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Abstract 

This paper introduces cross-conditional decision analysis (CCDA), a Bayesian method of model 
averaging that incorporates, simultaneously, both the probability of alternative models being “true” and 
the relative performance of each model when one of the other models is the “true” one. Importantly, 
CCDA is applicable to cases in which true values of the quantity of interest are not available, which 
would ordinarily preclude “training” of the ensemble.  CCDA circumvents this difficulty by treating each 
model in the ensemble, one at a time, as if it were true, then computing the risk (expected loss) resulting 
from a performance-weighted average of the models in the ensemble relative to the best point estimate 
from the conditionally true model (the “pivot” model), then multiplying the results by the probability that 
the pivot model is the true model, then summing across pivot models to obtain the risk for the entire 
ensemble, then tuning the performance weights so as to minimize the ensemble risk, then, finally, using 
those weights to create an ensemble probability mass function from which the optimal value of the 
quantity of interest can be estimated.  The suggested loss function allows results to be tuned to any 
desired level of risk aversion. 

Introduction 

The need to account for uncertainty when providing fishery management advice has been acknowledged 
countless times in the last four decades or so.  Early methods for doing so tended to focus on the 
uncertainty associated with estimates obtained by a single model (e.g., Walters 1975), but uncertainty 
associated with model structure has also been addressed, with over 20 papers now having presented 
applications of model averaging in a fishery assessment or management context.  Most often, treatments 
of uncertainty have followed a Bayesian approach, at least to some extent, with the authors frequently 
referring to the process as a “Bayesian decision analysis,” or words to that effect.  Within the model 
averaging context in particular, the Bayesian perspective has been a fairly consistent feature in the fishery 
literature ever since Sainsbury (1988).   

A note on use of the term “Bayesian decision analysis” is warranted at this point.  All authors invoking 
this term require, at a minimum, use of a Bayesian posterior distribution of the quantity of interest, or at 
least an approximation thereof.  However, beyond this minimum requirement, some disagreement exists.  
Some authors require nothing beyond the posterior distribution in order to complete the analysis.  These 
authors typically define “risk” as cumulative probability, as calculated from the posterior distribution 
(e.g., the “p*” approach of Shertzer et al. 2008).  However, other authors require, in addition to the 
posterior distribution, specification of a loss function in order to complete the analysis.  These authors 
typically define risk as the expected loss; that is, the integral of the product of the posterior distribution 
(or approximation thereof) and the loss function (e.g., Thompson 1992).  The distinction will be 
addressed further in the Discussion, but it should suffice for now to say that the latter interpretation will 
be adopted here. 



The basic steps in a Bayesian analysis are thus as follow: 

1. Choose a quantity of interest 
2. Calculate the posterior distribution of the quantity of interest 
3. Choose a loss function 
4. Integrate the product of the posterior distribution and the loss function 
5. Minimize the integral (i.e., the risk) 

In the context of marine fishery management in the U.S., step 1 in the above list might result in selection 
of the “overfishing level” (ofl) as the quantity of interest, which is typically defined by a harvest control 
rule that is related to the fishing mortality rate corresponding to maximum sustainable yield (msy).  In the 
simplest case, the harvest control rule sets ofl for the coming year equal to the yield that would be 
achieved by fishing at the rate corresponding to msy, while more complicated harvest control rules vary 
the fishing mortality rate as a function of spawning biomass or other measure of reproductive output. 

Step 2 in the above list becomes complicated when dealing with an ensemble (i.e., a set of models), 
because the posterior distribution (probability density function (pdf) in the case of a continuous random 
variable or probability mass function (pmf) in the case of a discrete random variable) will be an average 
of the model-specific posterior distributions, but there is yet no consensus on how this average should be 
computed; that is, whether the average should be unweighted or weighted and, if the latter, how the 
weights should be specified.   

