Draft report for the September 2017 Crab Plan Team Meeting

Prepared by:
M.S.M. Siddeek ${ }^{1}$, J. Zheng ${ }^{1}$, C. Siddon ${ }^{1}$, and B. Daly ${ }^{2}$
${ }^{1}$ Alaska Department of Fish and Game, Division of Commercial Fisheries, P.O. Box 115526, Juneau, Alaska 99811
${ }^{2}$ Alaska Department of Fish and Game, Division of Commercial Fisheries, 351 Research Ct., Kodiak, Alaska 99615

Preamble

In this report, we provide a set of model scenarios that could be selected for May 2018 assessment and OFL and ABC determination for the Aleutian Islands golden king crab. The scenarios were based on May 2017 CPT and June 2017 SSC recommendations. We compared parameter estimates and reference points results between the equilibrium initialization of abundance scenarios with those of non-equilibrium initialization of abundance scenarios. There were minor differences in the results, but non-equilibrium initialization of abundance did not perform very well in a number of cases (see the results). We conclude that equilibrium initialization of abundance based on mean number of recruits for 1987-2012 is appropriate for modeling with the current data set. Please note that this document does not follow the standard CPT stock assessment format.

For detailed accounts of the Aleutian Islands golden king crab model formulation, fisheries, and biology, we direct you to the stock assessment report presented at the May 2017 CPT and June 2017 SSC meetings (Siddeek et al. 2017).

Input Data

Summary of Major Changes

Changes to input data

Retained catch (1981/82-2016/17), total catch (1990/91-2016/17), and groundfish bycatch (1989/90-2016/17) biomass and size compositions.

Observer pot sample legal size crab CPUE data were standardized by the generalized linear model (GLM) with the negative binomial link function, separately for 1995/96-2004/05 and 2005/06-2016/17 periods.

Fish ticket retained CPUE were standardized by the GLM with the lognormal link function for the 1985/86-1998/98 period.

Table A. Model Scenarios

The listed scenarios were common to both EAG and WAG. Following May 2017 CPT suggestion, model scenario codes were identified as follows. E.g., 17AD17: model formulated in 2017, with major model revision (A), and with the data (D) up to 2016/17 completed fishery. 17 AD17 (shortened form AD) and 17BD17 (shortened form BD) are base scenarios under equilibrium and non-equilibrium initialization of the model, respectively.

Scenario	Sizecomposition weighting	Catchability and logistic total selectivity sets	Maturity	CPUE data type	Initial Abundance, Treatment of M and Tier $3 M M B_{M S Y}$ reference points	Natural mortality ($\mathbf{M y r}^{-1}$)
17Aa0D17	Stage-1: Number of days/trips Stage-2: Francis method	2	Knife-edge 111 mmCL	Observer from 1995/962016/17 \& Fish Ticket from 1985/86-1998/99	Initial abundance by equilibrium condition, estimate a common M using the combined EAG and WAG data with an M prior	0.2258
17Ab0D17	Stage-1: Number of days/trips Stage-2: Francis method	2	Knife-edge 111 mmCL	Observer from 1995/962016/17 \& Fish Ticket from 1985/86-1998/99	Initial abundance by equilibrium condition, estimate a common M using the combined EAG and WAG data without an M prior	0.2277
17Bb0D17	Stage-1: Number of days/trips Stage-2: Francis method	2	Knife-edge 111 mmCL	Observer from 1995/962016/17 \& Fish Ticket from 1985/86-1998/99	Initial abundance by non-equilibrium condition (with one initial total abundance parameter), estimate a common M using the combined EAG and WAG data without an M prior	0.2234
17AD17 base	Stage-1: Number of days/trips Stage-2: Francis method	2	Knife-edge 111 mmCL	Observer from 1995/962016/17 \& Fish Ticket from 1985/86-1998/99	Initial abundance by equilibrium condition, single M from combined EAG and WAG data; Tier $3 M M B_{M S Y}$ reference points based on average recruitment from 1987-2012	0.21 (see the likelihood figures for this choice)
$\begin{aligned} & \text { 17BD17 } \\ & \text { base } \end{aligned}$	Stage-1: Number of days/trips Stage-2: Francis method	2	Knife-edge 111 mmCL	Observer from 1995/962016/17 \& Fish Ticket from 1985/86-1998/99	Initial abundance by non-equilibrium condition, single M from combined EAG and WAG data; Tier $3 M M B_{M S Y}$ reference points based on average recruitment from 1987-2012	0.21
17AaD17a	Stage-1: Number of days/trips Stage-2: Francis method	2	Logistic curve	Observer \& Fish Ticket	Initial abundance by equilibrium condition, single M from combined EAG and WAG data; Tier $3 M M B_{M S Y}$ reference points based on average recruitment from 1987-2012	0.21

17BaD17a	Stage-1: Number of days/trips Stage-2: Francis method	2	Logistic curve	Observer \& Fish Ticket
17AbD17	Stage-1: Number of days/trips Stage-2: Francis method	2	Knife-edge 111 mmCL	Omit all CPUE likelihoods
17 BbD 17	Stage-1: Number of days/trips Stage-2: Francis method	2	Knife-edge 111 mmCL	Omit all CPUE likelihoods
17AcD17	Stage-1: Number of days/trips Stage-2: McAllister \& Ianelli method	2	Knife-edge 111 mmCL	Observer \& Fish Ticket
17 BcD 17	Stage- 1:Number of days/trips Stage-2: McAllister \& Ianelli method	2	Knife-edge 111 mmCL	Observer \& Fish ticket
17AdD17	Stage-1: Number of days/trips Stage-2: Francis method	2	Knife-edge 111 mmCL	Observer \& Fish ticket
17BdD17	Stage-1: Number of days/trips Stage-2: Francis method	2	Knife-edge 111 mmCL	Observer \& Fish ticket
17AeD17a	Stage-1: Number of days/trips	2	Logistic curve	Observer \& Fish ticket

Initial abundance by non-equilibrium
condition, single M from combined EAG and WAG data; Tier $3 M_{M S Y}$ reference points based on average recruitment from 1987-2012
Initial abundance by equilibrium condition, single M from combined EAG and WAG data; Tier $3 \quad M M B_{M S Y}$ reference points based on average recruitment from 1987-2012
Initial abundance by non-equilibrium condition, single M from combined EAG and WAG data; Tier $3 M_{M S Y}$ reference points based on average recruitment from 1987-2012
Initial abundance by equilibrium condition, single M from combined EAG and WAG data; Tier $3 M M B_{M S Y}$ reference points based on average recruitment from 1987-2012

Initial abundance by non-equilibrium condition, single M from combined EAG and WAG data; Tier $3 M M B_{M S Y}$ reference points based on average recruitment from 1987-2012

Initial abundance by equilibrium condition starts in 1975, single M from combined EAG and WAG data; Tier 3 $M M B_{M S Y}$ reference points based on average recruitment from 1987-2012 Initial abundance by non-equilibrium condition starts in 1975, single M from combined EAG and WAG data; Tier 3 $M M B_{M S Y}$ reference points based on average recruitment from 1987-2012 Initial abundance by equilibrium condition starts in 1975, single M from combined EAG and WAG data; Tier 3

Response to May 2017 CPT comments:

Comment 1: Sensitivity analyses on values of M have been evaluated in the past for some stock assessments and could be included for the author's selected model annually.

Response:
We estimated M based on the combined EAG and WAG data. Figures 1 to 3 depict the likelihood profile of M. The overall total (black line), the total for EAG (dark green line), and the total for WAG (light green line) indicate that the data were informative for M when all data were considered.

Figure 1. Total and components negative log-likelihoods vs. M for scenario 17Aa0D17model fit with an M penalty for EAG and WAG combined data. The initial abundance was determined by the equilibrium condition. The M estimate was $0.22583 \mathrm{yr}^{-1}\left(\pm 0.01972 \mathrm{yr}^{-1}\right)$. The negative log likelihood values were zero adjusted.

Top left: Minimum for combined data was at $M=0.220 \mathrm{yr}^{-1}$, that for EAG component was $0.220 \mathrm{yr}^{-1}$, and that for WAG component was $0.215 \mathrm{yr}^{-1}$.

Figure 2. Total and components negative log-likelihoods vs. M for scenario 17Ab0D17 model fit without M penalty for EAG and WAG combined data. The initial abundance was determined by the equilibrium condition. The M estimate was $0.22766 \mathrm{yr}^{-1}\left(\pm 0.02033 \mathrm{yr}^{-1}\right)$. The negative log likelihood values were zero adjusted.

Top left: Minimum for combined data was at $M=0.216 \mathrm{yr}^{-1}$, that for EAG component was $0.222 \mathrm{yr}^{-1}$, and that for WAG component was $0.216 \mathrm{yr}^{-1}$.

Figure 3. Total and components negative log-likelihoods vs. M for scenario 17 Bb 0 D 17 model fit without M penalty for EAG and WAG combined data. The initial abundance was determined by the non-equilibrium condition. The M estimate was $0.22344 \mathrm{yr}-1\left(\pm 0.02268 \mathrm{yr}^{-1}\right)$. The negative log likelihood values were zero adjusted.

Top left: Minimum for combined data was at $M=0.212 \mathrm{yr}^{-1}$, that for EAG component was $0.212 \mathrm{yr}^{-1}$, and that for WAG component was $0.207 \mathrm{yr}^{-1}$.

We chose an M value of $0.21 \mathrm{yr}^{-1}$ for running all subsequent scenarios. We believe that this value would satisfy both equilibrium and non-equilibrium initial condition scenarios.

Comment 2: The CPT noted that likelihood profile for current MMB was incorrect because the maturity function was estimated, which meant that different current MMB values equated to different specifications for maturity as a function of length.

The CPT was concerned that proportions mature at length were biased (i.e., the probabilities of being mature for large sizes are less than expected). This may relate to measurement errors so that chela height is underestimated for some animals.

The CPT felt that the maturity-at-length data appear unrealistic (e.g., the probabilities of being mature for large sizes are less than expected) and the logistic function does not fit well to the data for smaller animals. This logistic function was used for all models except Models 9 and 11. Thus, the CPT focused on Models 9 and 11 , which are based on knife-edged maturity.

- Pre-specify the maturity ogive rather than estimating it along with other model parameters.

Response:
We pre-specified the maturity ogive (knife-edge or smooth curve) in all scenarios including the M estimator scenarios.

Figure 4. Segmented linear regression fit to $\ln (\mathrm{CH})$ vs. $\ln (\mathrm{CL})$ data of male golden king crab in EAG with classification of mature (code 1, dark green) and immature (code 0, red) data points. The 1991 ADF\&G pot survey measurements were used.

The 50% maturity length at the bent point was 108.53 mm CL.

Figure 5. Segmented linear regression fit to $\ln (\mathrm{CH})$ vs. $\ln (\mathrm{CL})$ data of male golden king crab in WAG with classification of mature (code 1, dark green) and immature (code 0, red) data points. The 1984 NMFS sampling measurements were used.

The 50% maturity length at the bent point was 109.51 mm CL.
We bootstrapped the chela height and carapace length data pairs 1000 times and estimated the mean and 95% confidence limits of breakpoint, descending and ascending slopes. Table R2 lists those estimates with logistic model estimated 50% maturity length (L50). The breakpoint estimates between EAG and WAG differed only by $\sim 1 \mathrm{~mm}$ CL. The largest breakpoint estimate was $\sim 110 \mathrm{~mm}$ CL (upper 95% limit for WAG). Therefore, we used the 111 mm CL as the knife-edge maturity size for MMB calculation.

Table R2. Mean and 95% confidence limits of 1000 bootstrap estimates of breakpoint, descending and ascending slopes of chela height and carapace length data of golden king crab in EAG (1991 data) and WAG (1984 data).

	Mean		Lower 95\% Limit	Upper 95\% Limit
EAG	Logistic Model L50			
Breakpoint (mm CL)	108.4673	108.4334	108.5040	109.7167
Descending slope (log CH vs. \log CL)	-1.74808	-1.74931	-1.74695	
Ascending slope (log CH vs. \log CL)	1.662065	1.661803	1.66235	
WAG	109.5525	109.5339	109.5597	112.6847
Breakpoint (mm CL) Descending slope (log CH vs. \log CL)	-1.88061	-1.88108	-1.87938	
Ascending slope (log CH vs. \log CL)	1.724643	1.724478	1.724706	

Figure 6. Logistic model fitted by GLM to observed proportion of mature male for EAG (left) and WAG (right). The estimated L50 (at 50% probability of mature) by the model for EAG was 109.72 mm CL and that for WAG was 112.68 mm CL

We used the externally fitted logistic maturity curves (orange) to estimate MMB for two sets of scenarios (17 AaD 17 a and 17 BaD 17 a , and 17 AeD 17 a and 17 BeD 17 a) for EAG and WAG, respectively. For rest of the scenarios, we used the externally determined knife-edge maturity selection to calculate MMB. For the knife-edge maturity selection, we considered all sizes equal and above 111 mmCL to be fully mature (1) and below this size immature (0) [red line].

Comment 3: There is a weak retrospective pattern for Model 9 for the EAG (additional years of data lead to higher estimates of biomass), but not for the WAG.

Response:
We provide the retrospective patterns of MMB for the EAG and WAG fits under equilibrium and non-equilibrium initial condition (Figures 7 and 8). The patterns for recent years are similar between the two initial conditions.

EAG: Equilibrium Initial Cond.

Figure 7. Retrospective fits of mature male biomass by the model when terminal year's data were systematically removed until 2012/13 for scenarios 17AD17 (equilibrium initial condition) and 17BD17 (non-equilibrium initial condition) fits for golden king crab in the EAG, 1960-2016.

Figure 8. Retrospective fits of mature male biomass by the model when terminal year's data were systematically removed until 2012/13 for scenarios 17AD17 (equilibrium initial condition) and 17BD17 (non-equilibrium initial condition) fits for golden king crab in the WAG, 1960-2016.

Comment 4: The CPT noted that the average recruitment used to set the 1960 recruitment and MMB ${ }_{M S Y}$ were based on different periods (1987-2012 and 1985-2015). This differs from the recommendation of the SSC that
the same periods be used for calculating both quantities. The CPT requested the author to base the 1960 recruitment and $M M B_{M S Y}$ on the same set of years (1987-2012).

Response:
Done.

Comment 5: Consider estimating rather the pre-specifying the 1960 recruitment, which would then be used to calculate MMB $_{M S Y}$.

Response:
We considered the equilibrium (denoted by A) and non-equilibrium (i.e., not pre specifying the 1960 recruitment, denoted by B) initial abundance estimates for 1960 to run different scenarios and compared the results between the two. The recent years estimates of management parameters are similar for the two types of initial conditions (see the text and figures). However, non-equilibrium initial abundance estimate for 1960 hits the lower bound in some cases. Thus, scenarios that pre-specified 1960 recruitment performed better than that not pre-specified the 1960 recruitment.

We computed the non-equilibrium initial condition $(t=1960)$ using the equation,
$\mathrm{N}_{\text {? ???,? }}=\mathbb{N}_{\text {???? }} \frac{?^{? ?}}{\sum_{\text {?? }}{ }^{?} ?}$

Where $\mathbb{N}_{\text {???? }}$ is the total abundance parameter for 1960 , and \mathcal{E}_{i} are parameters which determine the initial (1960) length-structure (one of $\mathcal{E}_{i}=0$ to ensure identifiability).

Comment 6: In relation to the document, the CPT recommends that:

- Revise Fig. C. 1 to clarify which data points correspond to mature and immature animals, and which linear relationships are for mature versus immature animals.

Response: Done. See Figures 4 and 5.

- Provide the specifications for Models 0a and 0b.

Response: Done. See Table A.

- Figures such as 18 and 37 should correctly plot knife-edged maturity as being knife-edged.

Response: Done. See Figure 6.
Comment 7: Update the document to describe the alternatives for OFL calculation and provide the results for options "9*" and "9**".

Response: Updated the May 2017 CPT /June 2017 SSC document that will be presented to CRAB2017SAFE.

Core Data Analysis:

Comment 8: The CPT suggested that a run in which just the observer CPUE indices were replaced by the CPUE indices for the core area might be informative.

Response:
We compared the CPUE indices and MMB trends between the whole area and core area CPUE input indices. Scenarios 1 and 2 were the base and fish ticket CPUE likelihood removed models, respectively as presented at the May 2017 CPT and June 2017 SSC meetings (Siddeek et al., 2017). The differences were minor.

Figure 9. Comparison of input CPUE indices (open circles with $+/-2 \mathrm{SE}$) with predicted CPUE indices (colored solid lines) for scenarios 1, 2, and 2Core for EAG golden king crab data, 1985/86-2015/16. Model estimated additional standard error was added to each input standard error.

Figure 10. Comparison of input CPUE indices (open circles with $+/-2 \mathrm{SE}$) with predicted CPUE indices (colored solid lines) for scenarios 1, 2, and 2Core for WAG golden king crab data, 1985/86-2015/16. Model estimated additional standard error was added to each input standard error.

Figure 11. Comparison of MMB for scenarios 1, 2, and 2Core for EAG golden king crab data, 1985/86-2015/16.

Figure 12. Comparison of MMB for scenarios 1, 2, and 2Core for WAG golden king crab data, 1985/86-2015/16.
Please note that in the current model scenario runs, we used a finer resolution of area code (ADF\&G code) to standardize the observer and fish ticket CPUE data (see Appendix B). Further work on the effect of spatio-temporal variation of the fishery on CPUE standardization is continuing [e.g., VAST (vector-autoregressive spatio-temporal) analytical approach].

Response to June 2017 SSC comments:

Comment 1: Data Weighting: The SSC encourages stock assessment authors and the CPT to continue to consider alternative approaches, as data weighting is not a 'one-size-fits-all' problem.

Response:
Although we used the Francis method for data weighing in all scenarios, we considered one set of scenarios using the McAllister and Ianelli method (17 AcD 17 and 17 BcD 17). The management parameters in recent years were not much different between Francis and McAllister and Ianelli methods (see text and figures).

Comment 2: Years to Include in Reference Point Calculations: For Aleutian Islands Golden King Crab, it might be warranted to drop even more terminal years, based on a greater time lag of recruitment to the
fishery (CPUE-based assessment). A general rule could be based on the variance of the estimated recruitments and/or the youngest ages of crabs sampled by the fishing gear and/or survey gear included in the model.

Response:
We used the 1987-2012 time period based on the variance of estimated recruitment (June 2017 SSC presentation) for initial equilibrium abundance and $M M B_{M S Y}$ reference point estimation. Since we have added the 2016/17 data, we have omitted one more year of recruitment estimate toward the end.

Comment 3: SSC agrees with the choice of Model 9 for this year's assessment.
Response: In this document, we considered Model 9 as the base model under equilibrium (17AD17) and nonequilibrium (17BD17) scenarios.

Comment 4: The SSC appreciates the efforts to investigate the spatial dynamics of the fishery data. Analysis of a subset 'core area' of spatial data indicated similar trends to those estimated for the standardized CPUE series using all of the data. However, this approach is not the same as predicting the CPUE in unfished areas; this type of spatial extrapolation has been the subject of considerable fisheries literature, and incomplete spatial analysis remains a fundamental problem in the interpretation of CPUE data.

Response:
In the current CPUE standardization, we used the individual ADF\&G statistical area as a predictor variable. Previously, we combined a number of ADF\&G statistical areas into a broad area for CPUE standardization. We are exploring how to correctly address this issue. Further work on the effect of spatio-temporal variation of the fishery on CPUE standardization is continuing (e.g., VAST approach).

Comment 5: The SSC requests that the assessment authors examine potential causes of the retrospective pattern for Model 9 for the EAG whereby additional years of data lead to higher estimates of biomass. The possibility that this feature is a function of population trend should be explored.

Response:
Please see our response to CPT comment 3.
Comment 6: To address the issues concerning model fits to maturity data, the CPT recommended that, for the next assessment, the maturity ogive should be estimated outside the model rather than inside the model along with other model parameters. The SSC feels that the veracity of the approach to estimate mature versus immature crab in this assessment needs to be evaluated.

Response:
In the current analysis, in scenarios $17 \mathrm{AaD} 17 \mathrm{a}, 17 \mathrm{BaD} 17 \mathrm{a}, 17 \mathrm{AeD} 17 \mathrm{a}$, and 17 BeD 17 a , we estimated the maturity ogive outside the model. For other scenarios, we used the knife-edge maturity outside the model. Please see our response to CPT comment 2.

Comment 7: In summary, the SSC supports the CPT's recommendation to base the $M_{M B} B_{M S Y}$ proxy for the Tier 3 harvest control rule on the average recruitment from 1987-2012, years for which recruitment is relatively precisely estimated. For ABC determination, the SSC recommends a 25% buffer (consistent with the assessment authors) rather than the 20% buffer recommended by the CPT.
The CPT justified their recommendation for a 20% buffer based on the buffers used for other Tier 3 crab stocks: BBRKC ($\mathbf{1 0 \%}$), EBS snow crab ($\mathbf{2 5 \%}$ reduced to $\mathbf{1 0 \%}$ in 2016), and EBS Tanner crab ($\mathbf{2 0 \%}$). Instead, the SSC justifies the 25% buffer for AIGKC based on: (1) the use of fishery CPUE rather than fishery independent surveys used for all other Tier 3 stocks, (2) uncertainties in size of maturity for AIGKC, including the untested regression approach involving chela height against carapace length, (3) uncertainties in natural mortality, (4) limited spatial coverage of the fishery with respect to the total stock distribution, and (5) the small number of vessels upon which CPUE is based. For these reasons, the SSC feels that larger ABC buffer is warranted for AIGKC than other Tier 3 crab stocks.

Response: Done.

Introduction

There is no direct evidence of separate golden king crab (Lithodes aequispinus) stocks in the Aleutian Islands; however, an ongoing genetic study will shed more light on stock structure. CPUE trends suggest different factors may influence stock productivity in EAG and WAG. There is a paucity of information on golden king crab life history characteristics due in part to the deep depth distribution ($\sim 200-1000 \mathrm{~m}$) and the asynchronous nature of life history events (Otto and Cummiskey 1985; Somerton and Otto 1986). Molt increment for legal-size males in the EAG was estimated at 14.4 mm carapace length (CL) (Watson et al. 2002). The 50% male size-at-maturity was determined to be 120.8 mm CL (Otto and Cummiskey 1985).

