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1 Introduction

We developed a time-varying, discrete time model to track fishing-related benthic habitat
effects across the North Pacific. The Fishing Effects (FE) model accounts for spatially ex-
plicit historic fishing efforts, gear specific habitat susceptibility, and habitat specific recovery
dynamics. The FE model is adapted from the Fujioka Long-term effect index (LEI) contin-



uous time model (Fujioka, 2006; Sethi, Harris, & Rose, 2014). For parameter estimates, The
FE model draws heavily on the literature review conducted for the Swept Area Seabed Im-
pact (SASI) model (New England Fishery Management Council (NEFMC), 2011). Historic
fishing efforts are measured using the Catch-in-Area (CIA) data set developed by NOAA
(REF NEEDED). The CIA data contains the location of all commercial fishing activities

since January 2003.

2 Model background

The FE model is conceptualized as an iterative model tracking habitat transitions between
disturbed and undisturbed states. We let H represent the proportion of habitat disturbed
by fishing activities, and h represent the proportion of habitat undisturbed by fishing ac-
tivities. Terminology may vary slightly according to context, but in general, we will treat
“undisturbed”, “showing no effect of fishing” or other similar term as equivalent. In this
model, habitat that has had no historic fishing is equivalent to disturbed habitat that has
fully recovered. Likewise, we will treat terms such as “disturbed”, “affected by fishing”, or
“impacted” as equivalent. We will often switch between the terms proportion and percent-
age when referencing the same parameter value. Generally, we will use proportions when

discussing values as model inputs, and percentages when discussing these values in context.

The two habitat states, H and h are mutually exclusive and complete,

H+h=1 (1)

The FE model considers transition between H and h in monthly discrete time steps, t.
Thus, H; is undisturbed habitat and h; is disturbed habitat at month ¢. In implementation
of the model, ¢t = 1 represents January 2003 when using the full historical fishing data. H
transitions into A from one month to the next through fishing impacts and h transitions into
H through recovery. We let I] represent the proportion of H that transitions to h by fishing
impacts from month ¢ to month ¢ 4+ 1, and pj} is the proportion of h that recovers to H over
the same time step. As a time-varying model, both I] and pj can vary from month to month.
Thus, H;yq is the is the sum of non-impacted H; and recovered h;. Conversely, h;yq is the

sum of impacted H; and non-recovered h;.



Hypr = Hi(1— 1)) + hup (2)
hisr = Hd{+h(1 = pi)

These state transitions are run independently within 5 km x 5 km grid cells across
the North Pacific resulting in a spatially explicit tracking of H and h through time. In
implementation of the model, we only track H since h can easily be back calculated through
Eq. 1. Each grid cell is characterized by the proportion of five sediment types within it: mud,
sand, granule/pebble, cobble, and boulder (see Section 3 for a discussion on the estimation
of sediment proportions). Thus, a grid cell may be 50% sand and 50% mud, or 10% mud,
80% sand, and 10% cobble, or any other combination of sediment types that sums to 100%.
Sediment types are assumed to be uniformly spread throughout each grid cell based on their
proportion, thus this model does not consider spatial structure of sediment within a grid cell.
H and h, then are tracked not only within grid cells, but also within sediment classes. Let
the subscripts t, s represent grid time (month), and sediment class respectively. We will use
a e to represent summations across a given dimension. Thus, the total undisturbed habitat
in a given cell is the sum of undisturbed habitat for each sediment times the proportion of
sediment with the grid cell, P, 5, across all five sediment types (note the sediment proportion

remains constant across all time periods).

5
Hige= Z Hyg,sPy,s (3)
s=1

For example, if we have a grid cell composed of 10% mud, 80% sand, and 10% cobble,
with H of 90%, 60%, and 100% for mud, sand and cobble respectively, the total undisturbed
percent of the grid cell would be 67%. If we are interested in the proportion of disturbed
habitat we could subtract H;, from one (Eq. 1) or substitute h for H in Eq. 3. If we are
interested in total undisturbed area within each grid cell at any given time, we simply need
to multiply H,,. times the the total area of the grid cell, A;. The area for most grid cells
will be 25 km? (5 km X 5 km), however, some grid cells will have smaller areas when they

are located at the edge of the domain or along coastlines.

Both p’ and I’ Within each grid cell, I’ is dependent on fishing effort and susceptibility
of habitat by gear type and sediment. p’ is dependent upon sediment type.



2.1 Fishing impacts

The proportion of undisturbed habitat that transitions to disturbed habitat as a result of
fishing impact, I, is calculated as the exponentiation of the impact rate, I (for a discussion

on this conversion, see Section 2.5),

I'=1—¢1 (4)

In the FE model implementation, the parameter [ is indexed across grid cells, ¢, time
periods, t, sediment classes, s, and gear types, g. We sum across n gear types to calculate
an impact rate for each grid, time period, and sediment combination. For the remainder of
the model discussion, we will omit the ¢ and ¢ indexing as all parameters are unique to grid

cell and time period unless otherwise stated.

Le=) I, (5)

The impact rate for each gear-sediment combination, I, ., is calculated as the product

7g,
of the gear specific fishing effort, f, and the gear-sediment sensitivity g¢s 4,

]s,g = ngS,g (6)

fq is a measure of the total bottom contact by each gear type as a proportion of
the total grid cell area. It can range from zero, indicated no bottom contact by a gear
type, to proportions greater than or equal one, indicating that the total bottom contact was
greater than or equal the area of the grid cell. Proportions exceeding one may occur because
fy is summed across all individual tows of the same gear type within a cell regardless of
possible overlap. When f, > 1, it does not necessarily mean that the entire grid cell has
been contacted by fishing gear, but only that the sum of bottom contact by individual tows
is greater than or equal to the grid area. For example, we can consider the two following
hypothetical (and unlikely) scenarios both resulting in f; = 1. In one scenario, one tow may
contact the the entire grid cell, resulting in 100% contact by one vessel. In a second scenario,
10 vessels may contact the same 10% area of the grid cell, in which case f; =10 x 0.1 = 1.
Although, f, =1 in both scenarios, the actual percent of ground contact differs (see Section

2.5 for more discussion on the implications of this difference). f, is calculated as the nominal



area swept by fishing gear, A, multiplied contact adjustment, c¢,. Nominal area swept is the
door-to-door area of a tow not accounting for the degree to which the components of a
tow actually touch the sea floor. The contact adjustment, then, is the proportion of the
nominal area swept in contact with the sea floor. Because we assume a uniform distribution
of sediment within a grid cell, f; is not indexed over sediment, and is assumed to be spread
proportionally among all sediments within a grid cell. Nominal areas are calculated for each

tow, z, within a grid cell and are summed over n tows within gear types,

2.2 Estimate of sensitivity

Sensitivity, ¢s 4, is the proportion of habitat affected by bottom contact with fishing gear. We
index it over s and g because we assume differing sensitivities for gear-sediment combinations.
Within each sediment class is a defined set of geological and biological habitat features. The
sensitivity for a gear-sediment combination is the average of the sensitivity of all habitat
features within a sediment class for a gear type. Habitat features definitions and their
sensitivity were based on a literature review conducted for the SASI model (REFERENCE
NEEDED). In a few cases, the SAST model split habitat feature sensitivity between high and
low energy systems. IN these cases, we selected the low energy sensitivity. Habitat feature
sensitivities were not estimated as absolute values, but were classified into four ranges: 0:
0-10%; 1: 10-25%; 2: 25-50%; 3: >50%.

