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Background 
Fishery-independent survey data represent one of the most important sources of information for 

stock assessment (Francis 2011, Methot et al. 2014). The NOAA-AFSC Groundfish Assessment Program 
conducts biennial bottom trawl surveys in the Gulf of Alaska and Aleutian Islands regions using a 
stratified random sample design, with effort allocated among strata based on observed catch rates, stratum 
variances, and stratum areas (von Szalay and Raring 2016). While design-based methods provide 
unbiased estimates of biomass for stratified random sample designs, a positive skew, wide tails, or a large 
number of zero observations (tows) can lead to unbiased but imprecise estimates of biomass (Thorson et 
al. 2011, Shelton et al. 2014). This is particularly problematic for patchily-distributed species whose non-
uniform distributions in space result in large proportions of zero observations. Furthermore, design-based 
estimators assume uniform density within strata, ignoring information provided by the spatial correlation 
structure across sample locations.  

 Two alternative approaches to index standardization present potential opportunities to reduce 
uncertainty in biomass indices from GOA and AI bottom trawl survey data, and which may be more 
robust to reductions in sampling effort. The first is to model biomass observations as the joint probability 
of encounter probability and positive catch rates. Described within the literature variously as delta-
lognormal linear models (Lo et al. 1992), delta generalized linear mixed models (Stefansson 1996, 
Maunder and Punt 2004), and more generally as hurdle models (Ver Hoef and Jansen 2007), methods that 
model these two components of catch rate observations have been found to better partition variance and 
reduce uncertainty in survey indices. Delta generalized mixed models have found increased use for 
standardization of zero-inflated survey data in recent years, especially for US West Coast groundfish 
(Thorson and Ward 2014, Thorson et al. 2015a).  

 The second are geostatistical methods for modeling the correlation structure in biomass 
observations across space. Design-based estimators of biomass calculate average density within sampling 
strata and multiply by the area of a stratum to estimate absolute biomass of a species within the pre-
specified sampling stratum. As a result, variance among samples within a stratum result in an increase in 
the variance estimated for species biomass. However, Shelton et al. (2014) illustrated that for 
darkblotched rockfish (Sebastes cramerai) much of the variation in survey catches could be explained by 
spatially-correlated variability in habitat quality, and that accounting for the location of samples resulted 
in significant reductions in uncertainty for biomass indices derived from trawl survey data. In addition to 
increased precision of abundance indices for darkblotched rockfish, geostatistical model estimates did not 
have the spikes in abundance which had been deemed implausible for such a long-lived species (Gertseva 
and Thorson 2013). 
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Thorson et al. (2015a) developed a generalized maximum likelihood estimator for geostatistical 
index standardization, which approximates spatial and spatiotemporal variation in catch rates as Gaussian 
Markov random fields (Thorson et al. 2015b). When this geostatistical delta-glmm was applied to 28 
groundfish species encountered in the U.S. West Coast trawl survey, estimation intervals from the 
conventional design-based approach were 60% larger on average than those derived from the 
geostatistical model-based estimator, but the trend and scale of resulting indices were generally consistent 
between methods (Thorson et al. 2015a). When applied to simulated data, Thorson et al. (2015a) found 
the geostatistical delta-glmm provided unbiased estimates of abundance, with well-calibrated confidence 
intervals that indicated greater precision relative to design-based estimators. Overall, the current body of 
research suggests that by modeling both encounter probability and positive catch rate probabilities 
together, and estimating the spatial and spatiotemporal correlation structure, geostatistical delta-glmm’s 
are able to explain more of the variability in catch rate data, produce indices of abundance with greater 
precision than conventional design-based estimators, and may be able to use trawl survey data more 
efficiently.  

Purpose 
A general platform for implementation of geostatistical delta-glmms for survey data is now available 
through the VAST (vector-autoregressive spatio-temporal) model package (Thorson and Barnett 2017), 
which utilizes Template Model Builder (Kristensen et al. 2014) for estimation of fixed and random 
effects. Given the survey design for the NMFS Gulf of Alaska (GOA) and Aleutian Islands (AI) bottom 
trawl surveys, there is interest in exploring this geostatistical delta-glmm for model-based index 
standardization. However, prior to adopting these new methods it is necessary to compare current design-
based indices with VAST model-based indices for a range of species (Table 1) with different life histories 
and spatial distributions, and evaluate sensitivity of model results to a range of specification options.  

