GOA Rex Sole (update) Carey McGilliard

	As estim	ated or	As estimated or	
Quantity	specified las	st year for:	recommended this y	ear for:
	2014	2015	2015*	2016*
M (natural mortality rate)	0.17	0.17	0.17	0.17
Tier	5	5	5	5
Projected total (3+) biomass (t)	84,702	83,012	82,972	81,414
Female spawning biomass (t)	53,164	52,807	49,804	48,554
$B_{100\%}$	55,393	55,393	55,393	55,393
$B_{40\%}$	22,159	22,159	22,159	22,159
$B_{35\%}$	19,434	19,434	19,434	19,434
$F_{OFL}=M$	0.170	0.170	0.17	0.17
$maxF_{ABC}=0.75*M$	0.128	0.128	0.128	0.128
$ F_{ABC} $	0.128	0.128	0.128	0.128
OFL (t)	12,207	11,963	11,957	11,733
maxABC (t)	9,341	9,155	9,150	8,979
ABC (t)	9,341	9,155	9,150	8,979
Status	As determined	l in 2013 for:	As determined in 20	14 for:
	2012	2013	2013	2014
Overfishing	no	n/a	no	n/a
Overfished	n/a	no	n/a	no

Area Apportionment

			West		
Quantity	Western	Central	Yakutat	Southeast	Total
Area					
Apportionment	13.74%	63.57%	8.44%	14.25%	100.00%
2015 ABC (t)	1,258	5,816	772	1,304	9,150
2016 ABC (t)	1,234	5,707	758	1,280	8,979

Summary Information

Year	Biomass ¹	OFL^2	ABC^2	TAC^2	Catch ³
2013	86,684	12,492	9,560	9,560	3,707
2014	84,702	12,207	9,341	9,341	3,474
2015	82,972	11,957	9,150		
2016	81,414	11,733	8,979		

More Summary Information

Area	2014			2015		2016		
	OFL ¹	ABC^1	TAC^1	Catch ³	OFL ²	ABC^2	OFL ²	ABC ²
W		1,270	1,270	110		1,258		1,234
C		6,231	6,231	3,363		5,816		5,707
WYAK		813	813	1		772		758
SE		1,027	1,027	0		1,304		1,280
Total	12,207	9,341	9,341	3,474	11,957	9,150	11,733	8,979

Data Gaps and Research Priorities

- Move assessment to Stock Synthesis for further exploration
- Explore survey and fishery selectivity patterns
- Estimate growth internally and based on more recent data, if possible
- Consider using ADF&G small mesh survey data
- Explore stock-recruit curves
- Account for ageing error
- Explore data weighting
- Explore ways to better account for uncertainty (e.g. uncertainty in natural mortality and catchability)

GOA Deepwater Flatfish Complex (update)

Carey McGilliard

Species	Quantity		timated or last year for:	As estimated to	
Species		2014	2015	2015	2016
	M (natural mortality rate)	0.085	0.085	0.085	0.085
	Tier	3a	3a	3a	3a
	Projected total (3+) biomass (t)	182,727	181,781	182,160	181,691
	Female spawning biomass (t)				
	Projected				
	Upper 95% confidence interval	66,181	67,078	67,233	68,022
	Point estimate	66,147	67,001	67,156	67,868
	Lower 95% confidence interval	66,126	66,945	67,100	67,752
Dover sole	$B_{100\%}$	70,544	70,544	70,544	70,544
	$B_{40\%}$	28,218	28,218	28,218	28,218
	$B_{35\%}$	24,690	24,690	24,690	24,690
	F_{OFL}	0.12	0.12	0.12	0.12
	$maxF_{ABC}$	0.1	0.1	0.1	0.1
	F_{ABC}	0.1	0.1	0.1	0.1
	OFL (t)	15,915	15,711	15,749	15,559
	maxABC (t)	13,289	13,120	13,151	12,994
	ABC (t)	13,289	13,120	13,151	12,994