To calculate an average sensitivity for each gear-sediment combination, we first ran-
domly selected a sensitivity for each habitat feature within its range of sensitivities for a
given gear-sediment combination. We then computed the mean of these randomly selected
habitat feature sensitivities to get an average sensitivity for each gear-sediment combination.
In the initial implementation of the FE model, we generated random sensitivities once then
used these values throughout the model. In future version of the model, we may generate

random sensitives for each time step and/or each grid cell.



Table 1: Sensitivity of habitat features to longlines

Feature Class Feature Mud Sand Gran-Peb Cobble Boulder
G Bedforms 0
G Biogenic burrows 1 1
G Biogenic depressions 0 1
G Boulder, piled 0
G Boulder, scattered, in sand 0
G Cobble, pavement 0
G Cobble, piled 1
G Cobble, scattered in sand 0
G Granule-pebble, pavement 0
G Granule-pebble, scattered, 0
in sand
G Sediments, 0 0
suface/subsurface
G Shell deposits 0 0
B Amphipods, tube-dwelling 1 1
B Anemones, actinarian 1 1 1
B Anemones, cerianthid 1 1 1
burrowing
B Ascidians 1 1 1 1
B Brachiopods 1 1 1
B Bryozoans 1 1 1
B Corals, sea pens 1 1
B Hydroids 1 1 1 1 1
B Macroalgae 1 1 1
B Mollusks, epifaunal bivalve, 0 0 0 0 0
Modiolus modiolus
B Mollusks, epifaunal bivalve, 0 0 0
Placopecten magellanicus
B Polychaetes, Filograna 1 1 1 1
mmplexa
B Polychaetes, other 1 1 1
tube-dwelling
B Sponges 0 1 1 1

Adapted from the SASI model (NEFMC, 2011)

Sensitivity codes: 0: 0—-10%; 1: 10-25%; 2: 25-50%; 3: >50%
Blank spaces are habitat features not associated with the given sediment class
G is Geological features and B is Biological features



Table 2: Sensitivity of habitat features to traps

Feature Class

Feature Mud

Sand Gran-Peb Cobble

Boulder

G

Wwwh Q@ i

ssMlveivslivelivs i vo livs)

vy}

B

B

Bedforms

Biogenic burrows 1
Biogenic depressions 1
Boulder, piled

Boulder, scattered, in sand
Cobble, pavement

Cobble, piled

Cobble, scattered in sand
Granule-pebble, pavement
Granule-pebble, scattered,

in sand

Sediments, 1
suface/subsurface

Shell deposits

Amphipods, tube-dwelling 1
Anemones, actinarian
Anemones, cerianthid 1
burrowing

Ascidians

Brachiopods

Bryozoans

Corals, sea pens 1
Hydroids

Macroalgae

Mollusks, epifaunal bivalve, 0
Modiolus modiolus

Mollusks, epifaunal bivalve,
Placopecten magellanicus
Polychaetes, Filograna

mmplexa

Polychaetes, other

tube-dwelling

Sponges

0
1
1

o = O

Adapted from the SASI model (NEFMC, 2011)

Sensitivity codes: 0: 0—-10%; 1: 10-25%; 2: 25-50%; 3: >50%

Blank spaces are habitat features not associated with the given sediment class

G is Geological features and B is Biological features



Table 3: Sensitivity of habitat features to trawls

Feature Class Feature Mud Sand Gran-Peb Cobble Boulder
G Bedforms 2
G Biogenic burrows 2 2
G Biogenic depressions 2 2
G Boulder, piled 2
G Boulder, scattered, in sand 0
G Cobble, pavement 1
G Cobble, piled 3
G Cobble, scattered in sand 1
G Granule-pebble, pavement 1
G Granule-pebble, scattered, 1
in sand
G Sediments, 2 2
suface/subsurface
G Shell deposits 1 1
B Amphipods, tube-dwelling 1 1
B Anemones, actinarian 2 2 2
B Anemones, cerianthid 2 2 2
burrowing
B Ascidians 2 2 2 2
B Brachiopods 2 2 2
B Bryozoans 1 1 1
B Corals, sea pens 2 2
B Hydroids 1 1 1 1 1
B Macroalgae 1 1 1
B Mollusks, epifaunal bivalve, 1 1 2 2 2
Modiolus modiolus
B Mollusks, epifaunal bivalve, 2 1 1
Placopecten magellanicus
B Polychaetes, Filograna 2 2 2 2
mmplexa
B Polychaetes, other 2 2 2
tube-dwelling
B Sponges 2 2 2 2

Adapted from the SASI model (NEFMC, 2011)

Sensitivity codes: 0: 0—-10%; 1: 10-25%; 2: 25-50%; 3: >50%
Blank spaces are habitat features not associated with the given sediment class
G is Geological features and B is Biological features



2.3 Recovery

Recovery, p, is the proportion of disturbed habitat, h, that transitions to undisturbed habi-
tat, H, from one time step to the next. We index it on sediment, s, because we assume
differing recovery dynamics for different sediment classes. p’ is calculated as the exponenti-

ation of the negative recovery rate, ps subtracted from one,

po=Tl—e" (8)
ps is defined as the inverse of recovery time,

o= L (9)

Ts

where 7, is the average number of years it takes for habitat in a sediment class to
recover from a disturbed to an undisturbed state. In the implementation of the model, we
divide p, twelve to convert years to months (equivalent to multiplying 75 by twelve) to align
with the time step of the model. Similar to sensitivity, rhos is calculated by averaging across
all habitat features within a sediment class. However, we first average recovery times, 7,
using he recovery times published for the SAST model (New England Fishery Management
Council (NEFMC), 2011). We then convert average recovery times to recovery rate, rhos
using Eq. 9. Unlike the SASI model, which estimates a recovery time for each gear-sediment-
habitat feature combination, the FE model does not account for recovery times differ when
habitat is impacted by different gear types. Thus, when using the SASI values, we used
their sediment-habitat features values for Trawls only, regardless of what gear caused the
disturbance. In a few cases, the SASI recovery values differed for high and low energy
systems. In these cases, we chose the low energy values. Also, like sensitivity, recovery times

were classified into four ranges: 0: < 1 year; 1: 1-2 years; 2: 2-5 years; 3: >5 years.