Since 1996, the Alaska Department of Fish and Game (ADF\&G) has divided management of the Aleutian Islands golden king crab fishery at $174^{\circ} \mathrm{W}$ longitudes (ADF\&G 2002). Hereafter, the stock segment east of $174^{\circ} \mathrm{W}$ longitude is referred to as EAG and the stock segment west of $174^{\circ} \mathrm{W}$ longitude is referred to as WAG. The stocks in the two areas were managed with a constant annual guideline harvest level or total allowable (retained) catch. Additional management measures include a male-only fishery and a minimum legal size limit (152.4 mm CW , or approximately 136 mm CL), which is at least one annual molt increment larger than the 50% maturity length of 120.8 mm CL for males estimated by Otto and Cummiskey (1985). We re-evaluated the male maturity sizes using ADF\&G 1991 pot survey sample measurements of carapace length and chela height for EAG and National Marine Fisheries Service (NMFS) 1984 measurements for WAG. In the base model scenarios, a knife-edge 50% maturity length of 111 mm CL was used for categorizing immature and mature crab. The length-weight relationship of $\mathrm{W}=$ $\mathrm{aL}^{?}$, where $\mathrm{a}=3.725^{*} 10^{-4}, \mathrm{~b}=3.0896$, was used for biomass calculation from number of crabs by length.

Figures 13 and 14 provide the historical time series of catches and CPUE for EAG and WAG, respectively. Increases in CPUE were observed during the late 1990s through the early 2000s, and with the implementation of crab rationalization in 2005. In 2012, the Board of Fisheries of Alaska (BOF) increased the TAC levels to 3.310 million pounds for EAG and 2.980 million pounds for WAG beginning with the 2012/13 fishing year. As a result of declining catch rate, model estimated MMB, and harvest since 2012 in the WAG, ADF\&G reduced the WAG TAC level to 2.235 million pounds for the 2016/17 and 2017/18 fishing seasons.

Analytic Approach

The model estimated OFL and ABC were accepted by the Council in June 2017 for implementation during the 2017/18 fishing season. The underlying population dynamics model is male-only and length-based (Siddeek et al. 2017). This model combines commercial retained catch, total catch, groundfish (trawl and pot) fishery discarded catch, standardized observer legal size catch-per-unit-effort (CPUE) and commercial fishery CPUE indices, fishery retained catch size composition, total catch size composition, and tag recaptures by release-recapture length to estimate stock assessment parameters. The tagging data were used to calculate the size transition matrix.

We fitted the observer and commercial fishery CPUE indices with GLM estimated standard errors and an additional constant variance. The additional constant variance was estimated by the model fit. There were significant changes in fishing practice due to changes in management regulations (e.g., constant TAC since 1996/97 and crab rationalization since 2005/06), pot configuration (escape web on the pot door increased to 9 -inch since 1999), and improved observer coverage in Aleutian Islands golden king crab fisheries since 1998. These changes prompted us to consider two sets of catchability and total selectivity parameters with only one set of retention parameters for the periods 1985/86-2004/05 and 2005/06-2016/17.

We used standardized CPUE indices (Appendix B) and catch and size composition information to determine the stock abundance trends in both regions. We assumed that the observer and fish ticket CPUE indices are linearly related to exploitable abundance. We kept M constant at $0.21 \mathrm{yr}^{-1}$. We assumed directed pot fishery discard mortality proportion at $0.20 \mathrm{yr}^{-1}$, overall groundfish fishery mortality proportion at $0.65 \mathrm{yr}^{-1}$ [mean of groundfish pot fishery mortality $\left(0.5 \mathrm{yr}^{-1}\right)$ and groundfish trawl fishery mortality $\left(0.8 \mathrm{yr}^{-1}\right)$], groundfish fishery selectivity at full selection for all length classes (i.e., selectivity $=1.0$). Any discard of legal size males in the directed pot fishery was not considered in this analysis.

We considered number of fishing days as the initial input effective sample sizes (i.e., stage-1) for retained and total size compositions and number of trips for groundfish discard catch size composition without enforcing any upper
limit. We did not fit the groundfish size composition following a CPT suggestion in all model scenarios. We estimated the stage-2 effective sample sizes iteratively from stage-1 input effective sample sizes by the Francis (2011) method for all scenarios except scenarios 17 AcD 17 and 17 BcD 17 . We employed the McAllister and Ianelli (1997) method for reweighting the stage-1 effective sample sizes for those two scenarios, 17 AcD 17 and 17BcD17. Francis reweighting method was described in Siddeek et al. (2017) and we describe the McAllister and Ianelli method below:

We refer to the stage- 1 effective samples sizes for the size-composition of the retained catch, total catch, and the groundfish crab bycatch for year t as $\tau_{1, \mathrm{t}}^{r}, \tau_{1, \mathrm{t}}^{T}$, and $\tau_{1, \mathrm{t}}^{T r}$ respectively. The reiterated effective sample sizes' subscripts replace 1 by 2 .

Based on the assumption that the size-composition data are a multinomial sample, McAllister and Ianelli provided an estimator for the stage-2 effective sample based on the ratio of the theoretical variance of expected proportions to the actual variance of proportions,

where $?_{?, ?}$ and ? $?_{?, ?}$ are the estimated and observed proportions of the catch during year t in size-class l, and ? ${ }_{?, ?}$ is the stage-2 effective sample size for year t.

McAllister and Ianelli (1997) set the effective sample size for each size-composition data set for eastern Bering Sea yellowfin sole (Limanda aspera) as the arithmetic mean of ? ${ }_{?, ?}$ over years t (i.e., a year-invariant effective sample size) and iterated the model fitting, updating the effective sample sizes, until convergence occurred. Equation (2) ignores correlation among the residuals for the catch proportions so likely overestimates effective sample sizes (Francis, 2011). Punt (2017) suggests using the harmonic mean of ??,? if the McAllister and Ianelli formula is used. A harmonic mean (constant) multiplier was consequently used to update the effective sample sizes at each iteration of model fitting until convergence occurred; i.e.

where $\tau_{2, t, i}$ is the stage-2 effective sample size for year t in iteration $i\left(\tau_{2, t, 0}=\tau_{1, \mathrm{t}}\right.$) and $?_{?, ?, ? \text {, is the result of }}$ applying Equation (2). Convergence of the process of setting the stage-2 effective sample sizes using Equation (3) was assured when the harmonic mean constant multipliers were converged closer to 1 .

Results

Model equations and weights for different data sets were provided in Appendix A (reproduced from Siddeek et al. 2017) for EAG and WAG. These weights (with the corresponding coefficient of variations) adequately fitted various data under integrated model setting. All scenarios considered molt probability parameters in addition to the linear growth increment and normal growth variability parameters to determine the size transition matrix.

Tables of input values and parameter estimates

a. Time series of retained and total catch and groundfish fishery discard mortality are summarized in Table 1 for EAG and WAG. The estimation methods are described in Appendix B.
b. Time series of pot fishery and observer nominal retained and total CPUE, annual pot fishing effort, observer sample size, estimated observer CPUE indices are listed in Table 2 for EAG and WAG. The estimated commercial fishery CPUE indices are provided in Table 3 for EAG and WAG. The CPUE index estimation methods, fits, and diagnostic plots are described in Appendix B.
c. The process of iterations to determine the Francis, and McAllister and Ianelli weight multipliers for the initial input effective sample sizes are given in Table 4 for EAG and WAG. We multiplied the initial input (stage-1) [for Francis method] or i-1th iterated input [for McAllister and Ianelli method] annual sample sizes by the estimated W for a number of iterative fittings until we found no appreciable changes in W and terminal MMB estimates.
d. Time series of stage-1 (initial) and stage-2 effective sample sizes under Francis method are listed in Table 5 for EAG and Table 6 for WAG.
e. The parameter estimates with coefficient of variation for eight scenarios are summarized respectively in Tables 7 and 8 for EAG and 9 and 10 for WAG. We have also provided the boundaries for parameter searches in those tables, and the estimates were within the bounds. However, for some non-equilibrium initialization scenarios, initial total abundance parameter estimate hit the lower bound.
f. The mature male and legal male abundance time series for a representative two scenarios (base equilibrium and non-equilibrium initial input abundance, 17AD17 and 17BD17) are summarized in Table 11 for EAG and Table 12 for WAG.
g. The recruitment estimates for those two scenarios are summarized in Table 11 for EAG and Table 12 for WAG.
h. The likelihood component values and the total likelihood values for eight scenarios are summarized in Table 13 for EAG and Table 14 for WAG.
i. The $\mathrm{MMB}_{35 \%}$, $\mathrm{F}_{\mathrm{OFL}}, \mathrm{F}_{35 \%}$, current MMB, total OFL, and ABC estimated under Tier 3 procedure for EAG and WAG are listed in Table B for all scenarios.
j. Jittering of input initial parameters indicated global optimization was achieved in most cases. In a few cases for WAG, where objective function values were lower than the base (best) estimate (jitter\#0), we found that the predicted groundfish bycatch in some years were unrealistic, hence we disregarded them. Examples of 100 jittered estimates of objective function value, maximum gradient, $\mathrm{MMB}_{35} \%$, total catch OFL, and current MMB are listed for scenarios 17 AD 17 and 17 BD 17 for EAG and WAG respectively in Tables C, D, E, and F.

Graphs of estimates

a. We provide the retained length composition fits in Figure 15 for EAG and Figure 27 for WAG, total length composition fits in Figure 16 for EAG and Figure 28 for WAG, and groundfish discarded catch length composition fits in Figure 17 for EAG and Figure 29 for WAG for all scenarios. The retained and total catch size composition fits appear satisfactory. But, the fits to groundfish bycatch size compositions are bad.
b. We provide the pre- and post-rationalization periods' total and retained selectivity curves in Figures 18 and 19 for EAG and Figures 30 and 31 for WAG for all scenarios.
c. We show the fit to tag recapture numbers by length-class for year-at-large 1 to 6 in Figure 20 for EAG and Figure 32 for WAG. The predictions appear reasonable.
d. We provide the CPUE fits by all scenarios in Figure 21 for EAG and Figure 33 for WAG. All scenarios appear to fit the CPUE indices satisfactorily for both management areas.
e. We show the recruitment trends for all scenarios in Figure 22 for EAG and Figure 34 for WAG. The recruitment pulse in the recent year peaked in both regions.
f. We provide the fits to retained catch, total catch, and groundfish discarded catch by all scenarios in Figure 23 for EAG and Figure 35 for WAG. The retained and groundfish bycatch fits are adequate, but the total catch fits showed some discrepancy.
g. We provide the fits to pre- 1985 retained catches (in number of crabs) by all scenarios in Figure 24 for EAG and Figure 36 for WAG. All scenarios adequately fitted the 1981/82-1984/85 retained catches in both areas.
h. We illustrate the standardized residual plots as bubble plots of size composition over time for retained catch (Figures 42 and 44 for EAG, and 46 and 48 for WAG) and for total catch (Figures 43 and 45 for EAG, and 47 and 49 for WAG) for equilibrium and non-equilibrium initial condition scenarios (17AD17 and 17BD17). The retained catch bubble plots appear random for the selected scenarios.
i. We provide the pot fishery total fishing mortality plots for all scenarios in Figure 25 for EAG and Figure 37 for WAG.
j. We provide the MMB trends for all scenarios in Figure 26 for EAG and Figure 38 for WAG.
k. We show the MMB trends for scenarios with the initial abundance starting at 1975 in Figure 39 for EAG and Figure 40 for WAG.

1. We illustrate the F vs. MMB trends for the base scenarios, 17AD17 (equilibrium initial input abundance) and 17BD17 (non-equilibrium initial abundance parameter), in Figure 41 for EAG and WAG.

Specification of the Tier level

The OFL and ABC for Aleutian Islands golden king crab stocks are determined under Tier 3 level. The calculation procedures are described below:

Calculation of the OFL

Tier 3 Approach

The critical assumptions for reference point estimation are:
Natural mortality is constant over all size groups.
Growth transition matrix estimated using tagging data is time invariant.
The catchability parameter estimate for the 2005/06-2016/17 period is used.
Total fishery selectivity and retention curves are length dependent and the 2005/06-2016/17 period selectivity estimates are used.
Groundfish bycatch fishery selectivity is kept constant at 1.0 for all length groups.
Model estimated molt probability is not time dependent, but is length dependent.
For the equilibrium initialization scenarios, model estimated recruits (in millions of crab) are averaged for the time period 1987-2012.
For the non-equilibrium initialization scenarios, the initial total abundance is estimated as a model parameter.
Model estimated groundfish bycatch mortality values are averaged for the period 2007 to 2016 (10 years).

Method:

We simulated the population abundance starting from the model estimated final year stock abundance by lengthclass and parameter values; projecting the abundance with a fishing mortality (F) and a constant natural mortality (M) values; and adding a constant number of annual recruits. Once the stock dynamics were stabilized (we used the 99th year estimates) for an F, we calculated the $M M B / R$ for that F. We computed the relative $M M B / R$ in percentage, ? ? ? ? ? ${ }_{? \%}\left(\right.$ where $\mathrm{x} \%=\frac{\frac{? ? ? ?}{? ? ?}}{\frac{? ?}{? ?}} \times 100$ and $\mathrm{MMB}_{?} / \mathrm{R}$ is the virgin $\mathrm{MMB} / \mathrm{R}$) for different F values.
$\mathrm{F}_{35 \%}$ is the F value that produces the $\mathrm{MMB} / \mathrm{R}$ value equal to 35% of $\mathrm{MMB}_{\text {? }} / \mathrm{R}$.
$\mathrm{MMB}_{35 \%}$ is estimated using the following formula:
$\mathrm{MMB}_{? ? \%}=? \frac{? ? ?}{?} ?{ }_{? ? \%} \times \hat{\mathrm{K}}$, where $\hat{\mathrm{K}}$ is the mean number of model estimated recruits for a selected time period.
$\mathrm{F}_{\text {? ?? }}$ is determined using the following set of equations (4):

If,
$\mathrm{MMB}_{\text {?? ????? }}>\mathrm{MMB}_{\text {?? } \%}, \mathrm{~F}_{\text {??? }}=\mathrm{F}_{\text {?? }}$
If,
$\mathrm{MMB}_{\text {??????? }} \ll \mathrm{MMB}_{\text {??\% }}$ and $\mathrm{MMB}_{\text {??????? }}>0.25 \mathrm{MMB}_{\text {??\% }}$,
$\mathrm{F}_{\text {??? }}=\mathrm{F}_{\text {??\% }} \frac{\frac{? ? ? ? \text { ???????? ?? }}{? ? ? ? ? \%}}{(? ? ?)}$
If,
$\mathrm{MMB}_{\text {??????? }} \leq 0.25 \mathrm{MMB}_{\text {??\% }}, \quad \mathrm{F}_{\text {??? }}=0$.
where α is set to $0.1, \mathrm{MMB}_{\text {?? ????? }}$ is the mature male biomass in the current year and $\mathrm{MMB}_{35 \%}$ is the proxy $\mathrm{MMB}_{\mathrm{MSY}}$ for Tier 3 stocks.

Because projected $\mathrm{MMB}_{\text {? }}$ (i.e., $\mathrm{MMB}_{\text {?? ???? ? }}$) depends on the intervening retained and discarded (dead) catch (i.e., $\mathrm{MMB}_{\mathrm{t}}$ is estimated after the fishery), an iterative procedure is applied (see Appendix A).

Calculation of the ABC

Specification of the probability distribution of the total catch OFL:
We estimated the cumulative probability distribution of OFL assuming a \log normal distribution of OFL. We calculated the OFL at the 0.5 probability and the maximum ABC at the 0.49 probability and considered an additional buffer by setting $\mathrm{ABC}=0.75^{*} \mathrm{OFL}$.

The OFL and ABC estimates for various scenarios under Tier 3 are summarized in Table B separately for EAG and WAG below:

Table B.
EAG (Tier 3):
Biomass, total OFL, and ABC for the next fishing season in millions of pounds. Current $\mathrm{MMB}=\mathrm{MMB}$ on 15 Feb. 2018. A: Equilibrium initial condition; B : Non-Equilibrium initial condition.

| Non-Equilibrium initial condition. | | | | | | | |
| :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- |

Biomass in 1000 t ; total OFL and ABC for the next fishing season in t .

Scenario	Tier	$\mathrm{MMB}_{35 \%}$	Current MMB	$\begin{aligned} & \text { MMB/ } \\ & \text { MMB }_{35 \%} \\ & \hline \end{aligned}$	$\mathrm{F}_{\text {OFL }}$	Recruitment				$\begin{aligned} & \mathrm{ABC} \\ & (0.75 * \mathrm{OFL}) \end{aligned}$
						Years Define MMB $_{35 \%}$	$\mathrm{F}_{35 \%}$	OFL	$\begin{aligned} & \mathrm{ABC} \\ & \left(\mathrm{P}^{*}=0.49\right) \end{aligned}$	
17AD17	3a	6.924	11.395	1.65	0.65	1987-2012	0.65	3,927.677	3,911.049	2,945.758
17BD17	3a	6.929	11.451	1.65	0.65	1987-2012	0.65	3,936.558	3,919.944	2,952.419
17AaD17a: Mat.Curve	3a	6.333	10.358	1.64	0.56	1987-2012	0.56	3,495.525	3,480.771	2,621.644
17BaD17a: Mat.Curve	3a	6.338	10.407	1.64	0.56	1987-2012	0.56	3,503.426	3,488.473	2,627.569
17AbD17: No CPUE	3 b	6.587	6.303	0.96	0.59	1987-2012	0.62	1,631.876	1,610.528	1,223.907
$\begin{aligned} & \text { 17BbD17: } \\ & \text { No CPUE } \end{aligned}$	3 b	6.589	6.331	0.96	0.59	1987-2012	0.62	1,649.409	1,628.037	1,237.057
17AcD17: McAlister Wt	3a	7.028	11.168	1.59	0.64	1987-2012	0.64	3,927.278	3,911.063	2,945.458
17BcD17: McAlister Wt	3a	7.033	11.231	1.60	0.64	1987-2012	0.64	3,935.860	3,919.664	2,951.895
17AdD17: Initial input abundance in 1975	3a	6.887	11.281	1.64	0.65	1987-2012	0.65	3,842.935	3,826.728	2,882.202
17BdD17: Initial input abundance in 1975	3a	6.997	12.082	1.73	0.64	1987-2012	0.64	4,064.567	4,047.291	3,048.425
17AeD17a: Initial input abundance in 1975; Mat Curve	3a	6.300	10.240	1.63	0.56	1987-2012	0.56	3,419.790	3,405.260	2,564.843
17BeD17a: Initial input abundance in 1975; Mat Curve	3a	6.412	10.969	1.71	0.55	1987-2012	0.55	3,608.654	3,593.259	2,706.491

WAG (Tier 3):
Biomass, total OFL, and ABC for the next fishing season in millions of pounds. Current MMB= MMB on 15 Feb. 2018. A: Equilibrium initial condition; B : Non-Equilibrium initial condition.

Scenario	Tier	$\mathrm{MMB}_{35 \%}$	Current MMB	MMB/$\mathrm{MMB}_{35 \%}$	FofL	Recruitment Years to Define $\mathrm{MMB}_{35 \%}$	$\mathrm{F}_{35 \%}$	OFL		$\begin{aligned} & \mathrm{ABC} \\ & (0.75 * \mathrm{OFL}) \end{aligned}$
									$\begin{aligned} & \mathrm{ABC} \\ & \left(\mathrm{P}^{*}=0.49\right) \end{aligned}$	
17AD17	3a	11.353	14.244	1.25	0.60	1987-2012	0.60	3.522	3.507	2.641
17BD17	3a	11.350	14.251	1.26	0.60	1987-2012	0.60	3.549	3.534	2.662
17AaD17a: Mat.Curve	3a	10.503	12.418	1.18	0.50	1987-2012	0.50	3.062	3.049	2.296
17BaD17a: Mat.Curve	3a	10.508	12.449	1.18	0.50	1987-2012	0.50	3.065	3.052	2.298
17AbD17: No CPUE	3b	11.184	10.349	0.93	0.55	1987-2012	0.60	2.142	2.115	1.606
17BbD17: No CPUE	3b	11.190	10.398	0.93	0.55	1987-2012	0.60	2.161	2.134	1.621
17AcD17: McAlister Wt	3a	11.476	14.289	1.25	0.59	1987-2012	0.59	3.586	3.571	2.690
17BcD17: McAlister Wt	3a	11.487	14.352	1.25	0.59	1987-2012	0.59	3.579	3.564	2.685
17AdD17:Initial input abundance in 1975	3a	11.337	14.323	1.26	0.60	1987-2012	0.60	3.561	3.546	2.671
17BdD17:Initial input abundance in 1975	3a	11.377	14.552	1.28	0.60	1987-2012	0.60	3.577	3.562	2.683
17AeD17a:Initial input abundance in 1975; Mat Curve	3a	10.496	12.507	1.19	0.50	1987-2012	0.50	3.074	3.062	2.306
17BeD17a:Initial input abundance in 1975; Mat Curve	3a	10.529	12.688	1.21	0.5	1987-2012	0.50	3.091	3.078	2.318

Biomass in 1000 t ; total OFL and ABC for the next fishing season in t .