Species	Quantity		imated or last year for:	As estimated recommended	
		2014	2015	2015	2016
	Tier	6	6	6	6
	OFL (t)	238	238	238	238
turbot	maxABC (t)	179	179	179	179
	ABC (t)	179	179	179	179
	Tier	6	6	6	6
Deepsea	OFL (t)	6	6	6	6
sole	maxABC (t)	4	4	4	4
	ABC (t)	4	4	4	4
	OFL (t)	16,159	15,955	15,993	15,803
	maxABC (t)	13,472	13,303	13,334	13,177
Deepwater	ABC (t)	13,472	13,303	13,334	13,177
_	Status	As determine	ed in 2013 for:	As determined	in 2014 for:
Complex	Status	2012	2013	2013	2014
Compics	Overfishing	no	n/a	no	n/a
	Overfished	n/a	no	n/a	no
	Approaching overfished	n/a	no	n/a	no

Area Apportionment

				West		
Quantity	Species	Western	Central	Yakutat	Southeast	Total
Area	Dover sole	1.18%	28.02%	41.54%	29.26%	100.00%
	Greenland turbot	81.17%	0.00%	6.40%	12.43%	100.00%
Apportionment	Deepsea sole	0.00%	100.00%	0.00%	0.00%	100.00%
	Dover sole	156	3,684	5,463	3,848	13,151
2015 ABC (t)	Greenland turbot	145	0	11	22	179
2013 ABC (t)	Deepsea sole	0	4	0	0	4
	Deepwater Flatfish	301	3,688	5,474	3,870	13,334
	Dover sole	154	3,640	5,398	3,802	12,994
2016 ABC (t)	Greenland turbot	145	0	11	22	179
	Deepsea sole	0	4	0	0	4
	Deepwater Flatfish	299	3,644	5,409	3,824	13,177

Summary Information

Year	Biomass ¹	OFL^2	ABC^2	TAC^2	Catch ³
2013	173,853	6,834	5,126	5,126	242
2014	182,727	16,159	13,472	13,472	338
2015	182,160	15,993	13,334		
2016	181,691	15,803	13,177		

More Summary Information

Area	2014			2015		2016		
	OFL ¹	ABC^1	TAC ¹	Catch ³	OFL ²	ABC^2	OFL ²	ABC^2
W		302	302	67		301		299
C		3,727	3,727	262		3,688		3,644
WYAK		5,532	5,532	5		5,474		5,409
SE		3,911	3,911	4		3,870		3,824
Total	16,159	13,472	13,472	338		13,334		13,177

Responses to SSC and Plan Team Comments

- GPT, Nov 2013: Explore random effects survey averaging approach for apportionment calculations. Will address this in 2015, including new survey data.
- GPT, Nov. 2013/SSC, Dec 2013: Based on suggestions from the author, investigate catchability and natural mortality. Planned for 2015 full assessment; will do a joint likelihood profile over catchability and natural mortality and consider estimation of one or both parameters using priors.
- GPT, Nov. 2013/SSC Dec 2013: Do a stock structure template. Will do this in 2015.
- GPT, Nov. 2013: Pursue items listed for future research by author in 2013 assessment. See "Data Gaps and Research Priorities" on next slide

Data Gaps and Research Priorities

• Explore ways to better account for uncertainty (e.g. uncertainty in natural mortality and catchability)

Develop an ageing error matrix for GOA Dover sole

 Explore adjusting effective sample sizes of survey length composition data to number of hauls

• Explore potential causes of patterns in early recruitment deviations estimated by some 2013 alternative models.