To calculate an average recovery time for each sediment class, we first randomly
selected a recovery time for each habitat feature within its range of recoveries for a given
sediment. We then computed the mean of these randomly selected habitat feature recoveries
to get an average recovery time for each sediment class. We bounded class 3 to a maximum of
ten years for recovery. In the initial implementation of the FE model, we generated random
recoveries once then used these values throughout the model. In future version of the model,

we may generate random recoveries for each time step and/or each grid cell. Additionally,

10



it is worth noting, that in the current method of converting from yearly recovery rates to
monthly recovery rates, we are assuming the recovery rate to be spread uniformly throughout
the year. It is possible in future versions of the model to consider recovery rates that are

seasonal or differ among months.

2.4 Expectation of recovery rate

The conversion in Eq. 8 is based on the exponential failure distribution (REF NEEDED).

2.5 Expectation of impact rate

We used Eq. 4 to convert impact rate, I to a proportion I’ representing the proportion
of undisturbed habitat that converts to disturbed habitat each time step. While I itself is
measured as a proportion, it is calculated within each grid cell for each gear type by summing
across the impacted area for each tow and dividing by the grid area. Because we sum across
tows, regardless of whether or not they overlap, the value I can exceed of one. Using an
untransformed I in the model would be problematic, as this could lead to estimations of
disturbed area that exceed the total area of the grid cell. Eq. 4 solves this problem as the

transformed I’ is bounded between zero and one.

We can motive this particular transformation by imagining a grid cell to be composed
of N discrete habitat units. We will consider an example with only one gear and sediment
type in the grid cell. We will let n be the number of impacted habitat units impacted by

fishing as summed across individual tows. Thus n is the product of I and N,

n=IN (10)

n can exceed N if I > 1. Given only I as a measure of fishing activity, we don’t
know how much of the habitat was actually impacted. For example, if we imagine N = 100
discrete habitat units in a grid cell and I = 1, then n = 100. We don’t know if all 100 units
were impacted in the grid cell or if the same 10 units were impacted by 10 different tows
(I = 0.1, for 10 tows). We can model this scenario by treating the impact of each unique
tow a sampling with replacement from N discrete habitat features. For a habitat feature to
be “sampled” means that it gets disturbed by fishing. We sample with replacement because

each tow can disturb a habitat feature that has already been disturbed by another tow. We

11



Table 4: Recovery classifications for habitat features

Feature Class Features Mud Sand Gran-Peb Cobble Boulder
G Bedforms 0
G Biogenic burrows 0 0
G Biogenic depressions 0 0
G Boulder, piled 3
G Boulder, scattered, in sand 0
G Cobble, pavement 0
G Cobble, piled 3
G Cobble, scattered in sand 0
G Granule-pebble, pavement 0
G Granule-pebble, scattered, 2
in sand
G Sediments, 0 0
suface/subsurface
G Shell deposits 2 2
B Amphipods, tube-dwelling 0 0
B Anemones, actinarian 2 2 2
B Anemones, cerianthid 2 2 2
burrowing
B Ascidians 1 1 1 1
B Brachiopods 2 2
B Bryozoans 1 1 1
B Corals, sea pens 2 2
B Hydroids 1 1 1 1 1
B Macroalgae 1 1 1
B Mollusks, epifaunal bivalve, 3 3 3 3 3
Modiolus modiolus
B Mollusks, epifaunal bivalve, 2 2 2
Placopecten magellanicus
B Polychaetes, Filograna 2 2 2 2
mmplexa
B Polychaetes, other 1 1 1
tube-dwelling
B Sponges 2 2 2 2

Adapted from the SASI model (NEFMC, 2011)

Recovery codes: 0: < 1 year; 1: 1-2 years; 2: 2-5 years; 3: >5 years
Blank spaces are habitat features not associated with the given sediment class
G is Geological features and B is Biological features

12



can think of n as the number of times we take a sample with replacement of one from N.
This assumes that there are n independent tows each with I = 1/N. Thus, each habitat
feature has a 1/N probability of disturbance for each tow. Because a habitat feature can be
repeatedly impacted, the probability of disturbance for each unit remains constant over all
n tows. So, for any habitat feature, Y;, the probability of being impacted k times follows a
Binomial distribution, Bin(n, 1/N), with the probability mass function,

Fin ) =P =) = (1) (1= (1)

Using Equation 11, we can calculate the probability of a habitat feature not impacted

over n tows,

Pr(X; = 0) = (1 — %)n (12)

Thus, the probability of a habitat feature being impacted is,

Pr(X; > 0) = 1 — Pr(X; = 0) = 1 — (1 — %)" (13)

We can treat each X; as a Bernoulli trail with the expectation of being impacted,

E[X]=1-(1- %)n (14)

The expected proportion of impact I’ across the entire grid cell will then be the sum

of expected impacts for each habitat feature divided by N,

S EX] = CNE[X] =1 (1- )" (15)

While Equation 15 models the grid cell and impact in discrete units, we can model
these processes across a continuous surface by letting N — oo and substituting IN for n

using Equation 10,



We can interpret I’ as the expected habitat disturbance, given an impact rate of
I. Certainly, true measures of actual non-overlapping ground contact disturbance will vary
about the expected value depending on how much overlap there is among tows. Likewise,
we can anticipate higher variance as I increases, as greater impact will allow for greater
variance in overlap patterns. We also note that the assumption of n independent tows each
with I = 1/N, is almost certainly not met. Within a tow, impacts are not independent,
and cannot be modeled as a sample with replacement since we know that individual tows
do not overlap themselves (even where individual tows do intersect themselves, the area of
the overlap is not counted twice). If a grid cell contained just one tow with an impact rate
of I = 0.25, we know that the true proportion impacted is 25%. Using Eq. 4, however, we
would estimate I" = 1 — exp(—0.25) = 0.22, a difference of 0.03. This difference is small,
and in general, I’ ~ I for low values of I (Fig. 1). For grid cell containing only a single tow,
I will generally be small, as the width of a tow (max < 300 m) is small compared to the area
of a typical grid cell (25 million sq. m). At greater values where we would expect multiple

tows within a grid cell, I and I’ do diverge considerably.