Scenario	Tier	$\mathrm{MMB}_{35 \%}$	Current MMB	MMB/$\mathrm{MMB}_{35 \%}$	FofL	Recruitment		OFL		$\begin{aligned} & \mathrm{ABC} \\ & (0.75 * \mathrm{OFL}) \end{aligned}$
						Years Define MMB $_{35 \%}$	$\mathrm{F}_{35 \%}$		$\begin{aligned} & \mathrm{ABC} \\ & \left(\mathrm{P}^{*}=0.49\right) \end{aligned}$	
17AD17	3a	5.150	6.461	1.25	0.60	1987-2012	0.60	1,597.426	1,590.787	1,198.069
17BD17	3a	5.148	6.464	1.26	0.60	1987-2012	0.60	1,609.949	1,603.137	1,207.462
17AaD17a: Mat.Curve	3a	4.764	5.633	1.18	0.50	1987-2012	0.50	1,388.721	1,382.941	1,041.541
17BaD17a: Mat.Curve	3a	4.766	5.646	1.18	0.50	1987-2012	0.50	1,390.107	1,384.329	1,042.580
17AbD17: No CPUE	3b	5.073	4.694	0.93	0.55	1987-2012	0.60	971.567	959.458	728.675
17BbD17: No CPUE	3b	5.076	4.717	0.93	0.55	1987-2012	0.60	980.123	968.019	735.092
17AcD17: McAlister Wt	3a	5.205	6.481	1.25	0.59	1987-2012	0.59	1,626.786	1,620.005	1,220.090
17BcD17: McAlister Wt	3a	5.210	6.510	1.25	0.59	1987-2012	0.59	1,623.596	1,616.816	1,217.697
17AdD17: Initial input abundance in 1975	3a	5.142	6.497	1.26	0.60	1987-2012	0.60	1,615.186	1,608.383	1,211.389
17BdD17: Initial input abundance in 1975	3a	5.161	6.601	1.28	0.60	1987-2012	0.60	1,622.697	1,615.910	1,217.023
17AeD17a: Initial input abundance in 1975; Mat Curve	3a	4.761	5.673	1.19	0.50	1987-2012	0.50	1,394.558	1,388.774	1,045.919
17BeD17a: Initial input abundance in 1975; Mat Curve	3a	4.776	5.775	1.21	0.5	1987-2012	0.50	1,402.150	1,396.163	1,051.612

Aleutian Islands (AI)
Total OFL and ABC for the next fishing season in millions of pounds.

Scenario	OFL	MaxABC $\left(\mathrm{P}^{*}=0.49\right)$	ABC $(0.75 * O F L)$
17AD17	12.181	12.129	9.135
17BD17	12.228	12.176	9.171
17AaD17a:	10.768	10.723	8.076
Mat.Curve 17BaD17a: Mat.Curve	10.789	10.743	8.091
17AbD17:	5.740	5.666	4.304
No CPUE			
17BbD17:	5.797	5.723	4.348
No CPUE	12.244	12.193	9.184
17AcD17: McAlister Wt	12.256	12.205	9.193
17BcD17: McAlister Wt	12.033	11.982	9.025
17AdD17: Initial input abundance in 1975	12.538	12.485	9.404
17BdD17: Initial input abundance in 1975	10.613	10.569	7.960
17AeD17a: Initial input abundance in 1975; Mat			
Curve	11.047	11.000	8.285
17BeD17a: Initial input abundance in 1975; Mat			

Aleutian Islands (AI)
Total OFL and ABC for the next fishing season in t.

Scenario	OFL	MaxABC $\left(\mathrm{P}^{*}=0.49\right)$	ABC $(0.75 * \mathrm{OFL})$
17AD17	$5,525.103$	$5,501.836$	$4,143.827$
17BD17	$5,546.507$	$5,523.081$	$4,159.881$
17AaD17a:	$4,884.246$	$4,863.712$	$3,663.185$
Mat.Curve			
17BaD17a:	$4,893.533$	$4,872.802$	$3,670.149$
Mat.Curve	$2,603.443$	$2,569.986$	$1,952.582$
17AbD17:	$2,629.532$	$2,596.056$	$1,972.149$
No CPUE	$5,554.064$	$5,531.068$	$4,165.548$
17BbD17:	$5,559.456$	$5,536.480$	$4,169.592$
No CPUE	$3,842.935$	$3,826.728$	$2,882.202$
17AcD17: McAlister Wt	$5,679.753$	$5,655.674$	$4,259.814$
17BcD17: McAlister Wt			
17AdD17: Initial input abundance in 1975	$5,042.487$	$5,021.170$	$3,781.866$
17BdD17: Initial input abundance in 1975	$5,003.212$	$4,982.033$	$3,752.410$
17AeD17a: Initial input abundance in 1975; Mat			
Curve			
17BeD17a: Initial input abundance in 1975; Mat			
Curve			

Acknowledgments

We thank Miranda Westphal, Ethan Nichols, William Gaeuman, Robert Foy, Vicki Vanek, Leland Hulbert, and Andrew Nault for preparing/providing various fisheries and biological data and plots for this assessment; We appreciate the technical and editorial help at various time from Andre Punt, Martin Dorn, William Stockhausen, Sherri Dressel, Joel Webb, Hamazaki Hamachan, Karla Bush, William Bechtol, CPT and SSC members, industry personnel, and industry consultants.

Literature Cited

ADF\&G (Alaska Department of Fish and Game). 2002. Annual management report for the shellfish fisheries of the Westward Region, 2001. Alaska Department of Fish and Game, Division of Commercial Fisheries, Regional Information Report 4K02-54, Kodiak, Alaska.

Barnard, D.R., and R. Burt. 2004. Summary of the 2002 mandatory shellfish observer program database for the general and CDQ fisheries. Alaska Department of Fish and Game, Division of Commercial Fisheries, Regional Information Report 4K04-27, Kodiak, Alaska.

Barnard, D.R., R. Burt, and H. Moore. 2001. Summary of the 2000 mandatory shellfish observer program database for the open access fisheries. Alaska Department of Fish and Game, Division of Commercial Fisheries, Regional Information Report 4K01-39, Kodiak, Alaska.

Bowers, F.R., M. Schwenzfeier, S. Coleman, B.J. Failor-Rounds, K. Milani, K. Herring, M. Salmon, and M. Albert. 2008. Annual management report for the commercial and subsistence shellfish fisheries of the Aleutian Islands, Bering Sea, and the Westward Region's shellfish observer program, 2006/07. Alaska Department of Fish and Game, Divisions of Sport Fish and Commercial Fisheries, Fishery Management Report No. 08-02, Anchorage, Alaska.

Bowers, F.R., M. Schwenzfeier, K. Herring, M. Salmon, J. Shaishnikoff, H. Fitch, J. Alas, and B. Baechler. 2011. Annual management report for the commercial and subsistence shellfish fisheries of the Aleutian Islands, Bering Sea, and the Westward Region's shellfish observer program, 2009/10. Alaska Department of Fish and Game, Divisions of Sport Fish and Commercial Fisheries, Fishery Management Report No. 11-05, Anchorage, Alaska.

Fox, J., and S. Weisberg. 2011. An R Companion to Applied Regression. Second edition. Sage Publications, Inc. 449 p.

Francis, R.I.C.C. 2011. Data weighting in statistical fisheries stock assessment models. Can. J. Fish. Aquat. Sci. 68: 1124-1138.

Gaeuman, W.B. 2011. Summary of the 2009/10 mandatory crab observer program database for the BSAI commercial crab fisheries. Fishery Data Series No. 11-04. Alaska Department of Fish and Game, Kodiak.

Maunder, M.N., and A.E. Punt. 2004. Standardizing catch and effort data: a review of recent approaches. Fisheries Research, 70: 141-159.

McAllister, M.K., and J.N. Ianelli. 1997. Bayesian stock assessment using catch-age data and the sampling/importance resampling algorithm. Can. J. Fish. Aquat. Sci. 54: 284-300.

Moore, H., L.C. Byrne, and M.C. Schwenzfeier. 2000. Summary of the 1999 mandatory shellfish observer program database for the open access fisheries. Alaska Department of Fish and Game, Division of Commercial Fisheries, Regional Information Report 4K00-50, Kodiak, Alaska.

North Pacific Fishery Management Council (NPFMC). 2007. Initial Review Draft: Environmental Assessment for proposed Amendment 24 to the Fishery Management Plan for Bering Sea and Aleutian Islands King and Tanner Crabs to Revise Overfishing Definitions. 17 January 2007. North Pacific Fishery Management Council, Anchorage.

Otto, R.S., and P.A. Cummiskey. 1985. Observations on the reproductive biology of golden king crab (Lithodes aequispina) in the Bering Sea and Aleutian Islands. Pages 123-135 In: Proceedings of the International King Crab Symposium. Alaska Sea Grant College Program, AK-SG-85-12, Fairbanks, Alaska.

Punt, A.E. 2017. Some insights into data weighting in integrated stock assessments. Fisheries Research, 192: 52-65.
R Core Team. 2016. R: A language and environment for statistical computing. R Foundation for Statistical Computing, Vienna, Austria. URL http://www.R-project.org/.

Siddeek, M.S.M., D.R. Barnard, L.J. Watson, and R.K. Gish. 2005. A modified catch-length analysis model for golden king crab (Lithodes aequispinus) stock assessment in the eastern Aleutian Islands. Pages 783-805 in Fisheries assessment and management in data limited situations, Alaska Sea Grant College Program, AK-SG-05-02, Fairbanks, Alaska.

Siddeek, M.S.M., Jie Zheng, and Doug Pengilly 2016. Standardizing CPUE from the Aleutian Islands golden king crab observer data. In: T.J. Quinn II, J.L. Armstrong, M.R. Baker, J. Heifetz, and D. Witherell (eds.), Assessing and Managing Data-Limited Fish Stocks. Alaska Sea Grant, University of Alaska Fairbanks, Alaska, USA, pp. 97-116.

Siddeek, M.S.M., J. Zheng, C. Siddon, and B. Daly. 2017. Aleutian Islands Golden King Crab (Lithodes aequispinus) Model-Based Stock Assessment in Spring 2017. Draft report submitted for the May 2017 Crab Plan Team Meeting. North Pacific Fishery Management Council, Anchorage, Alaska.

Somerton, D.A., and R.S. Otto. 1986. Distribution and reproductive biology of the golden king crab, Lithodes aequispina, in the Eastern Bering Sea. Fishery Bulletin. 81(3): 571-584.

Starr, P.J. 2012. Standardized CPUE analysis exploration: using the rock lobster voluntary logbook and observer catch sampling programmes. New Zealand Fisheries Assessment Report 2012/34, 75 p.

Watson, L.J., D. Pengilly, and S.F. Blau. 2002. Growth and molting of golden king crabs (Lithodes aequispinus) in the eastern Aleutian Islands, Alaska. Pages 169-187 in Crabs in cold water regions: biology, management, and economics, Alaska Sea Grant College Program, AK-SG-02-01, Fairbanks, Alaska.

Table 1. Annual weight of total fishery mortality to Aleutian Islands golden king crab, 1981/82-2016/17, partitioned by source of mortality: retained catch, bycatch mortality during crab fisheries, and bycatch mortality during groundfish fisheries. For bycatch in the federal groundfish fisheries, historical data (1991-2008) are not available for areas east and west of 174 W , and are listed for federal groundfish reporting areas 541,542 , and 543 combined. The 2009- present data are available by separate EAG and WAG fisheries and are listed as such. A mortality rate of 20\% was applied for crab fisheries bycatch, and a mortality rate of 50% for groundfish pot fisheries and 80% for the trawl fisheries were applied.

Season	Retained Catch (t)		Bycatch Mortality by Fishery Type (t)				Total Fishery Mortality (t)		
			Crab		Groundfish				
	EAG	WAG	EAG	WAG	EAG	WAG	EAG	WAG	Entire
	EAG	WAG	EAG	WAG	EAG	WAG	EAG	WAG	
1981/82	490	95							585
1982/83	1,260	2,655							3,914
1983/84	1,554	2,991							4,545
1984/85	1,839	424							2,263
1985/86	2,677	1,996							4,673
1986/87	2,798	4,200							6,998
1987/88	1,882	2,496							4,379
1988/89	2,382	2,441							4,823
1989/90	2,738	3,028							5,766
1990/91	1,623	1,621							3,244
1991/92	2,035	1,397	264	201		0			3,897
1992/93	2,112	1,025	624	198		0			3,959
1993/94	1,439	686	259	155		4			2,543
1994/95	2,044	1,540	362	528		1			4,475
1995/96	2,259	1,203	442	282		2			4,188
1996/97	1,738	1,259	267	213		5			3,482
1997/98	1,588	1,083	251	165		1			3,088
1998/99	1,473	955	289	159		1			2,877
1999/00	1,392	1,222	202	200		3			3,019
2000/01	1,422	1,342	55	230		2			3,051
2001/02	1,442	1,243	54	214		0			2,953
2002/03	1,280	1,198	34	178		18			2,708
2003/04	1,350	1,220	34	90		20			2,714
2004/05	1,309	1,219	28	94		1			2,651
2005/06	1,300	1,204	17	48		2			2,571
2006/07	1,357	1,022	17	47		18			2,461
2007/08	1,356	1,142	17	63		59			2,637
2008/09	1,426	1,150	42	57		33			2,708
2009/10	1,429	1,253	77	59	18	5	1,524	1,317	2,841
2010/11	1,428	1,279	78	67	49	3	1,555	1,350	2,905
2011/12	1,429	1,276	75	63	25	4	1,529	1,344	2,873
2012/13	1,504	1,339	73	82	9	6	1,586	1,428	3,014
2013/14	1,546	1,347	70	110	5	7	1,621	1,464	3,086
2014/15	1,554	1,217	83	98	9	5	1,647	1,320	2,967
2015/16	1,590	1,139	122	88	23	2	1,735	1,229	2,964
2016/17	1,578	1,015	138	92	3	3	1,719	1,110	2,829

Table 2. Time series of nominal annual pot fishery retained, observer retained, and observer total catch-per-uniteffort (CPUE, number of crabs per pot lift), total pot fishing effort (number of pot lifts), observer sample size (number of sampled pots), and GLM estimated observer CPUE Index for the EAG and WAG golden king crab stocks. Observer retained CPUE includes retained and non-retained legal size crabs.

Year	Pot Fishery Nominal Retained CPUE		Obs. Nominal Retained CPUE		Obs. Nominal Total CPUE		Pot Fishery Effort (no.pot lifts)		Obs. Size lifts)	Sample (no.pot	Obs. Index	CPUE
	EAG	WAG			EAG	WAG						
1985/86	11.90	11.90					117,718	118,563				
1986/87	8.42	7.32					155,240	277,780				
1987/88	7.03	7.15					146,501	160,229				
1988/89	7.52	7.93					155,518	166,409				
1989/90	8.49	7.83					155,262	202,541				
1990/91	8.90	7.00	2.17	11.83	13.00	26.67	106,281	108,533	138	340		
1991/92	8.20	7.40	17.36	7.78	36.91	19.17	133,428	101,429	377	857		
1992/93	8.40	5.90	10.43	6.39	38.52	16.83	133,778	69,443	199	690		
1993/94	7.80	4.40	5.07	6.54	20.81	17.23	106,890	127,764	31	174		
1994/95	5.90	4.10	2.54	6.71	12.91	19.23	191,455	195,138	127	1,270		
1995/96	5.90	4.70	5.06	4.96	16.98	14.28	177,773	115,248	6,388	5,598	0.76	1.14
1996/97	6.50	6.10	5.17	5.42	13.81	13.54	113,460	99,267	8,360	7,194	0.77	0.98
1997/98	7.30	6.60	7.13	6.52	18.25	15.03	106,403	86,811	4,670	3,985	0.81	1.00
1998/99	8.90	11.40	9.17	9.41	25.77	23.09	83,378	35,975	3,616	1,876	0.96	1.05
1999/00	9.00	6.30	9.25	5.93	20.77	14.49	79,129	107,040	3,851	4,523	0.89	0.92
2000/01	9.90	7.00	9.92	6.40	25.39	16.64	71,551	101,239	5,043	4,740	0.91	0.88
2001/02	11.70	6.50	11.14	5.99	22.48	14.66	62,639	105,512	4,626	4,454	1.17	0.86
2002/03	12.40	8.40	11.99	7.47	22.59	17.37	52,042	78,979	3,980	2,509	1.23	0.93
2003/04	10.90	10.20	11.02	9.29	19.43	18.17	58,883	66,236	3,960	3,334	1.08	1.10
2004/05	18.30	12.10	17.73	11.14	28.48	22.45	34,848	56,846	2,206	2,619	1.74	1.19
2005/06	25.40	21.20	29.44	23.89	38.47	36.23	24,569	30,116	1,193	1,365	1.02	1.19
2006/07	24.80	19.60	25.20	24.01	33.52	33.47	26,195	26,870	1,098	1,183	0.81	1.14
2007/08	28.00	20.00	31.09	21.04	40.37	32.46	22,653	29,950	998	1,082	0.95	1.06
2008/09	27.30	22.40	29.73	24.57	38.18	38.16	24,466	26,200	613	979	0.92	1.15
2009/10	25.90	23.70	26.64	26.55	35.89	34.08	26,298	26,489	408	892	0.76	1.21
2010/11	26.00	20.90	26.05	22.35	36.76	29.05	25,851	29,994	436	867	0.77	1.08
2011/12	37.30	23.40	38.79	23.79	51.69	31.13	17,915	26,326	361	837	1.13	1.10
2012/13	33.02	20.57	38.00	22.82	47.74	30.76	20,827	32,716	438	1,109	1.08	1.06
2013/14	33.67	16.42	35.83	16.96	46.16	25.01	21,388	41,835	499	1,223	1.04	0.83
2014/15	42.29	15.29	46.96	15.28	60.00	22.67	17,002	41,548	376	1,137	1.35	0.72
2015/16	39.41	14.97	43.08	15.74	58.75	22.14	19,376	41,108	478	1,296	1.29	0.77
2016/17	32.45	14.29	37.01	16.74	52.78	24.41	24,470	38,118	617	1,060	1.08	0.87

Table 3. Time series of GLM estimated CPUE Indices and coefficient of variations (CV) for the fish ticket based retained catch-per-pot lift for the EAG and WAG golden king crab stock. The GLM was fitted to the 1985/86 to 1998/99 time series of data.

Year	CPUE Index			CV
	EAG	WAG	EAG	WAG
$1985 / 86$	1.63	1.87	0.05	0.03
$1986 / 87$	1.20	1.68	0.05	0.03
$1987 / 88$	0.93	1.26	0.06	0.04
$1988 / 89$	1.02	1.37	0.05	0.03
$1989 / 90$	1.05	1.10	0.04	0.03
$1990 / 91$	0.85	0.84	0.06	0.04
$1991 / 92$	0.87	0.73	0.06	0.06
$1992 / 93$	0.94	0.70	0.06	0.06
$1993 / 94$	0.89	0.67	0.06	0.08
$1994 / 95$	0.80	0.84	0.06	0.05
$1995 / 96$	0.77	0.87	0.07	0.05
$1996 / 97$	0.82	0.85	0.07	0.04
$1997 / 98$	1.19	0.84	0.05	0.04
$1998 / 99$	1.39	1.12	0.05	0.03

Table 4. Iteration process for stage-2 effective sample size determination by Francis and McAllister and Ianelli methods for retained, total, and groundfish discard catch size compositions for selected scenarios of golden king crab model fit to EAG and WAG data. The effective sample sizes are numbers of days for retained and total catch, but number of trips for groundfish discarded catch size compositions. Note: 1 . Groundfish bycatch size compositions were not fitted to the model, but different predicted weights resulted from different iterations; 2 . We provide only the last three or two iteration results.

Scenario	Iteration No.	$\begin{aligned} & \text { Retained Size Comp } \\ & \text { Effective Sample } \\ & \text { Multiplier (W) } \\ & \hline \end{aligned}$	Total Size Comp Effective Sample Multiplier (W)	Groundfish Discard Size Comp Effective Sample Multiplier (W)	Terminal MMB (t)
17AD17:					
EAG	1	0.85787	0.47883	0.450625	13,337
	2	0.85784	0.47886	0.45062	13,337
	3	0.85785	0.47886	0.45062	13,337
WAG	1	0.51723	0.46880	0.75856	6,322
	2	0.51724	0.46880	0.75861	6,322
	3	0.51724	0.46880	0.75858	6,322
17BD17:					
EAG	1	0.86458	0.47797	0.45058	13,388
	2	0.86534	0.47784	0.45058	13,388
	3	0.86522	0.47788	0.45057	13,388
WAG	1	0.51941	0.46830	0.75853	6,335
	2	0.51955	0.46829	0.75851	6,335
	3	0.51959	0.46827	0.75851	6,335
17AaD17a:					
EAG	1	0.85785	0.47886	0.45062	11,305
	2	0.85784	0.47886	0.45063	11,305
WAG	1	0.51724	0.46880	0.75858	5,213
	2	0.51723	0.46880	0.75855	5,213
17BaD17a:					
EAG	1	0.86534	0.47784	0.45058	11,347
	2	0.86522	0.47788	0.45057	11,347
WAG	1	0.51955	0.46829	0.75851	5,224
	2	0.51959	0.46827	0.75851	5,224
	3	0.51961	0.46826	0.75852	5,224
17AcD17:					
EAG	1	1.05721	0.97710	1.00146	13,253
	2	1.00801	0.99737	0.99998	13,253
	3	1.00117	0.99966	0.99998	13,253
WAG	1	1.01120	0.97999	0.99983	6,410
	2	1.00311	0.99316	0.99980	6,418
	3	1.00087	0.99980	0.99979	6,418
17BcD17:					
EAG	1	1.00005	0.99998	0.99981	13,308
	2	1.00116	0.99990	0.99979	13,308
WAG	1	1.00083	0.99979	0.99975	6,430
	2	1.00095	0.99973	0.99971	6,431

Table 5. The initial input number of days/trips and stage-2 effective sample sizes iteratively estimated by Francis method for retained, total, and groundfish discard catch size compositions of golden king crab for scenarios 17AD17 and 17BD17 model fits to EAG data. NA: not available.

