table 3. Gulf-scale proposed designs (Scenario 
A) include 15 strata, area-level designs (Scenarios B-K) include five
strata per area, and scenarios L-M utilize the existing STRS design.
Two-boat operations are shown for comparison. Whisker length
indicates 1.5 times the interquartile range, lower and upper hinges
correspond to the 25th and 75th percentiles.
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Appendix Figure C-2. -- Continued. 
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Appendix Figure C-3. -- Boxplot distributions of true coefficient of variation (CV; standard 
deviation of estimated abundance indices across 1,000 realized survey 
simulations divided by the true abundance index) across years for each 
design scenario described in Table 3. Gulf-scale proposed designs 
(Scenario A) include 15 strata, area-level designs (Scenarios B-K) 
include five strata per area, and scenarios L-M utilize the existing 
STRS design. Three-boat operations are shown for comparison. 
Whisker length indicates 1.5 times the interquartile range, lower and 
upper hinges correspond to the 25th and 75th percentiles. 
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Appendix Figure C-3. -- Continued.
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Appendix Figure C-4. -- Boxplot distributions of the relative root mean square error (RRMSE) of 
the coefficient of variation (CV) across years for each design scenario 
described in Table 3. Gulf-scale proposed designs (Scenario A) include 
15 strata, area-level designs (Scenarios B-K) include five strata per 
area, and scenarios L-M utilize the existing STRS design. Two-boat 
operations are shown for comparison. Whisker length indicates 1.5 
times the interquartile range, lower and upper hinges correspond to the 
25th and 75th percentiles. 
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Appendix Figure C-4. -- Continued. 
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Appendix Figure C-5. -- Median (with 90% percentile confidence interval) relative bias of 
simulated total (gulf-wide) abundance indices across time (x-axis) and 
species. Color rows indicate different surveys: existing survey (white), 
gulf-wide optimized survey under scenario A defined in Table 4 (light 
grey, 15 strata), and area-level optimized survey under scenario B 
defined in Table 4 (dark grey, five strata per area). All survey scenarios 
were one-boat effort operations for comparison. 
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Appendix Figure C-5. -- Continued. 
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Appendix Figure C-6. --  Median (with 90% percentile confidence interval) relative bias of 
simulated total (gulf-wide) abundance indices across time (x-axis) and 
species. Color rows indicate different surveys: existing survey (white), 
gulf-wide optimized survey under scenario A defined in Table 4 (light 
grey, 15 strata), and area-level optimized survey under scenario B 
defined in Table 4 (dark grey, five strata per area). All survey scenarios 
were three-boat effort operations for comparison. 
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Appendix Figure C-6. -- Continued. 
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Appendix Figure C-7. -- Median (with 90% percentile confidence interval) ratios of indices 
produced using 1000 survey replicates of proposed to existing survey 
designs across survey years (x-axis) and species. Lighter green areas 
indicate the interquartile region and the darker green encompasses the 
90% percentile confidence interval. All survey scenarios were two-boat 
operations for comparison. 
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APPENDIX D 

Observed Survey Paths and Shortest Paths Calculated by Solving the Travelling Salesperson 

Problem for Each Boat for a Given Survey Year 
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