1.0

0.8

0.6

Impact proportion (1)
0.4

0.2

0.0

,
;
I I I I I

0.0 0.5 1.0 1.5 2.0

Impact rate (I)

Figure 1: Impact rate, I, compared to impact proportion, I’
Solid curve shows I’ = 1 — e~ L. Dotted line is one-to-one relationship

14



2.6 Calculation of fishing effort

Fishing effort, f, is calculated for each cell, month, and gear type using the CIA data set
(REF NEEDED). The CIA data set is provided as a polyline feature class representing
individual tows. Each tow is attributed by three fields pertinent to the FE model: 1)
CIA gear type 2) target species 3) tow date. For later calculation of gear-habitat feature
sensitivity, the CIA gear types were simplified into gear types used in the SASI model
(Table 5. Each tow was buffered based on its CIA gear type, target species and location
combination. Locations were either Gulf of Alaska (GOA) or Bering Sea/Aluetian Islands
(BSAI). A minimum and maximum nominal door width were determined (REF NEEDED)
for each trawl combination (PTR and NPT). The buffer size was one half of the median of
the minimum and maximum nominal door widths. For non-trawls (JIG, HAL, and POT), a
buffer size was selected to account for an appropriate nominal area swept. The ArcMap (v
10.2.1) Buffer tool was used to create the buffers. Square buffer ends were used to ensure
the area swept did not exceed the extent of the polyline as well as to increase the efficiency
of subsequent spatial operations by reduced the number of vertices compared to a rounded
buffer. The buffered tows were then intersected with the 5 km grid creating a nominal area
swept for individual tows within each cell. Each of these nominal areas were multiplied by
their contact adjustment to calculate total ground contact. Ground contacts for each FE
model gear type were summed over each grid cell and month and divided by the grid cell

area to calculate f,.

15



Table 5: CIA gear compared to SASI gear

CIA gear CIA gear code SASI gear
Jig JIG Traps
Hook and line HAL Longline
Pots POT Traps
Pollock trawl PTR Trawl
Non-pelagic trawl NPT Trawl

Table 6: CIA species codes

Species Code

Target Species

H Species Code

Target Species

QW=

Esles

Atka Mackerel
Pollock - bottom
Pacific Cod
Deep Water Flatfish
- GOA

Alaska Plaice
Other Flatfish -
BSAI

Shallow Water
Flatfish - GOA
Halibut

Rockfish

Flathead Sole

M

el ©)

_ w

<
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Other Species
Pollock - midwater
Rock Sole - BSAI

Sablefish - BSAI
Greenland Turbot -
BSAI

Arrowtooth
Flounder

Rex Sole - GOA
Yellowfin Sole -
BSAI
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3 Sediment

We compiled sediment data from X surveys from the North Pacific. Data was points with
sediment description. The surveys varied widely in methodology and sediment descriptions.
The distribution of sediment points varied widely (Fig. 2). Most of the Continental shelf
contained some coverage of sample points. Sediment points in the Eastern Bering Sea are
separated on average by ~10.5 km, while some localized sampling efforts, especially near
shore, were at a much greater density. Very few point were located outside of the Continental
Shelf.

ical Miles

Figure 2: Sediment sample locations.
Sediment sample locations.

We first organized the sediment descriptions into 15 common terms that corresponded
roughly to sediment classes in the FE model (Table 8). We then mapped the 15 terms to
the five sediment types:

18



1. mud < mudsandgravel, mudsand, mudgravel, mud, soft, silt, clay
2. sand < mudsandgravel, sand, mudsand, coarse, soft

3. granule-pebble <— mudsandgravel, mudgravel, gravel pebble,coarse
4. cobble < cobble,rock, hard

5. boulder < boulder

The mapping was not one-to-one, such that more than one sediment class could be
present at a sampled point. Consequently, we treated each sediment class as a binary pres-
ence/absence variable at each point. Using all sediment points, we used an indicator Kriging
approach (Geostatistical Wizard, ArcMap v10.2) to interpolate probability surfaces for each
sediment class. We set a threshold at 0.5 to indicated presence/absence and estimated it
to a 2.5 km grid aligned with the 5 km grid used in the FE model (Fig. XXXX). Thus,
four sediment grid cells were located within each 5 km grid cell, providing a pseudo-area
weighted measured of each sediment type within each 5 km grid cell. For each 5 km grid
cell, the proportion of each sediment type was calculated as the sum of all 2.5 km grid cells
with sediment present (up to four for each sediment class) divided by the sum of all present
cells across all sediments (up to 20 possible, 4 cells X 5 sediment classes). In ~10% of the 5
km grid cells, no sediment class was predicted present. In theses cases, we used the sediment

proportions from the nearest 5 km grid cell.

4 Model implementation

4.1 Model implementation overview

Implementation of the FE model is split between two processes. The first process contains
most on the GIS analysis and is written in Python (v. 2.7.5). Its main product is a table of
fishing effort by grid cell, month, and gear type. The second process uses the fishing effort
table, along with, recovery and susceptibility tables to track undisturbed habitat H through
time. The second process is written in R (3.1.2). Fig. 3 shows a schematic of both processes

with their inputs and outputs.

The Python script relies heavily on the arcpy module from ArcMap (v. 10.2.1) to
run the GIS tools. Because of the dependency on the arcpy module, a valid ArcGIS license
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Table 8: Sediment description

Class Term Description

boulder boulder bld, blds, boulder, boulders

mud clay ¢, cl, cla<, clay

sand, granule-pebble coarse coarse, coasrse, COrse, Crs,
grs, gs, sg, [g]s

cobble cobble co, cobble, cobbles

granule-pebble gravel g, gr, grave, gravel, gravels,
gravll

cobble hard hard, hrd

mud mud coarsemud, m, md, mud,
muddy, muds, mug, muid

mud, granule-pebble mudgravel [g]m, gm, mg

mud, sand mudsand ms, sm

mud, sand, gravel mudsandgravel [g]ms, [g]sm, gms, msg

granule-pebble pebble p, pbls, peb, pebbles,
pebble, pebles, pebs, stone,
stones

cobble rock *rk, *rock, r, r’*, rck, rcy,
rk, rk*, rks, rky, rkysh,
rock, rocks, rocky

sand sand s, sand, sandy, sanf, sd, sdy

mud silt silt, silty

mud, sand soft, sft, soft

is required to run the script. Three input files are required to run the script:

1. CIA dataset: Geodatabase polyline feature class of historic tows.
2. Grid5k: 5 km X 5 km grid across North Pacific used for spatial units of analysis.

3. Gear buffers: Geodatabase table of buffer size for each gear type (Table 7).

The Python script will produce three output files, the first two of which are intermediate,
and the last to be used as input into the R script:

1. CIA _data_buffered: Goedatabase polygon feature class of the CIA dataset buffered by
values from gear buffers .

2. Buffers_Grid5k_intesect: Goedatabase polygon feature class of the spatial intersection
of the buffered CIA dataset and Grid5k.
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3. aggreagted_fishing_effort.dbf: DBASE table of fishing effort, f, by grid cell, year,
month, and gear type.

The second process, written in R requires four inputs, the first being the output table from

the first process:

1. aggreagted_fishing_effort.dbf: DBASE table output from Python script.

2. Susceptibility tables: CSV tables of susceptibility for habitat feature-sediment class-

gear type combinations. Three tables total, one for each gear type.