Table 1 Survey data included in the analysis of the geostatistical delta-glmm. Survey data for each species 
and region combination were evaluated separately. 

Common Name Scientific Name Region 
Arrowtooth flounder Atheresthes stomias 

Gulf of Alaska 

Big skate Beringraja binoculata 
Dover sole Microstomus pacificus 
Harlequin rockfish Sebastes variegatus 
Northern rockfish Sebastes polyspinis 
Pacific cod Gadus macrocephalus 
Pacific ocean perch Sebastes alutus 
Spiny dogfish Squalus suckleyi 
Walleye pollock Gadus chalcogrammus 
Atka mackerel Pleurogrammus monopterygius 

Aleutian Islands 
Northern rockfish Sebastes polyspinis 
Pacific cod Gadus macrocephalus 
Pacific ocean perch Sebastes alutus 
Walleye pollock Gadus chalcogrammus 
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VAST geostatistical delta-glmms were fit to NOAA-AFSC bottom trawl survey data for a range of 
species in the GOA and AI regions (Table 1), in order to address the following questions: 

1) How do geostatistical delta-glmm (VAST) biomass indices compare with design-based estimates? 
2) Does a geostatistical delta-glmm  (VAST) approach to index standardization result in improved 

precision (lower estimation uncertainty) relative to current design-based estimators? 
3) How does the level of spatial complexity (number of knots specified) influence the trend, scale, 

and uncertainty in resulting indices of abundance? 
4) How does specification of temporal autocorrelation in the intercept for encounter probability and 

positive catch rate components of the VAST model influence biomass indices? 
5) How do estimates for apportionment across Gulf of Alaska regions compare between the current 

ADMB-RE model and alternative VAST model specifications? 

Model Specifications 
Across all test cases some baseline model specifications were implemented: 

• No random covariation in catchability was assumed (i.e. OverdispersionConfig). 
• The observation model followed the standard delta model format with a logit link for encounter 

probability, lognormal distribution for positive catch rates (i.e. ObsModel). 
• The bias correction option in VAST was turned OFF. 

GitHub 
The VAST model software is available from Jim Thorson on Github at: 

https://github.com/James-Thorson/VAST 

Analyses and model comparisons described in this document are available at: 

https://github.com/curryc2/AFSC_VAST_Evaluation 

 

Comparison Design-based and Geostatistical Indices, and Sensitivity to 
Spatial Complexity Specification 

To compare the trend, scale, and precision of design-based indices with those from a 
geostatistical delta-glmm, single-species VAST models were fit to bottom trawl survey data for a range of 
species encountered in the GOA and AI surveys (Table 1). Given that model-based indices for GOA 
Northern Rockfish were previously found to be sensitive to the level of spatial complexity specified in the 
VAST model, indices were compared across a range of VAST models spanning a continuum of spatial 
complexity. 

The knot number in a VAST model specifies the level of spatial complexity (Figure 1). For a 
given number of knots specified by the user (n_x), the k-means algorithm identifies the optimal location 
of these knots that minimizes the total distance between available data (tows) and the location of the 
nearest knot (Thorson et al. 2015a). Vast models were fit which fit with knot numbers ranging from 100 
to 1,000. 
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Figure 1. Example from of how the knot number specification influences the level of spatial 
complexity within a VAST model, from GOA Northern Rockfish. 

Comparison of current design-based indices from GOA and AI bottom trawl surveys with 
geostatistical delta-glmm (VAST) indices, highlights that differences in the scale, trend, and uncertainty 
in biomass estimates vary among species and regions. For the GOA survey, VAST model-based indices 
differed from design-based estimates, with the exception of Big Skate (Figure 2). For northern rockfish 
and harlequin rockfish, VAST indices did not exhibit the high variation between survey years that had 
been deemed unrealistic given these species’ life history. Results were similar for spiny dogfish, with 
VAST indices both lower and less variable than current design-based estimates (Figure 2). VAST indices 
for Pacific cod and Big skate had both a similar trend and scale, when compared with design-based 
estimates. The scale of VAST indices was higher than design-based estimates for Pacific ocean perch, 
Walleye pollock, Dover sole, and Arrowtooth flounder, however the trend was generally consistent across 
methods for these species. However, beginning in 2003 VAST indices for Pacific ocean perch increase 
rapidly relative to design-based estimates for this species (Figure 2). 