Year	Initial Input Retained Days Sample Size (no)	Stage-2 Effective Size (no) 17AD17	Retained Sample	Initial Input Total Days Sample Size (no)	Stage-2 Effective Size (no) 17AD17	Total Sample	Initial Input Groundfish Trip Sample Size (no)	Stage-2 Effective Size (no) 17AD17	roundfish Sample
1985	57	49	49						
1986	11	9	10						
1987	61	52	53						
1988	352	302	305						
1989	792	679	685				9	4	4
1990	163	140	141	22	11	11	13	6	6
1991	140	120	121	48	23	23	NA	NA	NA
1992	49	42	42	41	20	20	2	1	1
1993	340	292	294	NA	NA	NA	2	1	1
1994	319	274	276	34	16	16	4	2	2
1995	879	754	761	1,117	535	534	5	2	2
1996	547	469	473	509	244	243	4	2	2
1997	538	462	465	711	340	340	8	4	4
1998	541	464	468	574	275	274	15	7	7
1999	463	397	401	607	291	290	14	6	6
2000	436	374	377	495	237	237	16	7	7
2001	488	419	422	510	244	244	13	6	6
2002	406	348	351	438	210	209	15	7	7
2003	405	347	350	416	199	199	17	8	8
2004	280	240	242	299	143	143	10	5	5
2005	266	228	230	232	111	111	12	5	5
2006	234	201	202	143	68	68	14	6	6
2007	199	171	172	134	64	64	17	8	8
2008	197	169	170	113	54	54	15	7	7
2009	170	146	147	95	45	45	16	7	7
2010	183	157	158	108	52	52	26	12	12
2011	160	137	138	107	51	51	13	6	6
2012	187	160	162	99	47	47	18	8	8
2013	193	166	167	122	58	58	17	8	8
2014	168	144	145	99	47	47	16	7	7
2015	190	163	164	125	60	60	10	5	5
2016	223	191	193	155	74	74	12	5	5

Table 6. The initial input number of days/trips and stage-2 effective sample sizes iteratively estimated by Francis method for retained, total, and groundfish discard catch size compositions of golden king crab for scenarios 17AD17 and 17BD17 model fits to WAG data. NA: not available.

Year	Initial Input Retained Days Sample Size (no)	Stage-2 Effective Size (no) 17AD17	Retained Sample	Initial Input Total Days Sample Size (no)	Stage-2 Effective Size (no) 17AD17	Total Sample	Initial Input Groundfish Trip Sample Size (no)	Stage-2 Effective Size (no) 17AD17	roundfish Sample
1985	45	23	23						
1986	23	12	12						
1987	8	4	4						
1988	286	145	149						
1989	513	260	267				7	6	5
1990	205	104	107	190	89	89	6	5	5
1991	102	52	53	104	49	49	1	1	1
1992	76	39	39	94	44	44	3	2	2
1993	378	192	196	62	29	29	NA	NA	NA
1994	367	186	191	119	56	56	2	2	2
1995	705	358	366	907	426	425	5	4	4
1996	817	415	425	1061	499	497	8	6	6
1997	984	499	511	1116	525	523	6	5	5
1998	613	311	319	638	300	299	14	11	11
1999	915	464	475	1155	543	541	18	14	14
2000	1029	522	535	1205	567	564	11	9	8
2001	898	456	467	975	458	457	11	9	8
2002	628	319	326	675	317	316	16	13	12
2003	688	349	357	700	329	328	8	6	6
2004	449	228	233	488	229	229	9	7	7
2005	337	171	175	220	103	103	6	5	5
2006	337	171	175	321	151	150	14	11	11
2007	276	140	143	257	121	120	17	14	13
2008	318	161	165	258	121	121	19	15	14
2009	362	184	188	292	137	137	24	19	18
2010	328	166	170	222	104	104	13	10	10
2011	295	150	153	252	118	118	14	11	11
2012	288	146	150	241	113	113	18	14	14
2013	327	166	170	236	111	111	17	14	13
2014	305	155	158	219	103	103	18	14	14
2015	287	146	149	243	114	114	10	8	8
2016	392	199	204	253	119	118	12	10	9

Table 7. Parameter estimates and coefficient of variations (CV) with the 2016 MMB (MMB on 15 Feb 2017) for scenarios 17AD17, 17BD17, 17AaD17a, and 17BaD17a for the golden king crab data from the EAG, 1985/86-2016/17. Recruitment and fishing mortality deviations and initial size frequency determination parameters were omitted from this list.

	Scenario 17AD17		Scenario 17BD17		Scenario 17AaD17a		Scenario 17BaD17a		
Parameter	Estimate	CV	Estimate	CV	Estimate	CV	Estimate	CV	Limits
$\log _{-} \omega 1$ (growth incr. intercept)	2.54	1.92	2.54	0.01	2.54	0.006	2.54	0.01	1.0, 4.5
$\omega 2$ (growth incr. slope)	-8.24	1.04	-8.22	0.21	-8.24	0.21	-8.22	0.21	-12.0,-5.0
log_a (molt prob. slope)	-2.50	2.49	-2.51	0.02	-2.50	0.02	-2.51	0.02	-4.61,-1.39
$\log _{-} \mathrm{b}$ (molt prob. L50)	4.95	0.006	4.95	0.001	4.95	0.001	4.95	0.001	3.869,5.05
σ (growth variability std)	3.68	0.21	3.68	0.03	3.68	0.03	3.68	0.03	0.1,12.0
log_total sel delta 0 , 1985-04	3.36	0.02	3.36	0.019	3.36	0.019	3.36	0.019	0.,4.4
$\log _{-}$total sel delta θ, 2005-16	2.97	0.001	2.97	0.030	2.97	0.030	2.97	0.030	0.,4.4
$\log _{-}$ret. sel delta θ, 1985-16	1.86	0.03	1.86	0.0231	1.86	0.0232	1.86	0.02	0.,4.4
$\log _{-}$tot sel θ_{50}, 1985-04	4.84	0.019	4.84	0.002	4.84	0.002	4.84	0.002	4.0,5.0
log_tot sel $\theta_{50}, 2005-16$	4.92	0.030	4.92	0.0019	4.92	0.002	4.92	0.002	4.0,5.0
$\log _{\text {_ }}$ ret. sel $\theta_{50}, 1985-16$	4.91	0.02	4.91	0.0003	4.91	0.0003	4.91	0.0003	4.0,5.0
$\log _{_} \beta_{\mathrm{r}}$ (rec.distribution par.)	-1.09	0.002	-1.10	0.18	-1.09	0.18	-1.10	0.18	-12.0, 12.0
$\operatorname{logq2}$ (catchability 1985-04)	-0.59	0.0019	-0.59	0.13	-0.59	0.12	-0.59	0.13	-9.0, 2.25
$\operatorname{logq} 3$ (catchability 2005-16)	-0.97	0.0003	-0.97	0.13	-0.97	0.13	-0.97	0.13	-9.0, 2.25
$\log _{\text {_ }}$ newsh (initial total abundance par.)			-4.497	2.27			-4.497	2.27	-4.5,10.0
log_mean_rec (mean rec.)	0.87	0.05	0.88	0.05	0.87	0.05	0.88	0.05	0.01, 5.0
log_mean_Fpot (Pot fishery F)	-1.062	0.06	-1.059	0.06	-1.062	0.06	-1.059	0.06	-15.0, -0.01
log_mean_Fground (GF byc. F)	-9.245	0.09	-9.245	0.09	-9.245	0.09	-9.245	0.09	-15.0, -1.6
$\sigma_{?}^{?}$ (observer CPUE additional var)	0.019	0.37	0.019	0.37	0.019	0.37	0.019	0.37	0.0, 0.15
$\sigma_{?}^{?}$? (fishery CPUE additional var)	0.054	0.42	0.054	0.42	0.054	0.42	0.054	0.42	0.0,1.0
2016 MMB	13,337	0.17	13,388	0.17	11,305	0.16	11,347	0.16	

Table 8. Parameter estimates and coefficient of variations (CV) with the 2016 MMB (MMB on 15 Feb 2017) for scenarios 17AcD17, 17BcD17, 17AdD17, and 17BdD17 for the golden king crab data from the EAG, 1985/86-2016/17. Recruitment and fishing mortality deviations and initial size frequency determination parameters were omitted from this list.

	Scenario 17AcD17		Scenario 17BcD17		Scenario 17AdD17		Scenario 17BdD17		
Parameter	Estimate	CV	Estimate	CV	Estimate	CV	Estimate	CV	Limits
$\log _{-} \omega 1$ (growth incr. intercept)	2.54	0.006	2.54	0.01	2.54	0.01	2.54	0.01	1.0, 4.5
$\omega 2$ (growth incr. slope)	-7.96	0.21	-7.94	-0.21	-8.27	0.21	-8.23	0.21	-12.0,-5.0
log_a (molt prob. slope)	-2.51	0.02	-2.52	-0.02	-2.49	0.02	-2.51	0.02	-4.61,-1.39
$\log _{-} \mathrm{b}$ (molt prob. L50)	4.95	0.001	4.95	0.001	4.95	0.001	4.95	0.001	3.869,5.05
σ (growth variability std)	3.68	0.03	3.68	0.03	3.68	0.03	3.68	0.03	0.1,12.0
log_total sel delta θ, 1985-04	3.32	0.021	3.32	0.02	3.36	0.02	3.36	0.02	0.,4.4
log_total sel delta θ, 2005-16	2.96	0.03	2.96	0.03	2.98	0.03	2.96	0.03	0.,4.4
log_ret. sel delta θ, 1985-16	1.85	0.02	1.85	0.0199	1.85	0.02	1.86	0.02	0.,4.4
log_tot sel $\theta_{50}, 1985-04$	4.84	0.002	4.84	0.002	4.84	0.002	4.84	0.002	4.0,5.0
log_tot sel $\theta_{50}, 2005-16$	4.92	0.0018	4.92	0.0018	4.92	0.002	4.92	0.002	4.0,5.0
$\log _{-}$ret. sel $\theta_{50}, 1985-16$	4.92	0.0003	4.92	0.0003	4.91	0.0003	4.91	0.0003	4.0,5.0
$\log _{_} \beta_{\mathrm{r}}$ (rec.distribution par.)	-1.16	0.18	-1.16	-0.18	-1.09	0.19	-1.10	0.18	-12.0, 12.0
logq2 (catchability 1985-04)	-0.60	0.12	-0.59	-0.12	-0.60	0.12	-0.59	0.13	-9.0, 2.25
$\operatorname{logq} 3$ (catchability 2005-16)	-1.01	0.12	-1.01	-0.12	-0.95	0.13	-0.99	0.13	-9.0, 2.25
$\log _{-}$newsh (initial total abundance par.)			-4.499	-0.71			1.378	0.63	-4.5,10.0
$\log _{-}$mean_rec (mean rec.)	0.87	0.05	0.88	0.05	0.88	0.04	0.95	0.05	0.01, 5.0
log_mean_Fpot (Pot fishery F)	-1.081	0.06	-1.076	-0.06	-1.068	-0.06	-1.055	0.07	-15.0, -0.01
log_mean_Fground (GF byc. F)	-9.260	0.09	-9.259	-0.09	-9.239	-0.09	-9.253	0.09	-15.0, -1.6
$\sigma_{?}^{?}$ (observer CPUE additional var)	0.019	0.37	0.019	0.36	0.019	0.38	0.019	0.37	0.0, 0.15
$\sigma_{\text {? }}^{?}$ (fishery CPUE additional var)	0.055	0.41	0.055	0.41	0.054	0.42	0.055	0.42	0.0,1.0
2016 MMB	13,254	0.17	13,309	0.17	13,113	0.17	13,995	0.17	

Table 9. Parameter estimates and coefficient of variations (CV) with the 2016 MMB (MMB on 15 Feb 2017) for scenarios 17AD17, 17BD17, 17AaD17a, and 17 BaD 17 a for the golden king crab data from the WAG, 1985/86-2016/17. Recruitment and fishing mortality deviations and initial size frequency determination parameters were omitted from this list.

	Scenario 17AD17		Scenario 17BD17		Scenario 17AaD17a		Scenario 17BaD17a		
Parameter	Estimate	CV	Estimate	CV	Estimate	CV	Estimate	CV	Limits
$\log _{-} \omega 1$ (growth incr. intercept)	2.54	1.80	2.54	0.01	2.54	0.01	2.54	0.01	1.0, 4.5
$\omega 2$ (growth incr. slope)	-7.77	7.52	-7.80	0.22	-7.80	0.22	-7.80	0.22	-12.0,-5.0
log_a (molt prob. slope)	-2.62	3.09	-2.62	0.03	-2.61	0.03	-2.62	0.03	-4.61,-1.39
$\log _{-} \mathrm{b}$ (molt prob. L50)	4.95	0.01	4.95	0.001	4.95	0.001	4.95	0.001	3.869,5.05
σ (growth variability std)	3.69	0.22	3.69	0.03	3.69	0.03	3.69	0.03	0.1,12.0
log_total sel delta 0 , 1985-04	3.40	0.03	3.40	0.015	3.40	0.015	3.40	0.01	0.,4.4
$\log _{-}$total sel delta θ, 2005-16	2.89	0.001	2.90	0.025	2.90	0.02	2.90	0.02	0.,4.4
$\log _{-}$ret. sel delta θ, 1985-16	1.78	0.03	1.78	0.02	1.78	0.02	1.78	0.02	0.,4.4
$\log _{-}$tot sel θ_{50}, 1985-04	4.87	0.014	4.86	0.002	4.86	0.002	4.86	0.002	4.0,5.0
log_tot sel $\theta_{50}, 2005-16$	4.90	0.02	4.90	0.002	4.90	0.002	4.90	0.002	4.0,5.0
$\log _{\text {_ }}$ ret. sel $\theta_{50}, 1985-16$	4.92	0.02	4.92	0.0002	4.92	0.0002	4.92	0.0002	4.0,5.0
$\log _{_} \beta_{\mathrm{r}}$ (rec.distribution par.)	-1.05	0.002	-1.05	0.16	-1.05	0.16	-1.05	0.16	-12.0, 12.0
$\operatorname{logq2}$ (catchability 1985-04)	-0.05	0.002	-0.05	1.29	-0.06	1.25	-0.05	1.29	-9.0, 2.25
$\operatorname{logq} 3$ (catchability 2005-16)	-0.37	0.0002	-0.38	0.24	-0.38	0.24	-0.38	0.24	-9.0, 2.25
$\log _{\text {_ }}$ newsh (initial total abundance par.)			-4.500	0.26			-4.500	0.26	-4.5,10.0
log_mean_rec (mean rec.)	0.72	0.06	0.73	0.06	0.72	0.06	0.73	0.06	0.01, 5.0
log_mean_Fpot (Pot fishery F)	-0.689	0.09	-0.693	0.09	-0.695	0.09	-0.693	0.09	-15.0, -0.01
log_mean_Fground (GF byc. F)	-8.370	0.10	-8.372	0.10	-8.372	0.10	-8.372	0.10	-15.0, -1.6
$\sigma_{?}^{?}$ (observer CPUE additional var)	0.019	0.38	0.018	0.38	0.018	0.38	0.018	0.38	0.0, 0.15
$\sigma_{?}^{?}$? (fishery CPUE additional var)	0.027	0.62	0.025	0.64	0.026	0.63	0.025	0.64	0.0,1.0
2016 MMB	6,316	0.17	6,335	0.17	5,213	0.17	6,334	0.18	

Table 10. Parameter estimates and coefficient of variations (CV) with the 2016 MMB (MMB on 15 Feb 2017) for scenarios 17AcD17, 17BcD17, 17AdD17, and 17BdD17 for the golden king crab data from the WAG, 1985/86-2016/17. Recruitment and fishing mortality deviations and initial size frequency determination parameters were omitted from this list.

	Scenario 17AcD17		Scenario 17BcD17		Scenario 17AdD17		Scenario 17BdD17		
Parameter	Estimate	CV	Estimate	CV	Estimate	CV	Estimate	CV	Limits
$\log _{-} \omega 1$ (growth incr. intercept)	2.54	0.01	2.54	0.01	2.54	0.01	2.54	0.01	1.0, 4.5
$\omega 2$ (growth incr. slope)	-7.29	0.23	-7.29	0.23	-7.81	0.22	-7.74	0.22	-12.0,-5.0
log_a (molt prob. slope)	-2.67	0.02	-2.68	0.02	-2.61	0.03	-2.63	0.03	-4.61,-1.39
$\log _{-} \mathrm{b}$ (molt prob. L50)	4.95	0.001	4.95	0.001	4.95	0.001	4.95	0.001	3.869,5.05
σ (growth variability std)	3.69	0.03	3.69	0.03	3.69	0.03	3.69	0.03	0.1,12.0
log_total sel delta 0 , 1985-04	3.36	0.01	3.36	0.01	3.40	0.01	3.40	0.01	0.,4.4
$\log _{-}$total sel delta θ, 2005-16	2.89	0.02	2.89	0.02	2.90	0.02	2.89	0.02	0.,4.4
$\log _{\sim}$ ret. sel delta0, 1985-16	1.79	0.02	1.79	0.02	1.78	0.02	1.78	0.02	0.,4.4
$\log _{-}$tot sel $\theta_{50}, 1985-04$	4.87	0.002	4.87	0.002	4.86	0.002	4.87	0.002	4.0,5.0
log_tot sel $\theta_{50}, 2005-16$	4.90	0.001	4.90	0.001	4.90	0.002	4.90	0.002	4.0,5.0
$\log _{\text {_ }}$ ret. sel $\theta_{50}, 1985-16$	4.92	0.0002	4.92	0.0002	4.92	0.0002	4.92	0.0002	4.0,5.0
$\log _{_} \beta_{\mathrm{r}}$ (rec.distribution par.)	-1.10	0.15	-1.10	0.15	-1.05	0.16	-1.06	0.16	-12.0, 12.0
$\operatorname{logq2}$ (catchability 1985-04)	-0.04	1.65	-0.04	1.88	-0.06	1.24	-0.04	1.63	-9.0, 2.25
$\operatorname{logq} 3$ (catchability 2005-16)	-0.41	0.20	-0.41	0.20	-0.38	0.24	-0.37	0.24	-9.0, 2.25
$\log _{\text {_ }}$ newsh (initial total abundance par.)			-4.500	0.13			1.891	0.44	-4.5,10.0
log_mean_rec (mean rec.)	0.72	0.06	0.72	0.06	0.74	0.04	0.77	0.05	0.01, 5.0
log_mean_Fpot (Pot fishery F)	-0.711	0.08	-0.706	0.08	-0.698	0.09	-0.672	0.10	-15.0, -0.01
log_mean_Fground (GF byc. F)	-8.391	0.10	-8.390	0.10	-8.372	0.10	-8.372	0.10	-15.0, -1.6
$\sigma_{?}^{?}$ (observer CPUE additional var)	0.019	0.39	0.019	0.39	0.018	0.38	0.018	0.38	0.0, 0.15
$\sigma_{?}^{?}$? (fishery CPUE additional var)	0.037	0.53	0.038	0.53	0.026	0.63	0.025	0.65	0.0,1.0
2016 MMB	6,418	0.17	6,431	0.17	6,356	0.17	6,431	0.17	

Table 11. Annual abundance estimates of model recruits (millions of crabs), legal male biomass (t) with coefficient of variations (CV), and mature male biomass (t) with CV for scenarios 17AD17 and 17BD17 for golden king crab in the EAG. Legal male biomass was estimated on July 1 (start of fishing year) of fishing year y. Mature male biomass for fishing year y was estimated on February 15 of year $y+1$, after the year y fishery total catch removal. Recruits estimates for 1961 to 2017 are restricted to 1985-2017. Equilibrium MMBeq and $\mathrm{MMB}_{35 \%}$ are also listed. AD stands for 17AD17 and BD stands for 17BD17

Year	Recruits to the Model (≥ 101 mm CL)		Mature Male Biomass $(\geq 111 \mathrm{~mm} \mathrm{CL})$		CV		Legal \quad MaleBiomass $(\geq 136$mm CL)		CV	
	AD	BD								
			$\begin{aligned} & \mathrm{MMBe} \\ & 19,929 \\ & \mathrm{MMB}_{3} \end{aligned}$	$\begin{aligned} & \mathrm{MMBn} \\ & 37 \\ & \mathrm{MMB}_{35} \end{aligned}$						
1985	1.67	1.68	9,579	9,552	0.04	0.04	9,628	9,580	0.05	0.05
1986	1.00	1.00	7,334	7,318	0.04	0.04	8,175	8,144	0.04	0.04
1987	4.24	4.24	6,725	6,717	0.05	0.05	6,391	6,373	0.04	0.04
1988	3.88	3.88	6,859	6,854	0.05	0.05	5,317	5,306	0.05	0.05
1989	1.81	1.81	6,092	6,087	0.06	0.06	4,784	4,776	0.07	0.07
1990	2.78	2.78	6,066	6,063	0.05	0.05	4,438	4,428	0.06	0.06
1991	3.72	3.72	6,144	6,143	0.04	0.04	4,696	4,688	0.06	0.06
1992	2.22	2.22	6,159	6,157	0.04	0.04	4,442	4,435	0.05	0.05
1993	1.99	1.99	6,252	6,250	0.03	0.03	4,518	4,512	0.05	0.05
1994	2.46	2.46	5,710	5,707	0.04	0.04	4,966	4,960	0.04	0.04
1995	2.32	2.31	5,122	5,118	0.04	0.04	4,462	4,457	0.04	0.04
1996	2.23	2.23	5,235	5,228	0.04	0.04	3,826	3,819	0.04	0.04
1997	3.04	3.04	5,504	5,496	0.05	0.05	3,959	3,950	0.05	0.05
1998	2.77	2.76	6,093	6,082	0.05	0.05	4,069	4,059	0.05	0.05
1999	2.98	2.98	6,786	6,771	0.05	0.05	4,510	4,497	0.05	0.05
2000	2.77	2.77	7,446	7,429	0.06	0.06	5,167	5,150	0.06	0.06
2001	2.11	2.10	7,833	7,816	0.06	0.06	5,818	5,799	0.06	0.06
2002	2.73	2.73	8,169	8,152	0.07	0.07	6,390	6,370	0.06	0.06
2003	2.30	2.30	8,520	8,507	0.07	0.07	6,764	6,744	0.07	0.07
2004	1.96	1.96	8,612	8,601	0.07	0.07	7,080	7,062	0.07	0.07
2005	2.96	2.96	8,693	8,684	0.08	0.08	7,317	7,303	0.08	0.08
2006	2.28	2.28	8,956	8,949	0.08	0.08	7,264	7,252	0.08	0.08
2007	2.17	2.17	8,975	8,970	0.08	0.08	7,427	7,416	0.08	0.08
2008	3.55	3.56	9,196	9,194	0.08	0.08	7,591	7,582	0.08	0.08
2009	2.35	2.35	9,699	9,698	0.08	0.08	7,562	7,556	0.09	0.09
2010	2.20	2.21	9,734	9,734	0.08	0.08	7,973	7,968	0.09	0.09
2011	2.84	2.84	9,755	9,759	0.08	0.08	8,280	8,276	0.09	0.09
2012	2.73	2.73	9,931	9,938	0.09	0.09	8,264	8,262	0.09	0.09
2013	2.35	2.35	9,946	9,957	0.10	0.10	8,307	8,308	0.09	0.09
2014	5.59	5.61	10,633	10,651	0.12	0.12	8,397	8,402	0.10	0.10
2015	4.65	4.67	12,434	12,466	0.14	0.14	8,445	8,453	0.11	0.11
2016	2.58	2.60	13,337	13,388	0.17	0.17	9,600	9,615	0.14	0.14
2017	4.70	4.70								