GOA Flathead Sole (update) Carey McGilliard

	As estin	nated or	As estimated	or	
Quantity	specified la	est year for:	recommended this year for:		
	2014	2015	2015*	2016*	
M (natural mortality rate)	0.2	0.2	0.2	0.2	
Tier	3a	3a	3a	3a	
Projected total (3+) biomass (t)	252,361	253,418	254,602	256,029	
Female spawning biomass (t)					
Projected					
Upper 95% confidence	94.076	02 207	92 000	92 606	
interval	84,076	83,287	83,900	83,606	
Point estimate	84,058	83,204	83,818	83,342	
Lower 95% confidence	84,045	83,141	83,754	83,135	
interval	04,043	03,141	03,734	05,155	
$B_{100\%}$	88,829	88,829	88,829	88,829	
$B_{40\%}$	35,532	35,532	35,532	35,532	
$B_{35\%}$	31,090	31,090	31,090	31,090	
$ F_{OFL} $	0.61	0.61	0.61	0.61	
$maxF_{ABC}$	0.47	0.47	0.47	0.47	
$ F_{ABC} $	0.47	0.47	0.47	0.47	
OFL (t)	50,664	50,376	50,792	50,818	
maxABC (t)	41,231	41,007	41,349	41,378	
ABC (t)	41,231	41,007	41,349	41,378	
Status	As determined in 2012 for:		As determined in 2	2013 for:	
	2011	2012	2012	2013	
Overfishing	no	n/a	no	n/a	
Overfished	n/a	no	n/a	no	
Approaching overfished	n/a	no	n/a	no	

Area Apportionment

			West		
Quantity	Western	Central	Yakutat	Southeast	Total
Area					
Apportionment	30.88%	60.16%	8.55%	0.41%	100.00%
2015 ABC (t)	12,767	24,876	3,535	171	41,349
2016 ABC (t)	12,776	24,893	3,538	171	41,378

Summary Information

Year	Biomass ¹	OFL ²	ABC ²	TAC ²	Catch ³
2013	236,745	61,036	48,738	30,496	2,816
2014	252,361	50,664	41,231	27,746	2,317
2015	254,602	50,792	41,349		
2016	256,029	50,818	41,378		

More Summary Information

Area	2014				2015		2016	
	OFL ¹	ABC^1	TAC^1	Catch ³	OFL ²	ABC^2	OFL ²	ABC ²
W		12,730	8,650	202		12,767		12,776
C		24,805	15,400	2,114		24,876		24,893
WYAK		3,525	3,525	1		3,535		3,538
SE		171	171	0		171		171
Total	50,664	41,231	27,746	2,317	50,792	41,349	50,818	41,378

Responses to SSC and Plan Team Comments

• GPT, Nov 2013: Explore natural mortality and catchability and effects on selectivity. Potentially use a prior on natural mortality based on max observed age. A joint likelihood profile over natural mortality and catchability is planned and exploration of using a prior on natural mortality based on max observed age will be considered for the 2015 assessment

• GPT, Nov 2013; SSC, Dec 2013: Develop a stock-specific ageing error matrix, explore extreme patterns in early recruitment deviations that occurred in some 2013 models. Will do in 2015.

Data Gaps and Research Priorities

- Develop a stock-specific ageing error matrix
- Adjust effective sample sizes of survey length frequencies to number of hauls
- Explore natural mortality and catchability and methods for accounting for uncertainty in these parameters into the assessment
- Explore potential causes of extreme early recruitment deviations that occurred in some models in 2013.
- Request ageing of otoliths from fishery

End

Exploration of the early rec dev pattern (already done for Dover sole)

- not having as many early recruits and not having any early recruits and having even more early recruits
- including early recruits in the main rec dev vector
- length based asymptotic selectivity for survey 1
- dome-shaped selectivity for survey 1
- length-based asymptotic selectivity for the fishery
- -Leaving out various years of age-comp data
- leaving out the influence of the length comps
- - leaving out the influence of the age comps (eliminates the problem)
- leaving out the survey biomass years corresponding to a downward trend in biomass
- adding in the 1984 and 1987 comp data
- - limiting the maximum value of rec devs (makes a much bigger red line loop/mismatch between observed and expected) for the survey 1 female age comps