When the uncertainty (CV) in biomass estimates from model-based (VAST) and current design-
based methods was compared for the GOA survey, results indicate that model-based estimates have 
greater precision (lower CVs) across years for most species (Figure 3). Table 2 displays the average 
percent difference in the uncertainty (CV) estimated for model-based (VAST) and design-based indices, 
across years. While the CV for model-based indices are on average lower across species and knot 
specifications (i.e. negative percent change), increases in index precision are greatest for Pacific ocean 
perch, Pacific cod, Northern rockfish, Harlequin rockfish, and Spiny dogfish. Generally, across species, 
the median level of index uncertainty (CV) appears insensitive to different knot number specifications, 
suggesting that increased spatial complexity does not significantly increase index precision. It should be 
noted that for species where the scale of model-based indices is significantly higher than design-based 
estimates, a lower CV could result from similar variance in the alternative biomass estimates but 
differences in the mean across the time series. 
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Comparison of VAST and design-based indices for species captured in the Aleutian Islands 
survey showed important differences relative to results for the Gulf of Alaska. Model-based (VAST) 
indices were on average higher in scale for AI species, relative to current design-based indices (Figure 4). 
Across all levels of spatial complexity (knot number specification), model-based indices of biomass were 
substantially higher for the Pacific ocean perch in the Aleutian Islands survey. Contrary to results for the 
GOA survey, the level of uncertainty (CV) in model-based (VAST) biomass estimates was not 
consistently lower than that for the current design-based indices (Figure 5). For Aleutian Islands Pacific 
ocean perch and Atka mackerel, index uncertainty is on average lower for the design-based estimator 
(Table 3). While it is unclear what aspect of the survey design or spatial orientation causes this difference 
between the two survey regions, for the species compared it appears that for the GOA survey the model-
based (VAST) estimator has greater precision compared with the design-based estimator currently used, 
while in this is not consistently true for the AI survey. 

The level of spatial complexity assumed in the VAST model appears to have a similar influence 
on the scale of indices for both GOA and AI surveys. In general, across species the scale of VAST indices 
appears negatively correlated with spatial complexity. While the magnitude of differences in biomass 
estimates between knot number specifications varies across species, it seems that in general as the 
specified number of knots increases, the scale of the biomass index decreases (Figures 2 and 4). However, 
the trend in VAST indices is generally consistent across different levels of spatial complexity. This result 
may be driven in part by the principle that as the specified level of spatial complexity decreases within the 
geostatistical model, the estimated biomass density must be extrapolated over a progressively larger area. 
For patchily-distributed species this would result in high biomass density being extrapolated over 
artificially large areas, thus inflating overall index (See Figure 1 for an example).  
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Gulf of Alaska Bottom Trawl Survey 

 

Figure 2. Comparison of annual survey biomass index estimates across species, models, and VAST 
knot number specifications, for the Gulf of Alaska bottom trawl survey. Model-based (VAST) indices are 
solid lines, while current design-based indices are dashed lines. 

*Note: Figure only includes estimates for survey years. 
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Figure 3. Comparison of index uncertainty (CV) across species, model types, and VAST knot 
number specifications, for the Gulf of Alaska bottom trawl survey. Each boxplot describes the 
distribution of estimated CV’s across survey years. 

Table 2. Average percent difference between VAST (model-based) index uncertainty (CV) and 
design-based index uncertainty (CV), for the Gulf of Alaska bottom trawl survey. 