3. Recovery table: CSV table of recovery for each habitat feature-sediment class combi-

nation.

4. Sediment proportions: DBASE table of sediment class proportions for each grid cell.

The R script produces a single output:

1. FE_model output: CSV table of total undisturbed habitat for each grid cell and month.

4.2 Python script detail

Step 1. Import modules, set arcpy environment settings and define data input and outputs.

import os, time, arcpy

from datetime import datetime
arcpy.env.workspace = "WORKING DIRECTORY"
arcpy.env.overwriteOutput = True
arcpy.env.qualifiedFieldNames = False
gdb = "Fishing_effects_model.gdb"

## Feature class import

fishingEffort = os.path.join(gdb, "VMS_0BS_UnOBS_wVessel_Singlepart")
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Grid5k = os.path.join(gdb, "Grid5k")

### Feature class products

fishingEffort_buffers = os.path.join(gdb, "VMS_0BS_UnOBS_wVessel_Buffer")

Grid_FE_intersect = os.path.join(gdb, "Grid_FE_intersect")

fldList2Transfer = "YEAR;MONTH;BufferCode" #Fields to keep from
#fishingEffort_buffers

## Tables to import
bufferSize = os.path.join(gdb, "FishingGear_buffers")

## Output tables
aggregatedFishingEffort = "aggregated_fishing effort.dbf"

Step 2. Define buffer function. Each tow in the the CIA dataset buffered based on the
fishery.

HARHHAAARARARE Buffer function HARHHHRAAARHRBHHHRAARHARRBHBHAAH
def FishingEffort_buffer(inFeatures, joinFields, joinTable, outBuffer, bufferField):
print "Joining bufferSize to Fishing Effort lines...."

arcpy.MakeFeaturelLayer_management (inFeatures, "inLayer")

# Join the feature layer to a table

arcpy.AddJoin_management ("inLayer", joinFields, joinTable, joinFields)

print "Starting Fishing Effort buffers..."

bufferStart = time.time()

arcpy.Buffer_analysis("inLayer", outBuffer, bufferField, "FULL", "FLAT", "NONE")
bufferEnd = time.time()

print "Buffer completed in %d minutes" % int((bufferEnd-bufferStart)/60)

Step 3. Define intersect function. All buffered tows will be intersected with the 5 km Grid
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to get a nominal area swept for individual tows in grid cells. We do not use the standard
Intersect tool here, as it results in unnecessarily long processing time given the size of the
CIA dataset and the number of grid cells. Instead we iterate over all features in both input
feature classes and use intersect geometry methods to intersect features one pair at a time.

This function was adapted from the PairWiselntersect.py tool (Hartling, 2013)

#A#AAAAAAA FastIntersect function #HAHAHAHAHAAAABHHHHHHHHHHHRARAAAAAAS
def FastIntersect(inputFC1l, inputFC2, outputFC, fldList2Transfer):
# Prep for processing

# Determine 1f the inputs are layers or featureclass

inputlayerl arcpy.MakeFeaturelLayer_management (inputFC1, "inputLayeri")

inputLayer2 = arcpy.MakeFeaturelLayer_management (inputFC2,"inputLayer2")

layer1Type = arcpy.Describe(inputLayerl) .shapeType

layer2Type = arcpy.Describe(inputLayer2) .shapeType

# Get the input geometry type for use in the geometry intersect method

dimension = 4

arcpy.AddMessage (time.ctime())

startProcessing = time.time()

# Setup input fields

tempFldsInputl = [f.name.upper() for f in arcpy.ListFields(inputLayerl)]
fldsInputl = list(tempFldsInputl)

fldsInputl.remove (arcpy.Describe(inputlLayerl) .shapeFieldName.upper())
fldsInputl.remove (arcpy.Describe (inputlLayerl) .oidFieldName.upper())
fldsInputl.append("shape@")

fldsInput20rig = arcpy.ListFields(inputLayer2)

fldsInput2 = fldList2Transfer.upper().split(";")

fldsInput2.append("shape@")

# Setup the output feature class for receiving spatial data from the
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# intersect operation and attribute data from both the inputs.
arcpy.CreateFeatureclass_management (os.path.dirname (outputFC),
os.path.basename (outputFC),
layeriType,
inputlLayerl,
spatial_reference=inputLayerl)

arcpy.MakeFeatureLayer_management (outputFC, r'"outputLayer")

fldsInput2Modified = []
for fld in fldsInput2:
if fld == "shapeQ":
pass
else:
for £f1d0rig in fldsInput20rig:
if f1dOrig.name.upper() == fld:
if fld in fldsInputl:
newFld = f1d + "_1"
fldsInput2Modified.append (newF1ld)
else:
newFld = fld
arcpy.AddField_management (r"outputLayer", newFld, f1dOrig.type)

break

tempFldsOutput = [f.name.upper() for f in arcpy.ListFields(r'"outputLayer")]
fldsOutput = list(tempFldsOutput)

f1dsOutput.remove (arcpy.Describe(r"outputLayer") .shapeFieldName.upper())
fldsOutput.remove (arcpy.Describe (r"outputLayer") .oidFieldName.upper ())
f1dsOutput . append ("shape@")

# Make sure to only process features in inputl that intersect

# something in inputZl.

print "Selecting Grid cells that contain Fishing effort..."
arcpy.SelectLayerByLocation_management (inputLayerl, "INTERSECT", inputLayer2)

# Count number of feature in inputlLayerl so we can keep track of
# progress in 5 increments

arcpy.MakeTableView_management (inputLayerl, '"myTableView")
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nFeatures = int(arcpy.GetCount_management ("myTableView") .getOutput (0))

nFeatures_bpct = int(nFeatures/20)

# Intersect each input feature with the features from the second
# input feature class and determine the field values to be transfered
# to the output
print "Processing features..."
intersectStart = time.time()
inCursor = arcpy.da.InsertCursor(r"outputLayer", fldsOutput)
with arcpy.da.SearchCursor(inputLayerl, fldsInputl) as cursor:
for cnter, row in enumerate(cursor, 1):
if cnter’500 == 0:
print "Jd features processed of %d features..." %(cnter, nFeatures)
arcpy.SelectLayerByLocation_management (inputLayer2, "INTERSECT", row[-1])
with arcpy.da.SearchCursor(inputlLayer2, fldsInput2) as cursor2:
for row2 in cursor2:
clippedFeature = row2[-1].intersect(row[-1], dimension)
# Determine the field values to insert in the output
flds2Insert = list(£f1ldsOutput)
for i, outFlds in enumerate(fldsOutput):
found = False
# Process the first layers attribute values
for j, inputlFld in enumerate(fldsInputl):
if inputlFld != "shape@" and outFlds != "shapeQ":
if outFlds == inputilFld:
flds2Insert[i] = rowl[j]
found = True
break