Table 12. Annual abundance estimates of model recruits (millions of crabs), legal male biomass (t) with coefficient of variations (CV), and mature male biomass (t) with CV for scenarios 17 AD 17 and 17 BD 17 for golden king crab in the WAG. Legal male biomass was estimated on July 1 (start of fishing year) of fishing year y. Mature male biomass for fishing year y was estimated on February 15 of year $y+1$, after the year y fishery total catch removal. Recruits estimates for 1961 to 2017 are restricted to 1985-2017. Equilibrium MMBeq and $\mathrm{MMB}_{35 \%}$ are also listed. AD stands for 17AD17 and BD stands for 17BD17

Year	Recruits to the Model (≥ 101 mm CL)		Mature Male Biomass $(\geq 111 \mathrm{~mm} \mathrm{CL})$		CV		Legal Male Biomass mm CL)		CV	
	AD	BD								
			$\begin{aligned} & \text { MMBeq }= \\ & 14,821 \\ & \text { MMB }_{35 \%}= \\ & 5,150 \end{aligned}$	$\begin{aligned} & \text { MMBnoneq } \\ & = \\ & 0.26 \\ & \mathrm{MMB}_{35 \%}= \\ & 5,148 \end{aligned}$						
1985	3.77	3.80	10,631	10,596	0.05	0.05	8,730	8,654	0.11	0.12
1986	3.40	3.38	8,163	8,148	0.05	0.05	8,343	8,295	0.08	0.08
1987	2.69	2.69	7,491	7,476	0.04	0.04	5,955	5,938	0.06	0.06
1988	1.88	1.89	6,413	6,407	0.04	0.04	5,541	5,534	0.05	0.05
1989	2.58	2.57	4,437	4,437	0.04	0.05	4,880	4,876	0.04	0.04
1990	1.93	1.93	4,167	4,167	0.05	0.05	3,074	3,075	0.06	0.06
1991	1.56	1.55	3,922	3,920	0.05	0.05	2,838	2,842	0.05	0.05
1992	2.03	2.05	4,036	4,035	0.04	0.04	2,798	2,802	0.05	0.05
1993	1.59	1.61	4,608	4,617	0.03	0.03	2,932	2,933	0.05	0.05
1994	1.97	1.96	3,914	3,928	0.03	0.03	3,493	3,498	0.03	0.03
1995	1.89	1.88	3,917	3,926	0.04	0.04	2,822	2,836	0.04	0.04
1996	1.72	1.72	3,928	3,936	0.04	0.04	2,771	2,785	0.04	0.04
1997	1.86	1.84	3,996	4,004	0.04	0.04	2,817	2,828	0.04	0.04
1998	1.90	1.90	4,315	4,318	0.04	0.04	2,897	2,909	0.04	0.04
1999	2.23	2.23	4,347	4,347	0.04	0.04	3,174	3,183	0.04	0.04
2000	2.49	2.48	4,504	4,500	0.04	0.04	3,113	3,119	0.04	0.04
2001	2.52	2.53	4,934	4,931	0.05	0.05	3,119	3,122	0.04	0.04
2002	2.47	2.48	5,471	5,473	0.05	0.05	3,440	3,440	0.05	0.05
2003	1.75	1.78	5,781	5,791	0.05	0.06	3,942	3,946	0.05	0.05
2004	2.25	2.26	5,868	5,891	0.06	0.06	4,414	4,423	0.06	0.06
2005	2.30	2.29	6,146	6,171	0.06	0.06	4,587	4,605	0.06	0.06
2006	2.43	2.41	6,660	6,679	0.06	0.06	4,748	4,775	0.06	0.06
2007	1.72	1.72	6,835	6,847	0.05	0.05	5,176	5,203	0.06	0.06
2008	1.48	1.49	6,636	6,647	0.05	0.05	5,463	5,482	0.06	0.06
2009	1.90	1.89	6,248	6,258	0.05	0.05	5,510	5,525	0.05	0.05
2010	1.59	1.59	5,963	5,970	0.05	0.05	5,152	5,165	0.05	0.05
2011	1.14	1.14	5,457	5,466	0.05	0.05	4,849	4,859	0.05	0.05
2012	1.80	1.81	4,844	4,853	0.05	0.05	4,509	4,519	0.05	0.05
2013	2.29	2.30	4,622	4,637	0.06	0.07	3,893	3,904	0.05	0.05
2014	1.58	1.61	4,712	4,740	0.09	0.09	3,412	3,425	0.07	0.07
2015	3.71	3.68	5,215	5,246	0.12	0.12	3,480	3,501	0.08	0.08
2016	2.24	2.24	6,316	6,335	0.17	0.17	3,640	3,673	0.11	0.11
2017	2.06	2.07								

Table 13. Negative log-likelihood values of the fits for scenarios (Sc) 17AD17 (base equil), 17BD17 (base non-equil), $17 \mathrm{AbD17}$ (equil, no CPUE likelihood), 17 BbD 17 (non-equil, no CPUE likelihood), 17 AcD 17 (equil, McAllister and Ianelli reweighting), 17BcD17 (non-equil, McAllister and Ianelli reweighting), 17AdD17 (equil starts at 1975), and 17BdD17 (non-equil starts at 1975) for golden king crab in the EAG. Differences in likelihood values are given for scenarios with the same number of data points and free parameters (base). Likelihood components with zero entry in the entire rows are omitted. RetdcatchB= retained catch biomass. Scenario column headings are abbreviated.

Likelihood	Sc AD	Sc BD	Sc AbD	Sc BbD	Sc AcD	Sc BcD	Sc AdD	Sc BdD	Sc	Sc BcD
Component scenarios									$\begin{aligned} & \mathrm{AcD}- \\ & \mathrm{Sc} \mathrm{AD} \end{aligned}$	Sc BD
Number of free parameters Data	$\begin{aligned} & 140 \\ & \text { base } \end{aligned}$	$\begin{aligned} & 157 \\ & \text { base } \end{aligned}$	$\begin{aligned} & 140 \\ & \text { no CPUE } \end{aligned}$	$\begin{aligned} & 157 \\ & \text { no CPUE } \end{aligned}$	$\begin{aligned} & 140 \\ & \text { base } \end{aligned}$	$\begin{aligned} & 157 \\ & \text { base } \end{aligned}$	$\begin{aligned} & 125 \\ & \text { base } \end{aligned}$	$\begin{aligned} & 142 \\ & \text { base } \end{aligned}$		
Retlencomp	-1182.970	-1184.330	-1183.490	-1183.780	-1237.720	-1240.500	-1174.890	-1189.970	-54.75	-56.17
Totallencomp	-1236.350	-1235.920	-1246.870	-1246.790	-1168.690	-1168.330	-1238.690	-1235.210	67.66	67.59
Observer cpue	-12.011	-12.059	0.000	0.000	-12.010	-12.052	-11.873	-12.180	0.001	0.007
RetdcatchB	7.098	7.101	6.866	6.864	6.557	6.566	7.116	7.092	-0.541	-0.535
TotalcatchB	20.004	19.995	19.935	19.935	19.413	19.418	20.040	19.998	-0.591	-0.577
GdiscdcatchB	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0	0
Rec_dev	7.925	7.761	6.694	6.628	8.097	7.896	8.058	6.687	0.172	0.135
Pot F_dev	0.013	0.013	0.014	0.014	0.013	0.013	0.013	0.012	0	0
Gbyc_F_dev	0.026	0.026	0.029	0.029	0.026	0.026	0.026	0.026	0	0
Tag	2690.740	2690.850	2690.370	2690.370	2691.000	2691.130	2690.490	2690.930	0.26	0.28
Fishery CPUE	-0.209	-0.197	0.000	0.000	-0.119	-0.103	-0.264	-0.144	0.09	0.094
81_84RetCatch	0.008	0.006	0.003	0.003	0.011	0.009	0.026	0.000	0.003	0.003
Total	294.275	293.244	293.552	293.276	306.581	304.070	300.052	287.245	12.306	10.826

Table 14. Negative log-likelihood values of the fits for scenarios (Sc) 17AD17 (base equil), 17BD17 (base non-equil), 17 AbD 17 (equil, no CPUE likelihood), 17 BbD 17 (non-equil, no CPUE likelihood), 17 AcD 17 (equil, McAllister and Ianelli reweighting), 17BcD17 (non-equil, McAllister and Ianelli reweighting), 17AdD17 (equil starts at 1975), and 17BdD17 (non-equil starts at 1975) for golden king crab in the WAG. Differences in likelihood values are given for scenarios with the same number of data points and free parameters (base). Likelihood components with zero entry in the entire rows are omitted. RetdcatchB= retained catch biomass. Scenario column headings are abbreviated.

Table C. Results from 100 jitter runs for scenario 17 AD 17 for EAG. Jitter run 0 corresponds to the original optimized estimates. $\mathrm{NA}=$ not converged.

Jitter Run	Objective Function	M aximum Gradient	$\text { M M B }_{35 \%}$ (t)	OFL (t)	Current M MB (t)
0	294.2753	0.00002000	6923.92	3927.58	11394.70
1	294.2753	0.00021167	6923.92	3927.58	11394.70
2	294.2753	0.00022445	6923.92	3927.58	11394.70
3	294.2753	0.00018092	6923.92	3927.58	11394.70
4	294.2753	0.00003765	6923.92	3927.58	11394.70
5	294.2753	0.00006800	6923.92	3927.58	11394.70
6	294.2753	0.00039259	6923.92	3927.58	11394.70
7	294.2753	0.00034789	6923.92	3927.58	11394.70
8	294.2753	0.00010167	6923.92	3927.58	11394.70
9	294.2753	0.00010706	6923.92	3927.58	11394.70
10	294.2753	0.00021425	6923.92	3927.58	11394.70
11	294.2753	0.00015800	6923.92	3927.58	11394.70
12	294.2753	0.00002686	6923.92	3927.58	11394.70
13	294.2753	0.00000963	6923.92	3927.58	11394.70
14	294.2753	0.00006981	6923.92	3927.58	11394.70
15	294.2753	0.00059884	6923.92	3927.59	11394.70
16	294.2753	0.00008798	6923.92	3927.58	11394.70
17	294.2753	0.00001663	6923.92	3927.58	11394.70
18	294.2753	0.00003433	6923.92	3927.58	11394.70
19	294.2753	0.00009432	6923.92	3927.58	11394.70
20	294.2753	0.00010568	6923.92	3927.58	11394.70
21	294.2753	0.00010146	6923.92	3927.58	11394.70
22	294.2753	0.00006916	6923.92	3927.58	11394.70
23	302.1194	0.00020881	7362.04	4142.63	11948.70
24	294.2753	0.00012182	6923.92	3927.58	11394.70
25	294.2753	0.00023503	6923.92	3927.58	11394.70
26	294.2753	0.00012590	6923.92	3927.58	11394.70
27	294.2753	0.00026387	6923.92	3927.58	11394.70
28	294.2753	0.00010042	6923.92	3927.58	11394.70
29	294.2753	0.00000778	6923.92	3927.58	11394.70
30	294.2753	0.00020308	6923.92	3927.58	11394.70
31	294.2753	0.00005078	6923.92	3927.58	11394.70
32	294.2753	0.00007811	6923.92	3927.58	11394.70
33	294.2753	0.00016073	6923.92	3927.58	11394.70
34	294.2753	0.00007171	6923.92	3927.58	11394.70
35	294.2753	0.00010713	6923.92	3927.58	11394.70
36	294.2753	0.00016167	6923.92	3927.58	11394.70
37	294.2753	0.00001163	6923.92	3927.58	11394.70
38	294.2753	0.00004771	6923.92	3927.58	11394.70
39	NA	NA	NA	NA	NA
40	NA	NA	NA	NA	NA
41	294.2753	0.00000485	6923.92	3927.58	11394.70
42	294.2753	0.00014179	6923.92	3927.58	11394.70
43	294.2753	0.00005706	6923.92	3927.58	11394.70
44	294.2753	0.00001103	6923.92	3927.58	11394.70
45	294.2753	0.00009985	6923.92	3927.58	11394.70
46	294.2753	0.00013415	6923.92	3927.58	11394.70
47	294.2753	0.00004930	6923.92	3927.58	11394.70
48	294.2753	0.00030916	6923.92	3927.58	11394.70

49	294.2753	0.00005206	6923.92	3927.58	11394.70
50	294.2753	0.00019869	6923.92	3927.58	11394.70
51	294.2753	0.00019454	6923.92	3927.58	11394.70
52	294.2753	0.00066245	6923.92	3927.58	11394.70
53	294.2753	0.00015470	6923.92	3927.58	11394.70
54	294.2753	0.00002900	6923.92	3927.58	11394.70
55	294.2753	0.00002459	6923.92	3927.58	11394.70
56	294.2753	0.00003560	6923.92	3927.58	11394.70
57	294.2753	0.00002160	6923.92	3927.58	11394.70
58	294.2753	0.00020033	6923.92	3927.58	11394.70
59	294.2753	0.00006128	6923.92	3927.58	11394.70
60	294.2753	0.00002311	6923.92	3927.58	11394.70
61	294.2753	0.00019374	6923.92	3927.58	11394.70
62	294.2753	0.00006458	6923.92	3927.58	11394.70
63	294.2753	0.00016882	6923.92	3927.58	11394.70
64	294.2753	0.00013332	6923.92	3927.58	11394.70
65	294.2753	0.00003386	6923.92	3927.58	11394.70
66	294.2753	0.00011193	6923.92	3927.58	11394.70
67	294.2753	0.00043924	6923.92	3927.58	11394.70
68	294.2753	0.00006414	6923.92	3927.58	11394.70
69	294.2753	0.00002605	6923.92	3927.58	11394.70
70	294.2753	0.00030558	6923.92	3927.58	11394.70
71	294.2753	0.00010012	6923.92	3927.58	11394.70
72	294.2753	0.00005394	6923.92	3927.58	11394.70
73	294.2753	0.00004821	6923.92	3927.58	11394.70
74	294.2753	0.00035838	6923.92	3927.59	11394.70
75	294.2753	0.00049791	6923.92	3927.59	11394.70
76	294.2753	0.00007562	6923.92	3927.58	11394.70
77	294.2753	0.00007026	6923.92	3927.58	11394.70
78	294.2753	0.00006320	6923.92	3927.58	11394.70
79	294.2753	0.00008247	6923.92	3927.58	11394.70
80	294.2753	0.00027263	6923.92	3927.58	11394.70
81	294.2753	0.00016347	6923.92	3927.58	11394.70
82	294.2753	0.00003828	6923.92	3927.58	11394.70
83	294.2753	0.00001878	6923.92	3927.58	11394.70
84	294.2753	0.00021697	6923.92	3927.58	11394.70
85	294.2753	0.00005068	6923.92	3927.58	11394.70
86	294.2753	0.00009159	6923.92	3927.58	11394.70
87	294.2753	0.00017017	6923.92	3927.58	11394.70
88	294.2753	0.00014038	6923.92	3927.58	11394.70
89	294.2753	0.00008616	6923.92	3927.58	11394.70
90	294.2753	0.00044159	6923.92	3927.58	11394.70
91	294.2753	0.00007657	6923.92	3927.58	11394.70
92	294.2753	0.00004754	6923.92	3927.58	11394.70
93	294.2753	0.00020503	6923.92	3927.58	11394.70
94	294.2753	0.00009354	6923.92	3927.58	11394.70
95	294.2753	0.00025705	6923.92	3927.58	11394.70
96	294.2753	0.00002886	6923.92	3927.58	11394.70
97	294.2753	0.00028147	6923.92	3927.58	11394.70
98	294.2753	0.00008724	6923.92	3927.58	11394.70
99	294.2753	0.00020237	6923.92	3927.58	11394.70
100	294.2753	0.00002144	6923.92	3927.58	11394.70

Table D. Results from 100 jitter runs for scenario 17 AD 17 for WAG. Jitter run 0 corresponds to the original optimized estimates. NA= not converged.

Jitter Run	Objective Function	Maximum Gradient	$\mathrm{MMB}_{35 \%}$ (t)	OFL (t)	Current MMB (t)
0	192.0466	0.00071560	5149.51	1597.38	6460.90
1	192.0466	0.00030374	5149.51	1597.38	6460.90
2	192.0466	0.00007064	5149.51	1597.38	6460.90
3	192.0466	0.00005073	5149.51	1597.38	6460.90
4	192.0466	0.00021277	5149.51	1597.38	6460.90
5	192.0466	0.00026881	5149.51	1597.38	6460.90
6	192.0466	0.00024244	5149.51	1597.38	6460.90
7	192.0466	0.00001517	5149.51	1597.38	6460.90
8	193.0027	0.00011287	5652.62	1717.97	6838.37
9	NA	NA	NA	NA	NA
10	192.0466	0.00011472	5149.51	1597.38	6460.90
11	192.0466	0.00004718	5149.51	1597.38	6460.90
12	192.0466	0.00014885	5149.51	1597.38	6460.90
13	192.0466	0.00004225	5149.51	1597.38	6460.90
14	192.0466	0.00035032	5149.51	1597.38	6460.90
15	192.0466	0.00033841	5149.51	1597.38	6460.90
16	192.0466	0.00006688	5149.51	1597.38	6460.90
17	192.0466	0.00010395	5149.51	1597.38	6460.90
18	192.0466	0.00009790	5149.51	1597.38	6460.90
19	192.0466	0.00007651	5149.51	1597.38	6460.90
20	192.0466	0.00002932	5149.51	1597.38	6460.90
21	192.0466	0.00006721	5149.51	1597.38	6460.90
22	188.8420	0.00023157	5708.66	1703.25	6814.92
23	192.0466	0.00014186	5149.51	1597.38	6460.90
24	192.0466	0.00016565	5149.51	1597.38	6460.90
25	192.0466	0.00030020	5149.51	1597.38	6460.90
26	192.0466	0.00010332	5149.51	1597.38	6460.90
27	192.0466	0.00010526	5149.51	1597.38	6460.90
28	192.0466	0.00019452	5149.51	1597.38	6460.90
29	192.0466	0.00010311	5149.51	1597.38	6460.90
30	192.0466	0.00009163	5149.51	1597.38	6460.90
31	192.0466	0.00006911	5149.51	1597.38	6460.90
32	192.0466	0.00018175	5149.51	1597.38	6460.90
33	192.0466	0.00031074	5149.51	1597.38	6460.90
34	192.0466	0.00021716	5149.51	1597.38	6460.90
35	192.0466	0.00008902	5149.51	1597.38	6460.90
36	192.0466	0.00009005	5149.51	1597.38	6460.90
37	192.0466	0.00014046	5149.51	1597.38	6460.90
38	192.0466	0.00019667	5149.51	1597.38	6460.90
39	192.0466	0.00002656	5149.51	1597.38	6460.90
40	192.0466	0.00009417	5149.51	1597.38	6460.90
41	186.4518	0.00019699	5692.81	1736.05	6872.33
42	186.4518	0.00019699	5692.81	1736.05	6872.33
43	192.0466	0.00017667	5149.51	1597.38	6460.90
44	192.0466	0.00008019	5149.51	1597.38	6460.90
45	192.0466	0.00017790	5149.51	1597.38	6460.90
46	192.0466	0.00002406	5149.51	1597.38	6460.90
47	188.8420	0.00023157	5708.66	1703.25	6814.92

48	192.0466	0.00009725	5149.51	1597.38	6460.90
49	186.4518	0.00019699	5692.81	1736.05	6872.33
50	192.0466	0.00009313	5149.51	1597.38	6460.90
51	186.4518	0.00019699	5692.81	1736.05	6872.33
52	192.0466	0.00007650	5149.51	1597.38	6460.90
53	192.0466	0.00013064	5149.51	1597.38	6460.90
54	192.0466	0.00003492	5149.51	1597.38	6460.90
55	192.0466	0.00007358	5149.51	1597.38	6460.90
56	192.0466	0.00010326	5149.51	1597.38	6460.90
57	192.0466	0.00009263	5149.51	1597.38	6460.90
58	190.3499	0.00008136	5669.61	1715.82	6765.35
59	192.0466	0.00007302	5149.51	1597.38	6460.90
60	192.0466	0.00009330	5149.51	1597.38	6460.90
61	192.0466	0.00006595	5149.51	1597.38	6460.90
62	192.0466	0.00005427	5149.51	1597.38	6460.90
63	192.0466	0.00007230	5149.51	1597.38	6460.90
64	192.0466	0.00010931	5149.51	1597.38	6460.90
65	192.0466	0.00010531	5149.51	1597.38	6460.90
66	192.0466	0.00003593	5149.51	1597.38	6460.90
67	192.0466	0.00000851	5149.51	1597.38	6460.90
68	192.0466	0.00003300	5149.51	1597.38	6460.90
69	192.0466	0.00018683	5149.51	1597.38	6460.90
70	192.0466	0.00005385	5149.51	1597.38	6460.90
71	186.4518	0.00041524	5692.81	1736.05	6872.33
72	192.0466	0.00006777	5149.51	1597.38	6460.90
73	192.0466	0.00016299	5149.51	1597.38	6460.90
74	192.0466	0.00022160	5149.51	1597.38	6460.90
75	192.0466	0.00006890	5149.51	1597.38	6460.90
76	192.0466	0.00010045	5149.51	1597.38	6460.90
77	192.0466	0.00016579	5149.51	1597.38	6460.90
78	193.0027	0.00001185	5652.62	1717.97	6838.37
79	186.4518	0.00019699	5692.81	1736.05	6872.33
80	190.3499	0.00049087	5669.61	1715.82	6765.35
81	192.0466	0.00012429	5149.51	1597.38	6460.90
82	192.0466	0.00046295	5149.51	1597.38	6460.90
83	192.0466	0.00007264	5149.51	1597.38	6460.90
84	192.0466	0.00012333	5149.51	1597.38	6460.90
85	192.0466	0.00005188	5149.51	1597.38	6460.90
86	192.0466	0.00009543	5149.51	1597.38	6460.90
87	192.0466	0.00014892	5149.51	1597.38	6460.90
88	192.0466	0.00013140	5149.51	1597.38	6460.90
89	192.0466	0.00013074	5149.51	1597.38	6460.90
90	192.0466	0.00011971	5149.51	1597.38	6460.90
91	192.0466	0.00005396	5149.51	1597.38	6460.90
92	192.0466	0.00006660	5149.51	1597.38	6460.90
93	192.0466	0.00034605	5149.51	1597.38	6460.90
94	192.0466	0.00013571	5149.51	1597.38	6460.90
95	192.0466	0.00006582	5149.51	1597.38	6460.90
96	192.0466	0.00000917	5149.51	1597.38	6460.90
97	192.0466	0.00064720	5149.51	1597.38	6460.90
98	192.0466	0.00022250	5149.51	1597.38	6460.90
99	192.0466	0.00004864	5149.51	1597.38	6460.90
100	192.0466	0.00018262	5149.51	1597.38	6460.90

Table E. Results from 100 jitter runs for scenario 17 BD 17 for EAG. Jitter run 0 corresponds to the original optimized estimates. $\mathrm{NA}=$ not converged.