Species VAST Model Knot Specification (n_x) 
 100 200 300 400 500 750 1000 

Pacific ocean perch -17% -21% -20% -21% -22% -23% -23% 
Walleye pollock -12% -5% -8% -7% -5% -6% -8% 
Pacific cod -48% -48% -48% -48% -48% -48% -48% 
Northern rockfish -42% -43% -43% -44% -43% -42% -43% 
Dover sole -5% -7% -9% -11% -9% -11% -11% 
Big skate -8% -8% -9% -9% -9% -10% -10% 
Harlequin rockfish -30% -30% -31% -32% -31% -33% -32% 
Arrowtooth 
flounder 

-8% -10% -11% -11% -13% -14% -15% 

Spiny dogfish -46% -46% -47% -47% -47% -48% -48% 
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Aleutian Islands Bottom Trawl Survey 

 

Figure 4. Comparison of survey biomass index estimates across species, models, and VAST knot 
number specifications, for the Aleutian Islands bottom trawl survey. Model-based (VAST) indices are 
solid lines, while current design-based indices are dashed lines. 

*Note: Figure only includes estimates for survey years. 
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Figure 5. Comparison of index uncertainty (CV) across species, model types, and VAST knot 
number specifications, for the Aleutian Islands bottom trawl survey. Each boxplot describes the 
distribution of estimated CV’s across survey years. 

Table 3. Average percent difference between VAST (model-based) index uncertainty (CV) and 
design-based index uncertainty (CV), for the Aleutian Islands bottom trawl survey. 

Species VAST Model Knot Specification (n_x) 
 100 200 300 400 500 750 1000 

Pacific ocean 
perch 

40% 35% 28% 25% 18% 22% 22% 

Walleye pollock -1% 7% -9% -4% -6% -9% -11% 
Pacific cod -25% -22% -21% -24% -22% -19% -14% 
Northern rockfish -8% -11% -9% -8% -4% -7% -1% 
Atka mackerel 29% 50% 48% 49% 49% 52% 58% 
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Comparison of Intercept Specifications for Encounter Probability and 
Positive Catch Rate 

The VAST (vector-autoregressive spatio-temporal) model software (Thorson and Barnett 2017) 
allows specification of temporal autocorrelation in the average value (intercepts) of both the encounter 
probability and positive catch rate components of the model (i.e. RhoConfig[1:2]). These intercepts (𝛽!) 
represent the average encounter probability and positive catch rate across space, for a given species in a 
given year. The base VAST specification estimates the two intercepts are fixed effects, however they can 
be estimated to follow a random walk (Eq. 1) over time or be lag-1 autoregressive (Eq. 2).  

(1) 𝛽!!!~𝑁𝑜𝑟𝑚𝑎𝑙 𝛽! ,𝜎!
!  

(2) 𝛽!!!~𝑁𝑜𝑟𝑚𝑎𝑙 𝜌! ∗ 𝛽! ,𝜎!
!  

One question highlighted by the AFSC working group, was whether the assumption of autocorrelation in 
these two intercepts significantly influenced the estimated index for years with available survey data. 

To evaluate sensitivity of model-based indices to autocorrelation specifications for the encounter 
probability and positive catch rate intercepts, single-species VAST models were fit to GOA and AI survey 
data for the same range of species (Table 1). All combinations fixed-effect (base) and autocorrelation 
specification were explored (Table 4). 

Table 4. Notation for VAST model intercept (RhoConfig[1:2]) specifications. 

Rho_Intercept	Notation	 Encounter	Probability	 Positive	Catch	Rate	
FE	 Fixed	effect	 Fixed	effect	
RW-FE	 Random	walk	 Fixed	effect	
FE-RW	 Fixed	effect	 Random	walk	
RW	 Random	walk	 Random	walk	
AR-FE	 Autoregressive	(lag-1)	 Fixed	effect	
FE-AR	 Fixed	effect	 Autoregressive	(lag-1)	
AR	 Autoregressive	(lag-1)	 Autoregressive	(lag-1)	
 