# Process the second layers attribute wvalues

if found == False:
for £, £f1dIn2 in enumerate(fldsInput?2):
if £1dIn2 != "shape@" and outFlds != "shapeQ":
if outFlds in fldsInput2 or outFlds in fldsInput2Modified:

if f1dIn2 == outFlds or f1dIn2 + "_1" == outFlds:
flds2Insert[i] = row2[f]
break

else:
break
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else:
break
flds2Insert[-1] = clippedFeature
inCursor.insertRow(flds2Insert)
try:
del inCursor
del cursor, cursor?2
except:
pass

intersectEnd = time.time()

print "Intersect completed in %d minutes" % int((intersectEnd-intersectStart)/60)

Step 4. Define function to parse month. We extract month of tow from “M/D/Y” format.

def parseMonth(inputFC, dateField, monthField):
arcpy.MakeTableView_management (inputFC, "myTableView")
nFeatures = int(arcpy.GetCount_management ("myTableView") .getOutput (0))

print "Adding month field...."
arcpy.AddField_management (inputFC, monthField, "TEXT", "", "", 2)
print "Starting month parsing...."

rows = arcpy.UpdateCursor (inputFC)

for cnter, row in enumerate(rows, 1):
if cnter%250 == 0:

print "%d features processed of %d features..." Y(cnter, nFeatures)

datetimeVal = row.getValue(dateField)

formattedTime = datetime.strftime(datetimeVal, "%m/%d/%Y")
month = formattedTime.split("/") [0]

row.setValue (monthField, month)

rows.updateRow (row)

del rows

Step 5. Run the the functions defined above.
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## Run buffer function
FishingEffort_buffer(inFeatures = fishingEffort,
joinFields ="BufferCode",

joinTable = bufferSize,

outBuffer = fishingEffort_buffers,
bufferField = "FishingGear_buffers.BufferSize")
# BufferSize has only been temporarily joined so we need

# to identify field with original layer

## Run month parser

parseMonth (inputFC = fishingEffort_buffers,
dateField = "WEEK_END_D",
monthField = "MONTH")

## Run intersect

FastIntersect(inputFCl1 = Gridb5k,

fishingEffort_buffers,

inputFC2
outputFC
fldList2Transfer = fldList2Transfer )

Grid_FE_intersect,

Step 6. Aggregate nominal area swept for each grid cell and gear type.

## Run aggregate

print "Aggregating fishing effects..."

arcpy.Statistics_analysis(Grid_FE_intersect, aggregatedFishingEffort,
[["Shape_Area", "SUM"]],
["Gridbk_ID","YEAR","MONTH", "AGENCY_GEA"])

4.3 R script detail
The R code to trach H through time is detailed below. Like the Python code, all necessary

components are included in the shaded text. The shaded code blocks need to be run in

sequence for the model to work properly. Two external packages are required, foreign and
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rehsape2, for the model to work. These both are available through the Comprehensive R
Archive Network (CRAN; http://cran.r-project.org/).

5 Fishing effects discrete time model

Step 1. Load packages, import data, and define variables.

library(foreign)
library(reshape2)
library(rgdal)
library(maptools)

# Set working directory
setwd("C:\\Users\\T.Scott\\Dropbox (JBER-APU)\\NOAA_GIS_data\\scott_products")

# Import data
gridbk = readOGR(dsn = "Fishing_effects_model.gdb", layer = "Gridb5k")
gridbk.dat = grid5k@data

fe = read.dbf("aggregated_fishing effort.dbf")

fe_sasi = read.csv("susceptibiltiy matrices\\FE_SASI_gear_link.csv")

# Set wvariables

nYears = length(unique(fe$YEAR))
nSubAnnual = 12

nGrid = length(unique(fe$Grid5k_ID))
nGear = length(unique (fe$BUFFERCODE) )
nSubst = 5

grid_order = sort(unique(fe$Grid5k_ID))
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subst_types = c("Mud", "Sand", "Gran.Peb", "Cobble", "Boulder")

SASI_gears = c("trawl", "longline", "trap")

gear_types = levels(fe$BUFFERCODE)

eg = expand.grid(Gridbk_ID=unique(fe$Gridbk_ID), Gear=unique (fe$BUFFERCODE))
m = merge(gridbk.dat, fe, by = "Gridb5k_ID")
m$prop = m$SUM_AdjAre/m$Shape_Area

m$MONTH = as.numeric(as.character (m$MONTH) )

Step 2. Convert long form data calculated in the Python script (aggregated fishing data.dbf)
to a four dimensional array (F_a). The first two dimensions of the array index over years
and months. The third and fourth dimensions hold a matrix of fishing effort, f, by grid cell
and gear type.

# Populate Fishing effort array

F_a = array(NA, dim = c(nYears, nSubAnnual, nGrid, nGear))
year.i = 1 # year counter
for(year in min(m$YEAR) :max (m$YEAR)){

my = subset(m, YEAR == year)
for(month.i in 1:12){

mym = subset(my, MONTH==month.i)

mym = merge(x = eg, y = mym,
by.x = c("Gridbk_ID","Gear"),
by.y = c("Gridbk_ID", "BUFFERCODE"),
all.x=T)

mym[is.na(mym$prop) ,]$prop = 0

mym.x = dcast(Grid5k_ID ~ Gear, data=mym, value.var = "prop")
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mym.x = mym.x[order (mym.x$Grid5k_ID),]

mym.x = mym.x[,c(gear_types)]

F_alyear.i, month.i, ,] = as.matrix(mym.x)

}

year.i = year.i + 1

Step 3. Create random susceptibilities based on suceptibility class.

# Suceptibility

gear.q = matrix(NA, nrow = 3, ncol = nSubst)

i=1
for(gear in SASI_gears){
gear.m = read.csv(paste("R_input_tables\\Susceptibilty_table_",

" ocsv" R sep=""))

gear,

gear.m = gear.m[,subst_types]

for(column in 1:ncol(gear.m)){

gear.m[gear.m[,column] %in% O, column] =

runif (sum(gear.m[,column] %in% O0), min = 0, max = 0.1)

gear.m[gear.m[,column] %in% 1, column] =

runif (sum(gear.m[,column] %in% 1), min = 0.1, max = 0.25)

gear.m[gear.m[,column] %in% 2, column] =

runif (sum(gear.m[,column] %in% 2), min 0.25, max = 0.5)

gear.m[gear.m[,column] %in% 3, column] =

runif (sum(gear.m[,column] %in% 3), min = 0.5, max = 1)

gear.qli,] = colMeans(gear.m, na.rm=T)
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gear.q.df = data.frame(SASI_gear = SASI_gears, gear.q)
names (gear.q.df) [-1] = subst_types

fe_sasi = merge(fe_sasi, gear.q.df, by = "SASI_gear", all=T)

fe_sasi = fe_sasi[match(gear_types, fe_sasi$FE_gear),]

g_m = as.matrix(fe_sasi[,subst_types])

Step 4. Populate impact array, I.prime\_a, a four-dimensionl array of fishing impact, I’.
The first two dimensions index over years and months, the last two dimensions hold a grid
cell by subtrate class matrix of I’. We first calculate I using Eq. 6 then convert to I’ using
Eq. 4.