Jitter Run	Objective Function	Maximum Gradient	$\mathrm{MMB}_{35 \%}$ (t)	OFL (t)	Current MMB (t)
0	293.2420	0.00008490	6,929.43	3,936.48	11,450.90
1	293.2443	0.00002564	6,929.42	3,936.46	11,450.90
2	293.2443	0.00028626	6,929.42	3,936.46	11,450.90
3	293.2443	0.00004362	6,929.42	3,936.46	11,450.90
4	293.2443	0.00000792	6,929.42	3,936.46	11,450.90
5	293.2443	0.00000685	6,929.42	3,936.46	11,450.90
6	293.2443	0.00000377	6,929.42	3,936.46	11,450.90
7	300.9977	0.00004512	7,386.17	4,158.67	12,026.10
8	293.2443	0.00003931	6,929.42	3,936.46	11,450.90
9	293.2443	0.00009183	6,929.42	3,936.46	11,450.90
10	293.2443	0.00007021	6,929.42	3,936.46	11,450.90
11	293.2443	0.00007710	6,929.42	3,936.46	11,450.90
12	293.2443	0.00007741	6,929.42	3,936.46	11,450.90
13	293.2443	0.00017350	6,929.42	3,936.46	11,450.90
14	293.2443	0.00005599	6,929.42	3,936.46	11,450.90
15	293.2443	0.00007231	6,929.42	3,936.46	11,450.80
16	293.2443	0.00006759	6,929.42	3,936.46	11,450.90
17	293.2443	0.00010785	6,929.42	3,936.46	11,450.90
18	293.2443	0.00004493	6,929.42	3,936.46	11,450.90
19	293.2443	0.00014266	6,929.42	3,936.46	11,450.90
20	293.2443	0.00008763	6,929.42	3,936.46	11,450.90
21	293.2443	0.00000294	6,929.42	3,936.46	11,450.90
22	293.2443	0.00002721	6,929.42	3,936.46	11,450.90
23	293.2443	0.00002879	6,929.42	3,936.46	11,450.90
24	293.2443	0.00003107	6,929.42	3,936.46	11,450.90
25	293.2443	0.00003891	6,929.42	3,936.46	11,450.90
26	293.2443	0.00018237	6,929.42	3,936.46	11,450.90
27	293.2443	0.00007544	6,929.42	3,936.46	11,450.90
28	293.2443	0.00006357	6,929.42	3,936.46	11,450.90
29	293.2443	0.00041731	6,929.42	3,936.46	11,450.90
30	293.2443	0.00017701	6,929.42	3,936.46	11,450.90
31	293.2443	0.00004142	6,929.42	3,936.46	11,450.90
32	293.2443	0.00008304	6,929.42	3,936.46	11,450.90
33	293.2443	0.00005268	6,929.42	3,936.46	11,450.90
34	293.2443	0.00000973	6,929.42	3,936.46	11,450.90
35	293.2443	0.00000926	6,929.42	3,936.46	11,450.90
36	293.2443	0.00001672	6,929.42	3,936.46	11,450.90
37	293.2443	0.00018192	6,929.42	3,936.46	11,450.90
38	293.2443	0.00021392	6,929.42	3,936.46	11,450.80
39	293.2443	0.00011840	6,929.42	3,936.46	11,450.90

40		293.2443		0.00003281	6,929.42	3,936.46		11,450.90
41		293.2443		0.00018332	6,929.42	3,936.46		11,450.90
42		293.2443		0.00076778	6,929.42	3,936.46		11,450.80
43		293.2443		0.00001160	6,929.42	3,936.46		11,450.90
44		293.2443		0.00018969	6,929.42	3,936.46		11,450.90
45		293.2443		0.00001597	6,929.42	3,936.46		11,450.90
46		293.2443		0.00006485	6,929.42	3,936.46		11,450.90
47	NA		NA		NA	NA	NA	
48		293.2443		0.00008974	6,929.42	3,936.46		11,450.90
49		293.2443		0.00002611	6,929.42	3,936.46		11,450.90
50		293.2443		0.00002487	6,929.42	3,936.46		11,450.90
51		293.2443		0.00001938	6,929.42	3,936.46		11,450.90
52		293.2443		0.00005319	6,929.42	3,936.46		11,450.90
53		293.2443		0.00000551	6,929.42	3,936.46		11,450.90
54		293.2443		0.00000489	6,929.42	3,936.46		11,450.90
55		293.2443		0.00018603	6,929.42	3,936.46		11,450.80
56		293.2443		0.00000571	6,929.42	3,936.46		11,450.90
57		293.2443		0.00017024	6,929.42	3,936.46		11,450.80
58		293.2443		0.00006442	6,929.42	3,936.46		11,450.90
59		293.2443		0.00002526	6,929.42	3,936.46		11,450.90
60		293.2443		0.00003329	6,929.42	3,936.46		11,450.90
61		293.2443		0.00000988	6,929.42	3,936.46		11,450.90
62		293.2443		0.00058379	6,929.42	3,936.46		11,450.80
63		293.2443		0.00002519	6,929.42	3,936.46		11,450.90
64		293.2443		0.00004146	6,929.42	3,936.46		11,450.90
65		293.2443		0.00004663	6,929.42	3,936.46		11,450.90
66		293.2443		0.00019907	6,929.42	3,936.46		11,450.90
67		293.2443		0.00010008	6,929.42	3,936.46		11,450.90
68		293.2443		0.00000226	6,929.42	3,936.46		11,450.90
69		300.9977		0.00004905	7,386.17	4,158.67		12,026.10
70		293.2443		0.00000593	6,929.42	3,936.46		11,450.90
71		293.2443		0.00025685	6,929.42	3,936.46		11,450.90
72		293.2443		0.00001367	6,929.42	3,936.46		11,450.90
73		293.2443		0.00006708	6,929.42	3,936.46		11,450.90
74		293.2443		0.00022418	6,929.42	3,936.46		11,450.80
75		293.2443		0.00003278	6,929.42	3,936.46		11,450.90
76		293.2443		0.00002962	6,929.42	3,936.46		11,450.90
77		293.2443		0.00002639	6,929.42	3,936.46		11,450.90
78		293.2443		0.00008631	6,929.42	3,936.46		11,450.90
79		293.2443		0.00011150	6,929.42	3,936.46		11,450.90
80		293.2443		0.00002801	6,929.42	3,936.46		11,450.90
81		293.2443		0.00021433	6,929.42	3,936.46		11,450.90
82		293.2443		0.00002748	6,929.42	3,936.46		11,450.90
83		293.2443		0.00005400	6,929.42	3,936.46		11,450.90
84		293.2443		0.00001282	6,929.42	3,936.46		11,450.90

85	293.2443	0.00004864	$6,929.42$	$3,936.46$	$11,450.90$
86	293.2443	0.00002991	$6,929.42$	$3,936.46$	$11,450.90$
87	293.2443	0.00004174	$6,929.42$	$3,936.46$	$11,450.90$
88	293.2443	0.00024166	$6,929.42$	$3,936.46$	$11,450.90$
89	293.2443	0.00011042	$6,929.42$	$3,936.46$	$11,450.90$
90	293.2443	0.00018979	$6,929.42$	$3,936.46$	$11,450.90$
91	293.2443	0.00000596	$6,929.42$	$3,936.46$	$11,450.90$
92	293.2443	0.00012632	$6,929.42$	$3,936.46$	$11,450.80$
93	293.2443	0.00012707	$6,929.42$	$3,936.46$	$11,450.80$
94	293.2443	0.00001735	$6,929.42$	$3,936.46$	$11,450.90$
95	293.2443	0.00003660	$6,929.42$	$3,936.46$	$11,450.90$
96	293.2443	0.00000742	$6,929.42$	$3,936.46$	$11,450.90$
97	293.2443	0.00055508	$6,929.42$	$3,936.46$	$11,450.80$
98	293.2443	0.00004459	$6,929.42$	$3,936.46$	$11,450.90$
99	293.2443	0.00043047	$6,929.42$	$3,936.46$	$11,450.90$
100	$N A$	$N A$		NA	NA

Table F. Results from 100 jitter runs for scenario 17 BD 17 for WAG. Jitter run 0 corresponds to the original optimized estimates. NA $=$ not converged.

Jitter Run	Objective Function	Maximum Gradient	$\mathrm{MMB}_{35 \%}$ (t)	OFL (t)	Current MMB (t)
0	191.3502	0.00022156	5,148.19	1,609.76	6,464.32
1	191.3502	0.00008099	5,148.19	1,609.76	6,464.32
2	NA	NA	NA	NA	NA
3	191.3502	0.00007410	5,148.19	1,609.76	6,464.32
4	191.3502	0.00014193	5,148.19	1,609.76	6,464.32
5	191.3502	0.00003026	5,148.19	1,609.76	6,464.32
6	191.3502	0.00008134	5,148.19	1,609.76	6,464.32
7	191.3502	0.00012017	5,148.19	1,609.76	6,464.32
8	191.3502	0.00005094	5,148.19	1,609.76	6,464.32
9	191.3502	0.00016017	5,148.19	1,609.76	6,464.32
10	191.3502	0.00005791	5,148.19	1,609.76	6,464.32
11	191.3502	0.00010681	5,148.19	1,609.76	6,464.32
12	191.3502	0.00005574	5,148.19	1,609.76	6,464.32
13	185.6683	0.00001627	5,697.49	1,737.35	6,891.25
14	191.3502	0.00002178	5,148.19	1,609.76	6,464.32
15	185.6684	0.00027296	5,697.49	1,737.35	6,891.24
16	191.3502	0.00003373	5,148.19	1,609.76	6,464.32
17	191.3502	0.00006838	5,148.19	1,609.76	6,464.32
18	191.3502	0.00003710	5,148.19	1,609.76	6,464.32
19	NA	NA	NA	NA	NA
20	191.3502	0.00006096	5,148.19	1,609.76	6,464.32
21	191.3502	0.00000978	5,148.19	1,609.76	6,464.32
22	191.3502	0.00000309	5,148.19	1,609.76	6,464.32
23	191.3502	0.00001664	5,148.19	1,609.76	6,464.32
24	191.3502	0.00004770	5,148.19	1,609.76	6,464.32

25	185.6683		0.00006912	5,697.49	1,737.35	6,891.25
26	191.3502		0.00001148	5,148.19	1,609.76	6,464.32
27	NA	NA		NA	NA	NA
28	191.3502		0.00003935	5,148.19	1,609.76	6,464.32
29	191.3502		0.00006023	5,148.19	1,609.76	6,464.32
30	191.3502		0.00005016	5,148.19	1,609.76	6,464.32
31	191.3503		0.00026708	5,148.19	1,609.76	6,464.31
32	191.3502		0.00003582	5,148.19	1,609.76	6,464.32
33	191.3502		0.00008429	5,148.19	1,609.76	6,464.32
34	191.3502		0.00003983	5,148.19	1,609.76	6,464.32
35	191.3502		0.00025475	5,148.19	1,609.76	6,464.32
36	191.3502		0.00001814	5,148.19	1,609.76	6,464.32
37	191.3502		0.00002789	5,148.19	1,609.76	6,464.32
38	191.3502		0.00004408	5,148.19	1,609.76	6,464.32
39	191.3502		0.00156970	5,148.19	1,609.76	6,464.32
40	191.3502		0.00021466	5,148.19	1,609.76	6,464.32
41	191.3502		0.00006592	5,148.19	1,609.76	6,464.32
42	191.3502		0.00003855	5,148.19	1,609.76	6,464.32
43	191.3502		0.00002167	5,148.19	1,609.76	6,464.32
44	NA	NA		NA	NA	NA
45	191.3502		0.00006811	5,148.19	1,609.76	6,464.32
46	191.3502		0.00011041	5,148.19	1,609.76	6,464.32
47	185.6683		0.00036598	5,697.49	1,737.35	6,891.25
48	191.3502		0.00005075	5,148.19	1,609.76	6,464.32
49	191.3502		0.00006198	5,148.19	1,609.76	6,464.32
50	191.3502		0.00002379	5,148.19	1,609.76	6,464.32
51	191.3502		0.00003693	5,148.19	1,609.76	6,464.32
52	191.3502		0.00017491	5,148.19	1,609.76	6,464.32
53	191.3502		0.00002817	5,148.19	1,609.76	6,464.32
54	191.3502		0.00019969	5,148.19	1,609.76	6,464.32
55	191.3502		0.00011169	5,148.19	1,609.76	6,464.32
56	191.3502		0.00015358	5,148.19	1,609.76	6,464.32
57	191.3502		0.00016564	5,148.19	1,609.76	6,464.32
58	191.3502		0.00028039	5,148.19	1,609.76	6,464.32
59	191.3502		0.00004725	5,148.19	1,609.76	6,464.32
60	191.3502		0.00003493	5,148.19	1,609.76	6,464.32
61	191.3502		0.00005040	5,148.19	1,609.76	6,464.32
62	185.6683		0.00018097	5,697.49	1,737.35	6,891.25
63	191.3502		0.00005342	5,148.19	1,609.76	6,464.32
64	191.3502		0.00002661	5,148.19	1,609.76	6,464.32
65	191.3502		0.00008525	5,148.19	1,609.76	6,464.32
66	191.3502		0.00002883	5,148.19	1,609.76	6,464.32
67	NA	NA		NA	NA	NA
68	191.3502		0.00020483	5,148.19	1,609.76	6,464.31
69	191.3502		0.00001169	5,148.19	1,609.76	6,464.32
70	191.3502		0.00004921	5,148.19	1,609.76	6,464.32
71	185.6683		0.00037037	5,697.49	1,737.35	6,891.24
72	191.3502		0.00012481	5,148.19	1,609.76	6,464.32
73	191.3502		0.00005118	5,148.19	1,609.76	6,464.32

74	185.6683	0.00009036	$5,697.49$	$1,737.35$	$6,891.24$
75	191.3502	0.00007944	$5,148.19$	$1,609.76$	$6,464.32$
76	191.3502	0.00002049	$5,148.19$	$1,609.76$	$6,464.32$
77	191.3502	0.00007169	$5,148.19$	$1,609.76$	$6,464.32$
78	191.3502	0.00022257	$5,148.19$	$1,609.76$	$6,464.32$
79	188.0628	0.00002901	$5,715.25$	$1,704.53$	$6,834.28$
80	191.3502	0.00004834	$5,148.19$	$1,609.76$	$6,464.32$
81	191.3502	0.00003768	$5,148.19$	$1,609.76$	$6,464.32$
82	191.3502	0.00019350	$5,148.19$	$1,609.76$	$6,464.32$
83	191.3502	0.00006943	$5,148.19$	$1,609.76$	$6,464.32$
84	191.3502	0.00010852	$5,148.19$	$1,609.76$	$6,464.32$
85	185.6683	0.00006650	$5,697.49$	$1,737.35$	$6,891.25$
86	191.3502	0.00005370	$5,148.19$	$1,609.76$	$6,464.32$
87	191.3502	0.00028531	$5,148.19$	$1,609.76$	$6,464.32$
88	191.3502	0.00024886	$5,148.19$	$1,609.76$	$6,464.32$
89	191.3502	0.00000240	$5,148.19$	$1,609.76$	$6,464.32$
90	191.3502	0.00000252	$5,148.19$	$1,609.76$	$6,464.32$
91	191.3502	0.00008980	$5,148.19$	$1,609.76$	$6,464.32$
92	191.3502	0.00008628	$5,148.19$	$1,609.76$	$6,464.32$
93	185.6683	0.00005623	$5,697.49$	$1,737.35$	$6,891.24$
94	191.3502	0.00003309	$5,148.19$	$1,609.76$	$6,464.32$
95	191.3502	0.0000803	$5,148.19$	$1,609.76$	$6,464.32$
96	191.3502	0.00008895	$5,148.19$	$1,609.76$	$6,464.32$
97	NA	NA		NA	NA

Figure 13. Historical commercial harvest (from fish tickets; metric tons) and catch-per-unit effort (CPUE, number of crabs per pot lift) of golden king crab in the EAG, 1985/86-2016/17 fisheries (note: 1985 refers to the 1985/86 fishing year).

Figure 14. Historical commercial harvest (from fish tickets; metric tons) and catch-per-unit effort (CPUE, number of crabs per pot lift) of golden king crab in the WAG, 1985/86-2016/17 fisheries (note: 1985 refers to the 1985/86 fishing year).

Figure 15. Predicted (line) vs. observed (bar) retained catch relative length frequency distributions for scenarios 17 AD 17 (black line), 17BD17 (orange line), 17AaD17a (red line), 17BaD17a (blue line), 17AbD17 (violet line), 17 BbD 17 (dark green line), 17AcD17 (green line), and 17BcD17 (green line) data of golden king crab in the EAG, 1985/86 to 2016/17. This color scheme is used in all other graphs.

Figure 16. Predicted (line) vs. observed (bar) total catch relative length frequency distributions for scenarios 17 AD 17 to 17 BcD 17 data of golden king crab in the EAG, 1990/91 to 2016/17.

Figure 17. Predicted (line) vs. observed (bar) groundfish (or trawl) discarded bycatch relative length frequency distributions for scenarios 17 AD 17 to 17 BcD 17 data of golden king crab in the EAG, 1989/90 to 2016/17.

Figure 18. Estimated total (black solid line) and retained selectivity (red dotted line) for pre- and postrationalization periods under scenarios 17 AD 17 (Equil), 17BD17 (non-Equil), 17AaD17 (Equil with maturity curve), and 17BaD17 (NonEquil with maturity curve), fit of golden king crab data in the EAG, 1985/86 to 2016/17.

Figure 19. Estimated total (black solid line) and retained selectivity (red dotted line) for pre- and postrationalization periods under scenarios 17AbD17 (Equil with no CPUE likelihood), 17BbD17 (non-Equil with no CPUE likelihood), 17AcD17 (Equil with McAllister weighting), and 17 BcD 17 (NonEquil with McAllister weighting), fit of golden king crab data in the EAG, 1985/86 to 2016/17.

Figure 20. Observed tag recaptures (open circle) vs. predicted tag recaptures (solid line) by size bin for years 1 to 6 recaptures for scenario 17 AD 17 fit of EAG golden king crab.

Figure 21. Comparison of input CPUE indices (open circles with $+/-2 \mathrm{SE}$) with predicted CPUE indices (colored solid lines) for top left: 17AD17 (Equil_Base) vs. 17BD17 (NonEquil_Base), top right: 17AaD17a (Equil with maturity curve) vs. 17BaD17a (NonEquil with maturity curve), bottom left: 17 AbD 17 (Equil with no CPUE likelihood) vs. 17BbD17 (NonEquil with no CPUE likelihood), and bottom right: 17AcD17 (Equil with McAllister weighting) vs. 17BcD17 (NonEquil with McAllister weighting) for EAG golden king crab data, 1985/86-2016/17. Model estimated additional standard error was added to each input standard error.

Figure 22. Estimated number of male recruits (crab size $\geq 101 \mathrm{~mm} \mathrm{CL}$) to the assessment model for scenarios 17 AD 17 to 17 BcD 17 fits for EAG golden king crab data, 1961-2017. The number of recruits are centralized using (R-mean R)/mean R for comparing different scenarios’ results.

Figure 23. Observed (open circle) vs. predicted (solid line) retained catch (top left in each scenario set), total catch (top right in each scenario set), and groundfish bycatch (bottom left in each scenario set) of golden king crab for scenarios 17AD17 to 17BcD17 fits in EAG, 1981-2016.

Figure 24. Observed (open circle) vs. predicted (solid line) retained catch of golden king crab for scenarios 17AD17 to 17 BcD 17 fits in the EAG, 1981-1984. Note: Input retained catches to the model during pre- 1985 fishery period were in number of crabs.

Figure 25. Estimated pot fishery total fishing mortality (F) for scenarios 17 AD 17 to 17 BcD 17 fits for EAG golden king crab data, $1981-2016$.