Results indicate that the scale and trend in VAST (model-based) indices for survey years are 
fairly insensitive to whether or not the intercepts are fixed effects or correlated in time, for both GOA 
(Figures 6 and 7) and AI (Figure 8) survey data. However, higher inter-survey variation in estimated 
biomass is observed for GOA Northern rockfish and Harlequin rockfish when the intercept for positive 
catch rate is not correlated over time (FE, RW-FE, and AR-FE; Figure 6).   
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Figure 6. Comparison of VAST (model-based) indices for Gulf of Alaska rockfish species across 
encounter probability and positive catch rate intercept autocorrelation specifications, and knot number 
(columns). 
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Figure 7. Comparison of VAST (model-based) indices for Gulf of Alaska non-rockfish species 
across encounter probability and positive catch rate intercept autocorrelation specifications, and knot 
number (columns). 
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Figure 8. Comparison of VAST (model-based) indices for Aleutian Islands species across 
encounter probability and positive catch rate intercept autocorrelation specifications, and knot number 
(columns). 
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Gulf of Alaska Apportionment Comparison 
Evaluating the use of area-stratified VAST models for apportionment calculations has been 

highlighted as an important area of inquiry. Within the Gulf of Alaska, estimates of biomass 
apportionment between the Western, Central, and Eastern regions were compared between the stratified 
VAST model and the ADMB-RE model currently used. Inputs for the ADMB-RE model were separate 
design-based indices generated for the Western, Central, and Eastern GOA, and the ADMB-RE model 
assumed separate process errors for each index. Apportionment estimates were compared with VAST 
models parameterized with different temporal autocorrelation in intercepts and spatio-temporal random 
effects, and with or without spatial random effects. In all cases and contrary to the previous analysis, 
intercepts or spatio-temporal random effects were specified the same for both encounter probability and 
positive catch rate components (Table 5). All VAST models assumed n_x=250 knots.  

Table 5. Specifications for temporal autocorrelation in intercepts (RhoConfig[1:2]) and spatio-
temporal random effects (RhoConfig[3:4]) in alternative VAST model configurations. Note: In a given 
configuration both encounter probability and positive catch rate intercepts, or spatio-temporal random 
effects, had the same autocorrelation specification. 

Notation	 Intercepts	 Spatio-temporal	Random	Effects	
RW	+	IaY	 Random	walk	 Independent	among	years	
AR	+	IaY	 Autoregressive	(lag-1)	 Independent	among	years	
RW	+	AR	 Random	walk	 Autoregressive	(lag-1)	
AR	+	RW	 Autoregressive	(lag-1)	 Random	walk	
 

Apportionment estimates from the VAST model for GOA rockfish species, and specifically 
Harlequin rockfish, were much less variable across years compared with ADMB-RE estimates (Figure 9). 
For all species considered, apportionment estimates from VAST models with autoregressive intercepts 
and spatio-temporal random effects specified as random walks (AR+RW), appeared to better capture the 
long term trends in relative biomass between the three regions that were estimated by the ADMB-RE 
model (Figures 9, 10, and 11). Estimates from the other VAST model specifications (RW+IaY, AR+IaY, 
and RW+AR), did not appear to capture the same long-term trends estimated by the ADMB-RE and 
AR+RW models, and exhibited higher interannual variation.   

Across species and model specifications, when spatial random effects were not estimated (bottom 
panels; Figures 9, 10, and 11) larger interannual variation in apportionment estimates were observed. The 
difference between apportionment estimates with or without spatial random effects, was less visible when 
intercepts were specified as autoregressive and spatio-temporal random effects as random walks 
(AR+RW). Overall, it appears that the AR+RW geostatistical model provides apportionment estimates 
most consistent with the current ADMB-RE model, and may provide some benefit in reducing interannual 
variation in apportionment recommendations for rockfish species (Figure 9). 
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Figure 9. Comparison of apportionment estimates from the ADMB-RE and stratified VAST 
models, for three rockfish species in the Gulf of Alaska. Model configurations are listed at top of the 
figure, with VAST model definitions listed in Table 5.  
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Figure 10. Comparison of apportionment estimates from the ADMB-RE and stratified VAST 
models, for Pacific cod and Walleye pollock in the Gulf of Alaska. Model configurations are listed at top 
of the figure, with VAST model definitions listed in Table 5.  
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Figure 11. Comparison of apportionment estimates from the ADMB-RE and stratified VAST 
models, for other species in the Gulf of Alaska. Model configurations are listed at top of the figure, with 
VAST model definitions listed in Table 5.  
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