#Fishing impacts (I°)
I_a = array(NA, dim = c(nYears, nSubAnnual, nGrid, nSubst))

for(y in 1:nYears){
for(m in 1:nSubAnnual){
Im=F_aly,m,,] %*% q_m
I_aly,m,,] = 1-exp(-I_m)

}

Step 4. Populate recovery array, rho\_a, a four dimensional array of recovery, p’. The first
two dimensions index over years and months, the last two dimensions hold a grid cell by
subtrate class matrix of p/. We first create random recovery times (7) based on the recovery
classification for each habitat feature-sediment class then calculate the mean recovery time
each sediment class. Recovery times are converted to recovery rates, p We then populate
rho.prime_a assuming constant recovery across year, months, and grid cells. We use Eq.

8 to convert p to p/, dividing by twelve (nSubAnnual) to convert recovery time in years to
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months. This assumes a constant rate of recovery within a year.

# Recovery (rho’)

tau_m = read.csv("R_input_tables\\Recovery_table.csv")

tau_m = tau_m[,subst_types] # Make sure sediments are in correct order

for(column in 1:ncol(tau_m)){
tau_m[tau_m[,column] %in’% O, column] =

runif (sum(tau_m[,column] %in’% 0O), min = 0, max = 1)

tau_m[tau_m[,column] %in% 1, column] =

runif (sum(tau_m[,column] %in% 1), min = 1, max = 2)

tau_m[tau_m[,column] %in% 2, column] =

runif (sum(tau_m[,column] %in’% 2), min = 2, max = 5)

tau_m[tau_m[,column] %in’% 3, column] =

runif (sum(tau_m[,column] %in% 3), min = 5, max = 10)

tau_v = colMeans(rho_m, na.rm=T)

rho_v 1 / (tau_v * nSubAnnual) # Convert recovery time in years to rates per month
rho.prime_a = array(NA, dim = c(nYears, nSubAnnual, nGrid, nSubst))
for(y in 1:nYears){

for(m in 1:nSubAnnual){

rho.prime_aly,m,,] = 1-exp(-rho_v)

Step 5. Import sediment data.
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# Sediment
sed = read.dbf ("sediment_table)\sediment_v4.dbf")

# Create sediment matrixz for model. Make sure grid order ts same as I_a
# and keep only sediment areas
sedProps = as.matrix(sed[match(grid_order, sed$Grid5k_ID),

c("mudProp", "sandProp", "grpeProp", "cobProp", "bouldProp") 1)

Step 6. Define fishing effects model function. This function tracks undisturbed habitat,
H, across grid cell, years, and month, and sediment type. Inputs are the impact array,
I_a, recovery array, rho_a, intitial habitat conditions, H_prop_0, and sediment proportions,
sedProps. The output is a four dimensional array of proportion of undisturbed habitat
indexed over years, months, grid cells, and sediment classes. These proportions do not
account, for the amout of each sediment class within a grid cell. For example, this function
will calculate a value for a sediment class that does not occur within the grid cell. Thus,
the ouput from this function is not meaningful until scaled by the sediment class proprtions
(see Step 9).

# Fishing Effects Model
FishingEffectsModel = function(I.prime_a, rho.prime_a, H_prop_0){
model_nYears = dim(I.prime_a) [1]
model_nSubAnnual = dim(I.prime_a) [2]
model _nGrid = dim(I.prime_a) [3]
model_nSubst = dim(I.prime_a) [4]

#Make array to hold H

H_prop = array(dim = c(model_nYears, model_nSubAnnual, model_nGrid, model_nSubst))

for(y in 1:model_nYears){

for(m in 1:model_nSubAnnual){

if(y == 1 & m == 1){ # First time step use H_prop_O0 for t-1
prior_state = H_prop_0
} else if (m == 1){
prior_state = H_prop[ly-1,model_nSubAnnual,,]
} else{
prior_state = H_proply,m-1,,]
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H_from H = (1-I.prime_aly,m,,])*prior_state # undisturbed remaining undisturbed
H_from_h = (1-prior_state) * (rho.prime_aly,m,,]) # disturbed recovered to undisturbed
H_proply,m,,] = H_from H + H_from_ h # Total proportion disturbed

h

return(H_prop)
}  # end function

Step 7. Defining intial conditions. H_prop_0 is a matrix of intial H values over grid cells
and sediments classes. Like the output from fishing effect model function (Step 6), these
proportions are independent of how much of each sediment there is in a grid cell. Thus, we
can use output from Step 6 to calculate H_prop0. Here, we use a starting condition of 100%
undisturbed habiat across all grid cells and sediment classes. The commented out code shows
an example of how we might use the first five years of fishing data to “burn-in” sensible intial
conditions. Note commented code still requires the inital definition of H_prop_-0. See Section

7.1 for a discussion of the sensitivity of the model to the intial conditions.

# Define initial conditions

H_prop_0O = matrix(1l, nrow = nGrid, ncol = nSubst)
## Example of five year burn-in
# First run the model for the first five years

# H_burn = FishingEffectsModel (I.prime_al[1:5,,,], rho.prime_al1:5,,,], H_prop_0)

#Then exztract only the last time step as the new intial condition

# H_prop_0 = H_burn[5,12,,]

Step 8. Run the fishing effects model function.

H_tot = FishingEffectsModel(I.prime_a, rho.prime_a, H_prop_0)

Step 9. Create GIS file of disturbed habitat by grid cell across time.
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# Calulate undisturbed Areas

tracked_cells = gridbk.dat[match(grid_order, gridb5k.dat$Grid5k_ID), ]

undistAreas = matrix(NA, ncol = nSubAnnual*nYears, nrow = length(grid_order))

i=1
for(y in 1:nYears){
for(m in 1:12){
undistAreas([,i] =

rowSums (H_tot [y,m, ,] *sedProps*tracked_cells$Shape_Area/1000000)

undistAreas = data.frame(Gridbk_ID = grid_order, undistAreas)

months = C(IIJanH s IIFebll s llMaril s llAprII s llMayll s n Junll s n Julll s IIAugll s
IISepll s “DCt” s llNOVH s IIDeCII)
year = 2003

for(i in 1:(ncol(undistAreas)-1)){
month = i %) 12
if (month == 0) month = 12
names (undistAreas) [i+1] = paste(months[month], year, sep="")

if (month == 12) year = year + 1

disturbAreas = data.frame(Grid5k_ID = undistAreas[,1],
apply(undistAreas[,-1],2,
function(x) tracked_cells$Shape_Area/1000000 - x))

# If disturbance 1s < 1 sq. m turn to zero

disturbAreas[abs(disturbAreas) < 1le-6] = 0
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gridbk@data = merge(gridbk@data, disturbAreas, by = "Gridb5k_ID", all.x = T)

# Turn NAs to zero. These are places that were never fished

gridbk@datalis.na(grid5k@data)] = 0

writeSpatialShape(grid5k, "FE_model_output)\\Grid5k_fishing_ effects.shp")

6 Comparison to LEI

We developed the FE model to behave similarly to LEI (Fujioka, 2006; Sethi et al., 2014).
The FE model, like LEI, defines two habitat states, H and h, and models their dynamics
through fishing impacts, I and recovery, p dynamics. The primary difference between the
two model is that transitions between H and h is a continuous process in LEI, but is modeled

as a discrete time process in the FE model.