Figure 26. Trends in golden king crab mature male biomass for scenarios 17AD17 to 17BcD17 fits in the EAG, 1960/61-2016/17. Top left: Scenarios 17AD17 (Equil_Base) and 17BD17 (NonEquil_Base) estimates have two standard errors confidence limits.

 Mid Length (mm CL)

Figure 27. Predicted (line) vs. observed (bar) retained catch relative length frequency distributions for scenarios 17 AD 17 (black line), 17BD17 (orange line), 17AaD17a (red line), 17BaD17a (blue line), 17AbD17 (violet line), 17 BbD 17 (dark green line), 17AcD17 (green line), and 17BcD17 (green line) data of golden king crab in the WAG, 1985/86 to 2016/17. This color scheme is used in all other graphs.

Figure 28. Predicted (line) vs. observed (bar) total catch relative length frequency distributions for scenarios 17AD17 to 17BcD17 data of golden king crab in the WAG, 1990/91 to 2016/17.

Figure 29. Predicted (line) vs. observed (bar) groundfish (or trawl) discarded bycatch relative length frequency distributions for scenarios 17 AD 17 to 17 BcD 17 data of golden king crab in the WAG, 1989/90 to 2016/17.

Figure 30. Estimated total (black solid line) and retained selectivity (red dotted line) for pre- and postrationalization periods under scenarios 17AD17 (Equil_Base), 17BD17 (non-Equil_Base), 17AaD17 (Equil with maturity curve), and 17BaD17 (NonEquil with maturity curve), fit of golden king crab data in the WAG, 1985/86 to 2016/17

Figure 31. Estimated total (black solid line) and retained selectivity (red dotted line) for pre- and postrationalization periods under scenarios 17AbD17 (Equil with no CPUE likelihood), 17BbD17 (non-Equil with no CPUE likelihood), 17AcD17 (Equil with McAllister weighting), and 17 BcD 17 (NonEquil with McAllister weighting), fit of golden king crab data in the WAG, 1985/86 to 2016/17.

Figure 32. Observed tag recaptures (open circle) vs. predicted tag recaptures (solid line) by size bin for years 1 to 6 recaptures for scenario 17 AD 17 fit of WAG golden king crab data. The tagging experiments were conducted in EAG.

Figure 33. Comparison of input CPUE indices (open circles with +/- 2 SE) with predicted CPUE indices (colored solid lines) for top left: 17AD17 (Equil_Base) vs. 17BD17 (NonEquil_Base), top right: 17AaD17a (Equil with maturity curve) vs. 17BaD17a (NonEquil with maturity curve), bottom left: 17 AbD 17 (Equil with no CPUE likelihood) vs. 17BbD17 (NonEquil with no CPUE likelihood), and bottom right: 17AcD17 (Equil with McAllister weighting) vs. 17 BcD 17 (NonEquil with McAllister weighting) for WAG golden king crab data, 1985/86-2016/17. Model estimated additional standard error was added to each input standard error.

Figure 34. Estimated number of male recruits (crab size $\geq 101 \mathrm{~mm} \mathrm{CL}$) to the assessment model for scenarios 17 AD 17 to 17 BcD 17 fits for WAG golden king crab data, 1961-2017. The number of recruits are centralized using (R-mean R)/mean R for comparing different scenarios' results.

Figure 35. Observed (open circle) vs. predicted (solid line) retained catch (top left in each scenario set), total catch (top right in each scenario set), and groundfish bycatch (bottom left in each scenario set) of golden king crab for scenarios 17AD17 to 17BcD17 fits in WAG, 1981-2016.

Figure 36. Observed (open circle) vs. predicted (solid line) retained catch of golden king crab for scenarios 17AD17 to 17 BcD 17 fits in the WAG, 1981-1984. Note: Input retained catches to the model during pre- 1985 fishery period were in number of crabs.

Figure 37. Estimated pot fishery total fishing mortality (F) for scenarios 17 AD 17 to 17 BcD 17 fits for WAG golden king crab data, 1981-2016.

Figure 38. Trends in golden king crab mature male biomass for scenarios 17 AD 17 to 17 BcD 17 fits in the WAG, 1960/61-2016/17. Top left: Scenarios 17AD17 (Equil_Base) and 17BD17 (NonEquil_Base) estimates have two standard errors confidence limits.

Figure 39. Trends in golden king crab mature male biomass for scenarios 17AdD17 (Equil_Base), 17BdD17 (NonEqui_Base), 17AeD17a (Equil_Maturity Curve), and 17BeD17a (NonEquil_Maturity Curve) fits in the EAG, 1975/76-2015/16.

Figure 40. Trends in golden king crab mature male biomass for scenarios 17AdD17 (Equil_Base), 17BdD17 (NonEqui_Base), 17AeD17a (Equil_Maturity Curve), and 17BeD17a (NonEquil_Maturity Curve) fits in the WAG, 1975/76-2015/16.

Figure 41. Pot fishery total F vs. MMB for base scenarios 17AD17 (Equilibrium initial abundance) and 17BD17 (Non-equilibrium initial abundance) during 1981/82-2016/17 for EAG and WAG.

EAG 17 AD 17 Retained Catch Size Composition Standardized Residuals

Figure 42. Bubble plot of scenario 17AD17 retained catch length composition residuals for EAG.
EAG 17 AD 17 Total Catch Size Composition Standardized Residuals

Figure 43. Bubble plot of scenario 17AD17 total catch length composition residuals for EAG.

EAG 17BD17 Retained Catch Size Composition Standardized Residuals

Figure 44. Bubble plot of scenario 17BD17 retained catch length composition residuals for EAG.
EAG 17BD17 Total Catch Size Composition Standardized Residuals

Figure 45 . Bubble plot of scenario 17BD17 total catch length composition residuals for EAG.

WAG 17AD17 Retained Catch Size Composition Standardized Residuals

Figure 46. Bubble plot of scenario 17AD17 retained catch length composition residuals for WAG.
WAG 17AD17 Total Catch Size Composition Standardized Residuals

Figure 47. Bubble plot of scenario 17AD17 total catch length composition residuals for WAG.

WAG 17BD17 Retained Catch Size Composition Standardized Residuals

Figure 48. Bubble plot of scenario 17BD17 retained catch length composition residuals for WAG.
WAG 17BD17 Total Catch Size Composition Standardized Residuals

Figure 49. Bubble plot of scenario 17BD17 total catch length composition residuals for WAG.

Appendix A: Integrated model

Aleutian Islands Golden King Crab (Lithodes aequispinus) Stock Assessment Model Development- East of 174° W (EAG) and west of $174^{\circ} \mathrm{W}$ (WAG) Aleutian Island stocks

Basic population dynamics

The annual [male] abundances by size are modeled using the equation:
$?_{? ? ?, ?}=\sum_{? ? ?}^{?}\left[?_{?, ?, ?} ? ?\left(?_{?, ?}+?_{?, ?}+?_{?, ?}\right) ?^{(? ? ? ?) ?}\right] ?_{?, ?}+?_{? ? ?}$?,?
where $N_{t, i}$ is the number of [male] crab in length class i on 1 July (start of fishing year) of year t; $\hat{C}_{t, i}, \hat{D}_{t, i}$, and $? ?_{?, ?}$ are respectively the predicted fishery retained, pot fishery discard dead, and groundfish fishery discard dead catches in length class i during year t; ? ?,? is estimated from the intermediate total (? ? ?,??? ?) catch and the retained $(? ?, ?)$ catch by Equation A.2c. $X_{i, j}$ is the probability of length-class i growing into length-class j during the year; y_{t} is elapsed time period from 1 July to the mid -point of fishing period in year $t ; M$ is instantaneous rate of natural mortality; and ? ?? ?,? recruitment to length class j in year $t+1$.

The catches are predicted using the equations
$?_{?,,,, ? ? ? ?}=\frac{?_{? ? ?}^{?}, ?}{? ?, ?} ?_{?, ?} ?^{? ? ? ?}\left(1-?^{? ? ?, ?}\right)$
$?_{?, ?}=\frac{?_{? ? ?}^{?}, ? ? ?, ?}{? ?, ?} ?_{?, ?} ?^{? ? ? ?}\left(1-?^{? ? ?, ?}\right)$
$?_{?, ?}=0.2\left(?_{?, ?, ?, ? ? ?}-?_{?, ?}\right)$
$?_{?, ?}=0.65 \frac{?_{?}^{? ? ? ? ?}}{? ? ?, ?} ?_{?, ?} ?^{? ? ? ?}\left(1-?^{? ? ?, ?}\right)$
$?_{?, ?}=?_{?, ?}+?_{?, ?}$
where $Z_{t, j}$ is total fishery-related mortality on animals in length-class j during year t :

$$
\begin{equation*}
?_{?, ?}=?_{?} ? ?, ?, ? ?, ?+0.2 ? ? ? ?, ?, ?\left(1-?_{?, ?}^{?}\right)+0.65 ? ? ? ? ? \tag{A.3}
\end{equation*}
$$

F_{t} is the full selection fishing mortality in the pot fishery, ??? is the full selection fishing mortality in the trawl fishery, ??,? is the total selectivity for animals in length-class j by the pot fishery during year $t, ? ? ?$ is the selectivity for animals in length-class j by the trawl fishery, ??,? is the probability of retention for animals in length-class j by the pot fishery during year t. Pot bycatch mortality of 0.2 and groundfish bycatch mortality of 0.65 (average of trawl (0.8) and fish pot (0.5) mortality) were assumed.

Initial abundance

The initial conditions are computed as the equilibrium initial condition using the following relations:
The equilibrium stock abundance is
$N=X \cdot S . N+R$

The equilibrium abundance in $1960, N_{1960}$, is
$\underline{?}_{\text {? ? ? }}=(?-? ?)^{? ?}$?
where X is the growth matrix, S is a matrix with diagonal elements given by e^{-M}, I is the identity matrix, and $\underline{?}$ is the product of average recruitment and relative proportion of total recruitment to each size-class.

We used the mean number of recruits from 1987 to 2012 in equation (A.5) to obtain the equilibrium solution under only natural mortality in year 1960 , and then projected the equilibrium abundance under natural mortality with recruitment estimated for each year after 1960 up to 1985 with removal of retained catches during 1981/82 to 1984/85.

We also considered a number of non-equilibrium initial abundance parameter model scenarios (see Equation (1) in the text).

Growth Matrix

The growth matrix X is modeled as follows:

$$
\begin{array}{cl}
0 & ? ?<? \\
?_{?, ?}=? ?_{?, ?}+\left(1-?_{?}\right) & ? ? ?=? \tag{A.6}\\
? ? & ? ?>?
\end{array}
$$

where:

$$
\begin{align*}
& ?\left(? \mid ?_{?}, ?^{?}\right)=\frac{?}{? ? ? ? ?} ?^{?\left(\frac{? ? ?}{\sqrt{? ?} ?}\right)} \text { ? } \text { and } \tag{A.7}
\end{align*}
$$

$?_{?}$ is the mean growth increment for crab in size-class i :
$?_{?}=\omega_{?}+\omega_{?} * ?_{?}$.
$\omega_{?} \quad, \quad \omega_{?}, \quad$ and $?$ are estimable parameters, and j_{1} and j_{2} are the lower and upper limits of the receiving lengthclass j (in mm CL), and ? ? is the mid-point of the contributing length interval i. The quantity ? ? is the molt probability for size-class i :
$?_{?}=\frac{?}{? ? ? ? ? \tau ? ?}$
where $\tau_{?}$ is the mid-length of the i-th length-class, c and d are parameters.

Selectivity and retention

Selectivity and retention are both assumed to be logistic functions of length. Selectivity depends on the fishing period for the pot fishery:

$$
\begin{equation*}
?_{?}=\frac{?}{? ? ? ? ?(?) \frac{? ? ?}{? ? ? ? ?}} \tag{A.9}
\end{equation*}
$$

where θ_{95} and θ_{50} are the parameters of the selectivity/ retention pattern (Mark Maunder, unpublished generic crab model). In the program, we re-parameterized the denominator $\left(\theta_{95}-\theta_{50}\right)$ to l?? (??????) so that the difference is always positive and transformed θ_{50} to $\log \left(\theta_{50}\right)$ to keep the estimate always positive.

Maturity

Maturity is assumed to be a logistic function of length formulated similar to Eq (A.9),
where mat $_{95}$ and mat $_{50}$ are the parameters of the maturity curve. In the program, we re-parameterized the denominator (mat $_{95}-$ mat $_{50}$) to ??? (? ???? ?? ??) so that the difference is always positive and transformed mat ${ }_{50}$ to $\log \left(\right.$ mat $\left._{50}\right)$ to keep the estimate always positive..

Recruitment

Recruitment to length-class i during year t is modeled as ? ??? $=? ?_{?}^{?} ? \Omega_{?}$ where $\Omega_{?}$ is a normalized gamma function
? ?? ? ? ? $\left(? \mid ?_{?,}, ?_{?}\right)=\frac{? ? ? ? ? ? \frac{?}{? ?}}{? ? ? \text { ? } \Gamma_{(?)}}$
with α_{r} and β_{r} (restricted to the first five length classes).

Parameter estimation

Table A1 lists the parameters of the model indicating which are estimated and which are pre-specified. The objective function includes contributions related to the fit of the model to the available data and penalties (priors on various parameters).

Tables A2 lists parameter values (with the corresponding coefficient of variations in parentheses) used to weight the components of the objective functions for EAG and WAG.

Likelihood components

Catches
The contribution of the catch data (retained, total, and groundfish discarded) to the objective function is given by:

$$
\begin{align*}
& L L_{r}^{\text {catch }}=\lambda_{r} \sum_{t}\left\{\ln \left(\sum_{j} \hat{C}_{t, j} w_{j}+c\right)-\ell \operatorname{n}\left(\sum_{j} C_{t, j} w_{j}+c\right)\right\}^{2} \tag{A.12a}\\
& \text { ??????? }=?_{?} \sum_{?}\left\{? ?\left(\sum_{?} ?_{?, ?} ?_{?}+?\right)-?\left(\sum_{?} ?_{?, ?} ?_{?}+?\right)\right\}^{?} \tag{A.12b}\\
& \text { ???????? } ?_{? ?} \sum_{?}\left\{?\left(\sum_{?} ?_{?, ?, ?} ?_{?}+?\right)-n\left(\sum_{?} ? ?_{?, ?} ?_{?}+?\right)\right\}^{?} \tag{A.12c}
\end{align*}
$$

where λ_{r}, λ_{T}, and $\lambda_{G D}$ are weights assigned to likelihood components for the retained, pot total, and groundfish discard catches; w_{j} is the average mass of a crab is length-class $j ; C_{t, j}, ?_{?, ?}$, and ???,? are, respectively, the observed numbers of crab in size class j for retained, pot total, and groundfish fishery discarded crab during year t, and c is a small constant value. We assumed $c=0.001$.

An additional retained catch likelihood (using Equation A.12a without w) for the retained catch in number of crabs during 1981/82 to 1984/85 was also considered in all scenarios.

Catch-rate indices

The catch-rate indices are assumed to be lognormally distributed about the model prediction. Account is taken of variation in addition to that related to sampling variation:

where $C P U E_{t}^{r}$ is the standardized retain catch-rate index for year $t, \sigma_{r, t}$ is standard error of the logarithm of $C P U E_{t}^{r}$, and ????? is the model-estimate of $C P U E_{t}^{r}$:
??? ? ? ? $=?_{?} \sum_{?}$?? ? ?? ? ? ? ?,? $-0.5 ? ?_{?, ?}+? ?_{?, ?}+? ?_{?, ?} ? ? ? ?$???
in which ?? is the catchability coefficient during the k-th time period (e.g., pre- and post-rationalization time periods), σ_{e} is the extent of over-dispersion, c is a small constant to prevent zero values (we assumed $c=0.001$), and ? ?,???? is the weight assigned to the catch-rate data. We used the same likelihood formula (A.13) for fish ticket retained catch rate indices.

Following Burnham et al. (1987), we computed the \ln (CPUE) variance by:

$$
\begin{equation*}
\sigma_{?, ?}^{?}=\ln \left(1+\mathrm{CV}_{?, ?}^{?}\right) \tag{A.15}
\end{equation*}
$$

Length-composition data

The length-composition data are included in the likelihood function using the robust normal for proportions likelihood, i.e., generically:

$$
\begin{equation*}
L L_{r}^{L F}=0.5 \sum_{t} \sum_{j} \ln \left(2 \pi \sigma_{t, j}^{2}\right)-\sum_{t} \sum_{j} \ln \left[\exp \left(-\frac{\left(P_{t, j}-\hat{P}_{t, j}\right)^{2}}{2 \sigma_{t, j}^{2}}\right)+0.01\right] \tag{A.16}
\end{equation*}
$$

where $P_{t, j}$ is the observed proportion of crabs in length-class j in the catch during year $\mathrm{t}, \hat{P}_{t, j}$ is the model-estimate corresponding to $P_{t, j}$, i.e.:

$$
\begin{array}{r}
\hat{E}_{?, ?}^{?}=\frac{\mathrm{C}_{?, ?}}{\sum_{?}^{?} \mathrm{e}_{?, ?}} \\
\mathrm{E}_{?, ?}^{?}=\frac{\mathrm{T}_{?, ?}}{\sum_{?}^{?} \mathrm{~T}_{?, ?}} \\
\hat{E}_{?, ?}^{?}=\frac{?_{?, ?}}{\sum_{?}^{?} ?_{?, ?}} \tag{A.17}
\end{array}
$$

$\sigma_{t, j}^{2}$ is the variance of ${ }_{t, j}$:
$\sigma_{t, j}^{2}=\left[\left(1-P_{t, j}\right) P_{t, j}+\frac{0.1}{n}\right] / S_{t}$
and S_{t} is the effective sample size for year t and n is the number of size classes.

Note: The likelihood calculation for retained length composition starts from length-class 6 (mid length 128 mm CL) because the length-classes 1 to 5 mostly contain zero data.
Tagging data
Let $V_{j, t, y}$ be the number of males that were released in year t that were in length-class j when they were released and were recaptured after y years, and $\tilde{\underline{V}}_{j, t, y}$ be the vector of recaptures by length-class from the males that were released in year t that were in length-class j when they were released and were recaptured after y years. The multinomial likelihood of the tagging data is then:

$$
\begin{equation*}
\operatorname{lnL}=\lambda_{?, n ? ?} \sum_{?,} \sum_{?} \sum_{?} \sum_{?} \rho_{?, ?, ?, ?} \ln \rho_{?, ?, ?, ?} \tag{A.19}
\end{equation*}
$$

where ? ?,??? ${ }_{\text {? }}$ is the weight assigned to the tagging data for recapture year $y, \hat{\rho}_{j, t, y, i}$ is the proportion in length-class i of the recaptures of males which were released during year t that were in length-class j when they were released and were recaptured after y years:

$$
\begin{equation*}
\underline{\hat{\rho}}_{j, t, y} \propto \underline{s}^{T}[\mathbf{X}]^{y} \underline{\Omega}^{(j)} \tag{A.20}
\end{equation*}
$$

where $\underline{\Omega}^{(j)}$ is a vector with $V_{j, t, y}$ at element j and 0 otherwise, \mathbf{X} is the growth matrix, and $s^{?}$ is the total selectivity vector (Punt et al. 1997).
This likelihood function is predicted on the assumption that all recaptures are in the pot fishery and the reporting rate is independent of the size of crab. The expected number of recaptures in length-class 1 is given by:

$$
\begin{equation*}
r_{l}=\sum_{t} \sum_{j} \frac{s_{l}\left[\mathbf{X}^{t}\right]_{j, l}}{\sum_{l^{\prime}} s_{l^{\prime}}\left[\mathbf{X}^{t}\right]_{j, l^{\prime}}} \sum_{k} V_{j, k, t} \tag{A.21}
\end{equation*}
$$

The last term, $\sum_{k} V_{j, k, t}$, is the number of recaptured male crab that were released in length-class j after t time-steps.

$$
\sum_{j} \frac{s_{l}\left[\mathbf{X}^{t}\right]_{j, l}}{\sum_{l^{\prime}} s_{l,}\left[\mathbf{X}^{t}\right]_{j, l^{\prime}}} \sum_{k} V_{j, k, t}
$$

The term is the predicted number of animals recaptured in length-class l that were at liberty for t time-steps.

Penalties

Penalties are imposed on the deviations of annual pot fishing mortality about mean pot fishing mortality, annual trawl fishing mortality about mean trawl fishing mortality, recruitment about mean recruitment, and the posfunction (fpen):

$$
\begin{align*}
& P_{1}=\lambda_{F} \sum_{t}\left(\ln F_{t}-\ln \bar{F}\right)^{2} \tag{A.22}\\
& P_{2}=\lambda_{F^{T r}} \sum_{t}\left(\ln F_{t}^{T r}-\ln \bar{F}^{T r}\right)^{2} \tag{A.23}\\
& P_{3}=\lambda_{R} \sum_{t}\left(\ln \varepsilon_{t}\right)^{2} \tag{A.24}\\
& P_{?}=\lambda_{? ? ? ? ?} * \text { fpen } \tag{A.25}
\end{align*}
$$

Standardized Residual of Length Composition

Std. Res $_{?, ?}=\frac{? ?, ? ? ? ?, ?}{? ? ? ?, ?}$

Output Quantities

Harvest rate

Total pot fishery harvest rate:

Exploited legal male biomass at the start of year t :
$L M B_{t}=\sum_{j=\text { legal size }}^{n} s_{j}^{T} s_{j}^{r} N_{j, t} w_{j}$
where ? ? is the weight of an animal in length-class j.

Mature male biomass on 15 February spawning time (NPFMC 2007) in the following year:

where $y^{?}$ is the elapsed time from 1 July to 15 February in the following year.
For estimating the next year limit harvest levels from current year stock abundances, a ???? value is needed. Current crab management plan specifies five different Tier formulas for different stocks depending on the strength of information available for a stock, for computing ??? (NPFMC 2007). For the golden king crab, the following Tier 3 formula is applied to compute ? ???