LEI is based on a set of differential equations, (Eq. 1 and 2 in Fujioka 2006),
dH/dH = —IH + ph (17)
dh/dH = +IH — ph (18)
Solving these equations for H; (Eq. 3 in Fujioka 2006),

H, = Hy[Ie "9 4 /(I + p) (19)

We added the * to Hy to distinguish it from Hj in the FE model, as it has a different
definition. H{ is the total amount of habitat that can be impacted by fishing. For example, if
we assume all habitat can be impacted, Hj = 1. We can evaluate the long term equilibrium

H.,, finding the limit of Eq. 19 as t — oo (Eq. 4 in Fujioka 2006),

Heq = Hip/(I+ p) (20)
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We compared H,, to the long term behavior of the FE model (Fig. 4). We dropped
the H} as we assumed all habitat (100%) is able to be impacted, and thus Hj = 1. We
considered 16 combinations of I and p to compare the two models. For the FE model, we
assumed [ and p remained constant. Also, for the sake of this analysis, we can assumed
both I and p are rates given in the same arbitrary time increment, thus we did not divide

by 12 or use any other time conversion.

We can see from Fig. 4 that when p = I (plots along the diagonal), H,, is equivalent
to the long term stable equilibrium of the FE model. When p > I (plots above the diagonal)
H., is greater than the long term stable equilibrium of the FE model. And, lastly, when
p < I (plots below the diagonal), H,, is less than the long term stable equilibrium of the
FE model. Because the impact and recovery processes can only act on the undisturbed or
disturbed habitat from the previous time step, any habitat disturbed by fishing impacts
in the current time step will not have the chance to recover until subsequent time steps.
Similarly, habitat that recover in the current time step cannot but impacted by fishing until
subsequent time steps. Thus, there is a one time step lag between these two processes.
Because LEI is modeled on a continuous time framework, it does not have the same inherent
time lag. As a consequence, when recovery out paces impact (p > I), the long term behavior
of the time discrete model shows more reduction of habitat than LEI. This is due to the
recovery process not being able to continuously function on disturbed habitat. The impact
process obviously lags as well, but since the impact rate is less than recovery, this results
in a reduction in overall recovery compared to LEI. The same mechanism holds true but in

reverse when the impact rate is greater than recovery.

We can identify similar behavior analytically. We first simplify Eq. 2 terms of only
H using Eq. 1. We have removed the t subscript from I’ and p’ because we are assuming

constant impact and recovery over time,

Ht+1 = Ht — I/Ht +plh = Ht(l — [/ —pl) +pl
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Let u=1-1I'-p
Time 1 H, = Hyu+p/

Time 2 H2 = Hlu + p/
= [Hou+ p'lu+p'
:HOUQ—I—p/u—i—p/

Time 3 Hs; = Hou+p
= [Hou® + p'u+ plu+ o/
= Hou® + p'u® + plu+ p/
= Hyu* 4+ p/(u® +u+1)

After three time steps we can begin to see the pattern to the recursion. Generalizing
H; in term of H,

t
H, = Hou' + p'(u'™ + 02w +u°) = Hou! + pf Zut (21)
0

To compare the FE model to LEI, we are interested in the long term stable value of
Hi . Because both I" and p’ are bounded on the interval (0, 1), u is bounded by (-1, 1).
Thus, as H_,«, the first term in Eq. 21, Hou! — 0. The second term, p' Y u® is composed

of p/ times a power series. The solution of a power series is,

flu) = Zuk =1—= for |u] <1 (22)
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Thus,

e(2p+I)At _ e(erI)At

Ht—)oo -
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7 Preliminary Results

7.1 Sensitivity of initial conditions

References

(23)

(24)

Fujioka, J. T. (2006). A model for evaluating fishing impacts on habitat and comparing fishing

closure strategies. Canadian Journal of Fisheries and Aquatic Sciences, 63(October),

2330-2342. doi:10.1139/106-120

Hartling, K. (2013). PairWiselntersect.py. ESRI. Retrieved from http://blogs.esri.com/esri/
arcgis/2013/05/20/are-you-sure-intersect-is-the-right-tool-for-the-job/
New England Fishery Management Council (NEFMC). (2011). The Swept Area Seabed Im-

pact (SASI) approach: a tool for analyzing the effects of fishing on essential fish habitat.

New England Fishery Management Council Report. Newburyport, MA.
Sethi, S., Harris, B. P., & Rose, C. S. (2014). Ezamination of the Fujioka fishing effects

model: model formulation , implementation, and interpretation. The Fishersies, Aquatic
Science & Technology (FAST) Laboratory, Alaska Pacific University. Anchorage, AK.

39


http://dx.doi.org/10.1139/f06-120
http://blogs.esri.com/esri/arcgis/2013/05/20/are-you-sure-intersect-is-the-right-tool-for-the-job/
http://blogs.esri.com/esri/arcgis/2013/05/20/are-you-sure-intersect-is-the-right-tool-for-the-job/

Grid5k

VMS _OBS UnOBS_ wWVessel
Geodatabase polygon

Geodatabase polyline

FishingGear_buffers

Geodatabase table

TN } TN

FE_GIS_script.py
Python (v 2.7)
Requires arcpy module

Grid_FE_intersect

MS_OBS_UnOBS_wVessel_
Buffer

Geodatabase polygon

Geodatabase polygon

] N

Recovery Table aggregated_fishing_effort.dbf Susceptibility Tables
CSV table DBASE table Five CSV tables
— . FE_model _runner.r Fishery gear Tk
ediment proportions
—> . R (V 3.1.2) < CSV table
DBASE table Requires foreign and reshape2
packages <

/N

Fishing_impact_grid
SHP file

fishing_impacts.csv
CSV table

Figure 3: Schematic of FE model implementation.
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Figure 4: Comparison of FE long term behavior to LEL
The FE model was run over 25 time steps at various I and p values. Initial conditions, Hy was set
to one. Black horizontal lines show H¢, (Eq. 20) estimates using the same I and p.
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