If,
? ? ? ???????? $>$? ? ? ??\% ${ }^{\prime} ?_{? ? ?}=?_{? ? \%}$
If,
? ? ? ??????? $\leq ? ? ?$??\% ??? ? ? ? ???????? >0.25 ? ? ? ??\%,
$?_{? ? ?}=?_{? ? \%} \frac{\frac{? ? ? ? \text { ? } 272 m ? 2 ?}{? ? ? ? ? ? \%} ?}{(? ? ?)}$
If,
? ? ? ???????? ≤ 0.25 ? ? ???\%,
???? $=0$.
where α is a parameter, $\mathrm{MMB}_{\text {??????? }}$ is the mature male biomass in the current year and $M M B_{35 \%}$ is the proxy $M M B_{M S Y}$ for Tier 3 stocks. We assumed $\alpha=0.1$.

Because projected $\mathrm{MMB}_{\text {? }}^{\text {(i.e., }} \mathrm{MMB}_{\text {?? ????? }}$) depends on the intervening retained and discard catch (i.e., $\mathrm{MMB}_{\mathrm{t}}$ is estimated after the fishery), an iterative procedure is applied using Equations A. 29 and A. 30 with retained and discard catch predicted from Equations A.2b-d. The next year limit harvest catch is estimated using Equations A.2bd with the estimated ???? value.

Additional Penalty Functions for Profiles

M estimation:
We used the following penalty function (P6) to estimate M for scenario 0 a :
$\mathrm{P}_{\mathrm{?}}=\frac{? ? ?}{? ?(? ? ? ?)}\left[(\ln (\mathrm{M})-\ln (0.18))^{?}\right]$
where a CV of 50% is assigned to the penalty and $0.18 \mathrm{yr}^{-1}$ is the M value used for king crab stock assessments.
For M profile investigation, we disregarded the M penalty and estimated total and component negative log likelihood values at fixed input M values varied by ± 0.30 proportion of the base scenario estimate.

Table A1. Pre-specified and estimated parameters of the population dynamics model

Parameter	Number of parameters
Initial conditions:	
Length specific equilibrium abundance,	17 (estimated)
$\mathrm{N}_{\text {? ? ? ?,? }}$ or	
Non equilibrium initial total abundance, newsh	1 (estimated)
Initial abundance distribution, alphaN	16 (estimated)
Fishing mortalities:	
Pot fishery,	1981-2016 (estimated)
Mean pot fishery fishing mortality, \bar{F}	1 (estimated)
Groundfish fishery, $F_{t}^{T r}$	1989-2016 (the mean F for 1989 to 1994 was used to estimate trawl discards back to 1981 (estimated)
Mean groundfish fishery fishing mortality, $\bar{F}^{T r}$	1 (estimated)
Selectivity and retention:	
Pot fishery total selectivity, $\theta_{\text {? }}^{\text {? }}$?	2 (1981-2004; 2005+) (estimated)
Pot fishery total selectivity difference, delta $\theta^{\text {? }}$	2 (1981-2004; 2005+) (estimated)
Pot fishery retention, $\theta_{\text {? }}^{\text {? }}$?	1 (1981+) (estimated)
Pot fishery retention selectivity difference, delta $\theta^{\text {? }}$	1 (1981+) (estimated)
Groundfish fishery selectivity	fixed at 1 for all size-classes
Growth:	
Expected growth increment, ω_{1}, ω_{2}	2 (estimated)
Variability in growth increment, σ	1 (estimated)
Molt probability (size transition matrix with tag data), a	1 (estimated)
Molt probability (size transition matrix with tag data), b	1 (estimated)
Natural mortality, M	1 (pre-specified, $0.21 \mathrm{yr}^{-1}$)
Recruitment:	
Number of recruiting length-classes	5 (pre-specified)
Mean recruit length	1 (pre-specified, 110 mmCL)
Distribution to length-class, $\beta_{\text {? }}$	1 (estimated)
Median recruitment, \hat{R}	1 (estimated)
Recruitment deviations, $\mathcal{E}_{t} \quad 57$ (1961-2017) (estimated)	
Fishery catchability, q	2 (1985-2004; 2005+) (estimated)
Additional CPUE indices standard deviation, $\sigma_{\text {? }}$	1 (estimated)
Likelihood weights (coefficient of variation)	Pre-specified, varies by scenario

Table A2. Specifications for the weights with corresponding coefficient of variations* in parentheses for each scenario for EAG and WAG. select. phase $=$ selectivity phase.

Weight	Value						
	Scenario 17AD17	Scenario 17BD17	Scenario $17 \mathrm{AaD} 17 \mathrm{a}$	Scenario 17BaD17a	Scenario 17 AbD17	Scenario 17BbD17	Scenario
Catch:							
Retained catch for 1981-	500 (0.032)	500	500	500	500	500	500
1984 and/or 1985-2016, λ_{r} Total catch for 1990-2016, λ_{T}	$\begin{array}{lr} \text { Number } & \text { of } \\ \text { sampled } & \text { pots } \\ \text { scaled to a } & \text { max } \\ 250 \end{array}$	Number of sampled pots scaled to a max 250	Number of sampled pots scaled to a max 250			Number of sampled pots scaled to a max 250	Number of sampled pots scaled to a max 250
Groundfish bycatch for $0.2(3.344)$ 0.2 0.2 0.2 0.2 0.2 $1989-2016, ~$ $\lambda_{G D}$							
$\lambda_{r, C P U E}$	1(0.805)	1	(1991-2015)1	1	0	0	1
Fish ticket retained crab catch-rate for 1985-1998 , $\lambda_{r, \text { CPUE }}$	1(0.805)	1	1	1	0	0	1
Penalty weights:							
Pot fishing mortality dev, λ_{F}	Initially 1000 , relaxed to 0.001 at phases \geq select. phase	Initially 1000 , relaxed to 0.001 at phases \geq select. phase	Initially 1000, relaxed to 0.001 at phases \geq select. phase	Initially 1000 , relaxed to 0.001 at phases \geq select. phase	Initially 1000 , relaxed to 0.001 at phases \geq select. phase	Initially 1000 , relaxed to 0.001 at phases \geq select. phase	Initially 1000, relaxed to 0.001 at phases \geq select. phase
Groundfish fishing mortality dev, $\lambda_{F^{T r}}$	Initially 1000 , relaxed to 0.001 at phases \geq select. phase 2 (0.533)	Initially 1000 , relaxed to 0.001 at phases \geq select. phase 2	Initially 1000, relaxed to 0.001 at phases \geq select. phase 2	Initially 1000 , relaxed to 0.001 at phases \geq select. phase 2	Initially 1000 , relaxed to 0.001 at phases \geq select. phase 2	Initially 1000 , relaxed to 0.001 at phases \geq select. phase 2	Initially 1000, relaxed to 0.001 at phases \geq select. phase 2
Recruitment, λ_{R} Posfunction (to keep abundance estimates always positive), ??????	$2(0.533)$ $1000(0.022)$	1000	2 1000	2 1000	2 1000	2 1000	2 1000
Tagging likelihood	EAG individual tag returns	EAG tag data					

Weight	Value				
	Scenario 17BcD17	Scenario 17AdD17	Scenario 17BdD17	Scenario 17AeD17a	Scenario 17BeD17a
Catch:					
Retained catch. λ_{r}	500 (0.032)	500	500	500	500
Total catch, λ_{T}	Number of sampled pots scaled to a max 250	Number of sampled pots scaled to a max 250	Number of sampled pots scaled to a max 250	Number of sampled pots scaled to a max 250	Number of sampled pots scaled to a max 250
Groundfish bycatch, $\lambda_{G D}$	0.2 (3.344)	0.2	0.2	0.2	0.2
Catch-rate: Observer legal size crab catch-rate, $\lambda_{r, \text { CPUE }}$	1(0.805)	1	1	1	1
Fish ticket retained crab catch-rate, $\lambda_{r, \text { CPUE }}$	1(0.805)	1	1	1	1
Penalty weights:					
Pot fishing mortality dev, λ_{F}	Initially 1000 , relaxed to 0.001 at phases \geq select.phase	Initially 1000, relaxed to 0.001 at phases \geq select.phase	Initially 1000, relaxed to 0.001 at phases \geq select. phase	Initially 1000, relaxed to 0.001 at phases \geq select. phase	Initially 1000, relaxed to 0.001 at phases \geq select. phase
Trawl fishing mortality dev, $\lambda_{F^{\text {Tr }}}$	Initially 1000 , relaxed to 0.001 at phases \geq select. phase	Initially 1000, relaxed to 0.001 at phases \geq select. phase	Initially 1000, relaxed to 0.001 at phases \geq select. phase	Initially 1000, relaxed to 0.001 at phases \geq select. phase	Initially 1000, relaxed to 0.001 at phases \geq select. phase
Recruitment, λ_{R}	2(0.533)	2	2	2	2
Posfunction (to keep abundance estimates always positive), ??????	1000 (0.022)	1000	1000	1000	1000
Tagging likelihood	EAG tag data				

* Coefficient of Variation, $\mathrm{CV}=? \exp \left[\frac{?}{? ?}\right]-1, \quad \mathrm{w}=$ weight

Appendix B: Catch and CPUE data

The commercial catch and length frequency distribution were estimated from ADF\&G landing records and dockside sampling (Bowers et al., 2008, 2011). The annual retained catch, total catch, and groundfish (or trawl) discarded mortality are provided in Table 1. The weighted length frequency data were used to distribute the catch into different ($5-\mathrm{mm}$) size intervals. The length frequency data for a year were weighted by each sampled vessel's catch as follows. The i-th length-class frequency was estimated as:

$$
\begin{equation*}
\sum_{?!?}^{?} \mathrm{C}_{?} \frac{? ?_{?, ?}}{\sum_{n ? ?}^{?} ? ?_{?, n}} \tag{B.1}
\end{equation*}
$$

where $\mathrm{k}=$ number of sampled vessels in an year, $\mathrm{LFj}, \mathrm{i}=$ number of crabs in the i -th length-class in the sample from j-th vessel, $n=$ number of size classes, $C j=$ number of crabs caught by j-th vessel. Then the relative frequency for the year was calculated and applied to the annual retained catch (in number of crabs) to obtain retained catch by length-class.

The annual total catch (in number of crabs) was estimated by the observer nominal (unstandardized) total CPUE considering all vessels multiplied by the total fishing effort (number of pot lifts). The weighted length frequency of the observer samples across the fleet was estimated using Equation B.1. Observer measurement of crab ranged from 20 to 220 mm CL. To restrict the total number of crabs to the model assumed size range (101-185+ mm CL), the proportion of observer total relative length frequency corresponding to this size range was multiplied by the total catch (number of crabs). This total number of crabs was distributed into length-classes using the weighted relative length frequency. Thus crab sizes $<101 \mathrm{~mm}$ CL were excluded from the model. Note that the total crab catch by size that went into the model did not consider retained and discard components separately. However, once the model estimated the annual total catch, then retained catch was deducted from this total and multiplied by handling mortality [we used a 20% handling mortality (Siddeek et al. 2005) to obtain the directed fishery discarded (dead) catch].

Observer data have been collected since 1988 (Moore et al. 2000; Barnard et al. 2001; Barnard and Burt 2004; Gaeuman 2011), but data were not comprehensive in the initial years, so a shorter time series of data for the period 1990/91-2016/17 was selected for this analysis. During 1990/91-1994/95, observers were only deployed on catcherprocessor vessels. During 1995/96-2004/05, observers were deployed on all fishing vessels during their fishing activity. Observers have been deployed on all fishing vessels since 2005/06, but catcher-only vessels are required to carry observers for a minimum of 50% of their fishing activity during a season; catcher-processor vessels are still required to carry observers during all fishing activity. Onboard observers count and measure all crabs caught and categorize catch as females, sublegal males, retained legal males, and non-retained legal males in a sampled pot. Prior to the 2009/10 season, depending on season, area, and type of fishing vessel, observers were also instructed to sample additional pots in which all crab were only counted and categorized as females, sublegal males, retained legal males, and non-retained legal males, but were not measured. Annual mean nominal CPUEs of retained and total crabs were estimated considering all sampled pots within each season (Table 2). For model-fitting, the CPUE time series was restricted to 1995/96-2016/17. Length-specific CPUE data collected by observers provides information on a wider size range of the stock than did the commercial catch length frequency data obtained from mostly legal-sized landed males.

There were significant changes in fishing practice due to changes in management regulations (e.g., since 1996/97 constant TAC and since 2005/06 crab rationalization), pot configuration (escape web on the pot door increased to 9" since 1999), and improved observer recording in Aleutian Islands golden king crab fisheries since 1998. These changes prompted us to consider two separate observer CPUE time series, 1995/96-2004/05 and 2005/06-2016/17, to estimate CPUE indices for model input.

To include a long time series of CPUE indices for stock abundance contrast, we also considered the 1985/861998/99 legal size standardized CPUE as a separate likelihood component. Because of the lack of soak time data previous to 1990 , we estimated the CPUE index considering a limited set of explanatory variables (e.g., vessel, captain, area, and month) and fitting the lognormal GLM to fish ticket data (Table 3).

Observer CPUE index:

The CPUE standardization followed the GLM fitting procedure (Maunder and Punt 2004; Starr 2012). We used the R package to perform the GLM (R Core Team, 2016). We considered the negative binomial GLM on positive and zero catches to select the explanatory variables. The response variable CPUE is the observer sample catch record for a pot haul.

The negative binomial model uses the log link function for the GLM fit. Therefore, we assumed the null model to be

$$
\begin{equation*}
\ln \left(\mathrm{CPUE}_{?}\right)=\text { Year }_{?} \tag{B.2}
\end{equation*}
$$

where Year is a factorial variable.
The maximum set of model terms offered to the stepwise selection procedure was:
$\ln \left(\right.$ CPUE $\left._{?}\right)=$ Year $_{? ?}+\operatorname{ns}\left(\right.$ Soak $_{\text {? }}$, df $)+$ Month $_{? ?}+$ Area $_{? ?}+$ Vessel $_{? ?}+$ Captain $_{\text {?? }}+$ Gear $_{? ?}+\mathrm{ns}\left(\right.$ Depth $_{? ?}$, df $)+$
$\mathrm{ns}\left(\mathrm{VesSoak}_{\text {??? }}\right.$ df),
where Soak is in unit of days and is numeric; Month, Area code, Vessel code, Captain code, and Gear code are factorial variables, Depth in fathom is a numeric variable, and VesSoak is a numeric variable computed as annual number of vessels time annual mean soak days (to account for other vessels' effect on CPUE); ns=cubic spline, and $\mathrm{df}=$ degree of freedom.

We used a log link function and a dispersion parameter (θ) in the GLM fitting process. We used the R^{2} criterion for predictor variable selection (Siddeek et al. 2016).

The R^{2} formula for explanatory variable selection is as follows:

An arbitrary R^{2} minimum increment of 0.01 was set to select the model terms.
We considered 108,077 observer records for CPUE analysis. First we determined the dispersion parameter (θ) by a grid search method (Fox and Weisberg, 2011). The best θ value was obtained at the minimum AIC:

Table B.1. Dispersion parameter search.

	Time Period	θ	AIC
EAG	$1995 / 96-2004 / 05$	1.33	198,234
	$2005 / 06-2016 / 17$	2.32	58,289
WAG			
	$1995 / 96-2004 / 05$	0.98	189,242
	$2005 / 06-2016 / 17$	1.12	93,012

Then we used the optimized dispersion parameter value in the GLM model for individual predictor variable fit to determine appropriate df value for the spline function based on the minimum AIC:

Table B.2. Predictor variable degree of freedom search.

	Time Period	Predictor Variable	df	AIC
EAG	1995/96-2004/05	Soak	3	207,312
		Depth	16	208,794
	VesSoak	9	204,269	
	$2005 / 06-2016 / 17$	Soak	16	58,992

		Depth	8	59,225
WAG		VesSoak	7	58,871
	$1995 / 96-2004 / 05$	Soak	8	193,547
		Depth	38	196,717
		VesSoak	8	196,177
	$2005 / 06-2016 / 17$	Soak	17	93,515
		Depth	9	93,538
		VesSoak	10	93,241

Previously, we combined a number of ADF\&G statistical area codes to wider areas to reduce the number of factor levels to ten for the "area" predictor variable as:

Statistical area code 665300-685334 range is coded as 66;
Statistical area code 695199-705301 range is coded as 69 ;
Statistical area code 715129--735301 range is coded as 71;
Statistical area code 745130-755331 range is coded as 74;
Statistical area code 765099-775201 range is coded as 76;
Statistical area code 785100-795431 range is coded as 78;
Statistical area code $805100-815432$ range is coded as 80 ;
Statistical area code 825099-835301 range is coded as 82 ;
Statistical area code 845099-865303 range is coded as 84 ; and
Statistical area code 875199-895331 range is coded as 87 .
In the current GLM analysis, however, we used the ADF\&G statistical area code as they are to account for finer resolution of area of fishing to investigate the effect of area shrinkage over the years.

The final models for EAG were:
$\ln ($ CPUE $)=$ Year + Gear + Captain + Area + ns $($ Soak, 3$)$
for the 1995/96-2004/05 period $\left[\theta=1.33, \mathrm{R}^{?}=0.2536\right]$
$\ln ($ CPUE $)=$ Year + Captain + Gear + ns(Soak, 16)
for the 2005/06-2016/17 period $\left(\theta=2.32, R^{?}=0.1214\right)$.
The final models for WAG were:
$\ln ($ CPUE $)=$ Year + Captain + Gear + ns (Soak, 8) + Area
for the 1995/96-2004/05 period $\left(\theta=0.98, R^{?}=0.1969\right)$
$\ln ($ CPUE $)=$ Year + Area + Gear + ns (Soak, 17)
for the 2005/06-2016/17 period $\left[\theta=1.12, R^{?}=0.0894\right.$ with $n s(S o a k, 17)$ forced in]
Area factor was selected by GLM for all models except the 2005/06-2016/17 period for EAG (B.6). Soak factor was selected by GLM for all models except the 2005/06-2016/17 period for WAG (B.8). However, as per CPT recommendation, we forced in the soak factor in B.8.

Figures B. 1 and B. 2 depict the trends in nominal and standardized CPUE indices for the two CPUE time series for EAG and WAG, respectively.

Figure B.1. Trends in non-standardized [arithmetic (nominal)] and standardized (negative binomial GLM) CPUE indices with $+/-2 \mathrm{SE}$ for Aleutian Islands golden king crab from EAG (east of $174{ }^{\circ} \mathrm{W}$ longitude). Top panel: 1995/96-2004/05 observer data and bottom panel: 2005/06-2016/17 observer data. Standardized indices: black line and non-standardized indices: red line.

Figure B.2. Trends in non-standardized [arithmetic (nominal)] and standardized (negative binomial GLM) CPUE indices with $+/-2 \mathrm{SE}$ for Aleutian Islands golden king crab from WAG (west of $174^{\circ} \mathrm{W}$ longitude). Top panel: 1995/96-2004/05 observer data and bottom panel: 2005/06-2016/17 observer data. Standardized indices: black line and non-standardized indices: red line.

Figures B.3-B. 8 show various diagnostic plots for the GLM fits for EAG and WAG, respectively.

Negative Binomial Fit, EAG 1995/96-2004/05

Negative Binomial Fit, EAG 2005/06-2016/17

Figure B.3. Studentized residual plots for negative binomial GLM fit for EAG golden king crab observer legal size male crab CPUE data. Top panel is for 1995/96-2004/05 data and the bottom panel is for 2005/06-2016/17 data.

Negative Binomial Fit, WAG 1995/96-2004/05

Negative Binomial Fit, WAG 2005/06-2016/17

Figure B.4. Studentized residual plots for negative binomial GLM fit for WAG golden king crab observer legal size male crab CPUE data. Top panel is for 1995/96-2004/05 data and the bottom panel is for 2005/06-2016/17 data.

Figure B.5. CDI plots of the predictor variables in the 1995/96 - 2004/05 model for EAG.

Figure B.6. CDI plots of the predictor variables in the 2005/06-2016/17 model for EAG.

Figure B.7. CDI plots of the predictor variables in the 1995/96-2004/05 model for WAG.

Figure B.8. CDI plots of the predictor variables in the 2005/06-2016/17 model for WAG.

Fish Ticket CPUE index:
We also fitted the lognormal GLM for fish ticket retained CPUE time series 1985/86 - 1998/99 offering Year, Month, Vessel, Captain, and Area as explanatory variables. Fine area resolution (ADF\&G code) was used for model fitting. The final model for EAG was:
$\ln ($ CPUE $)=$ Year + Captain + Area + Vessel + Month, $R^{?}=0.5037$
and that for WAG was:
$\ln ($ CPUE $)=$ Year + Captain + Vessel + Area, $R^{?}=0.4971$
The R^{2} for the fish ticket data fits are much higher compared to that for observer data fits. Furthermore, both models selected the area factor.

Figures B. 9 and B. 10 depict the trends in nominal and standardized CPUE indices for the fish ticket CPUE time series for EAG and WAG, respectively.

Figure B.9. Trends in non-standardized [arithmetic (nominal)] and standardized (lognormal GLM) CPUE indices with $+/-2$ SE for Aleutian Islands golden king crab from EAG (east of $174^{\circ} \mathrm{W}$ longitude). The 1985/86-1998/99 fish ticket data set was used. Standardized indices: black line and non-standardized indices: red line.

Figure B.10. Trends in non-standardized [arithmetic (nominal)] and standardized (lognormal GLM) CPUE indices with +/- 2 SE for Aleutian Islands golden king crab from WAG (east of $174^{\circ} \mathrm{W}$ longitude). The 1985/86-1998/99 fish ticket data set was used. Standardized indices: black line and non-standardized indices: red line.

Figures B. 11 shows the QQ plots for the fits for EAG and WAG, respectively. The QQ plots support reasonable fits to EAG and WAG data by GLM using the lognormal error distribution.

Log Normal Fit, EAG 1985/86-1998/99

Log Normal Fit, WAG 1985/86-1998/99

Figure B.11. Studentized residual plots for lognormal GLM fit for EAG (top) and WAG (bottom) golden king crab fish ticket CPUE data. The 1985/86-1998/99 fish ticket data set was used.