Many authors suggest that the weights should ideally consist of Bayesian posterior probabilities.  
However, computation of such probabilities can be difficult and, more importantly, requires that the same 
data be used to fit all of the models in the ensemble (e.g., Hill et al. 2007, Ianelli et al. 2016).  Although 
some studies of ensembles have successfully produced fully Bayesian probabilities for the models in the 
ensemble (e.g., Sainsbury 1988, Patterson 1999, Brandon and Wade 2006), most authors have defaulted 
to approximations such as purely subjective “plausibility weighting” (e.g., Butterworth et al. 1996) or 
weights based on importance sampling (e.g., McAllister and Kirchner 2002), harmonic mean 
approximation (e.g., Parma 2002, Millar et al. 2015), Akaike Information Criterion (AIC; e.g., Millar et 
al. 2015, Rossi et al. 2019), Bayesian (Schwarz) Information Criterion (BIC; e.g., Brodziak and Legault 
2005), Deviance Information Criterion (DIC; e.g., Wilberg and Bence 2008), bootstrapping (e.g., Millar 
et al. 2015) cross-validation (e.g., Scott et al. 2016, Rossi et al. 2019), or retrospective analysis (e.g., 
Rossi et al. 2019).  Equal weighting of models has also been used (e.g., Stewart and Martell 2015, Ianelli 
et al. 2016, Rossi et al. 2019). 

The “superensemble” approach, introduced originally by Krishnamurti et al. (1999) in the fields of 
weather and climate forecasting and recently applied to fisheries management by Anderson et al. (2017) 
and Rosenberg et al. (2018), provides another alternative, in which weights are estimated statistically so 
as to minimize an objective function, which, in a Bayesian decision analysis, would be the expected loss, 
although non-Bayesian objective functions could also be used. 

These two major alternatives, weights that reflect probability and weights that maximize performance, are 
not mutually exclusive.  In fact, both can be used simultaneously, as they serve different purposes.  The 
former are necessary to compute the expected loss, whereas the latter can be used to minimize the 
expected loss. 

However, when ofl is the primary quantity of interest and an ensemble is involved, the methods that have 
been used for optimizing performance-based weights in other disciplines are typically not applicable.  
This is because, in other disciplines such as weather and climate forecasting, a time series of true values 
for the primary quantity of interest exists (e.g., precipitation is routinely measured with negligible error) 



and can be used to estimate (“train”) the optimal weights, but in fishery management, no time series of 
“true” ofl values exists.  Similar problems exist for many other quantities estimated in stock assessments. 

One possibility is to optimize the weights by training on data that are observed, such as a survey index 
time series (as suggested by Stewart and Martell 2015), but there is no guarantee that an ensemble tuned 
to fit something other than the quantity of interest will be good at estimating the quantity of interest.   

Instead, the method developed here treats each model in the ensemble, one at a time, as if it were true, 
then computes the risk resulting from a performance-weighted average of the models in the ensemble 
relative to the best point estimate from the conditionally true model (the “pivot” model), then multiplies 
the results by the probability that the pivot model is the true model, then sums across pivot models to 
obtain the risk for the entire ensemble, then tunes the weights so as to minimize the ensemble risk, then, 
finally, uses those weights to create an ensemble pmf from which the optimal value of the quantity of 
interest can be estimated. 

The above process provides a cross-conditional decision analysis (CCDA), the specific steps of which are 
detailed more explicitly in the next section.  

Methods 

The following notational conventions are used: 

• Capitalization:  
o Names of matrices consist of, or begin with, an upper-case letter. 
o Names of vectors and scalars consist of, or begin with, a lower-case letter. 

• Font:  
o Names of matrices and vectors appear in bold font. 
o Names of scalars appear in italicized font. 

• The notation 𝐙𝐙〈𝑗𝑗〉 represents column j of matrix Z. 

The following loss function, which is described in detail in Appendix A, will be assumed: 

𝑙𝑙𝑙𝑙𝑙𝑙𝑙𝑙(𝑦𝑦|𝑦𝑦�, 𝑟𝑟𝑟𝑟) = �
𝑦𝑦1−𝑟𝑟𝑟𝑟 − 𝑦𝑦�1−𝑟𝑟𝑟𝑟

1 − 𝑟𝑟𝑟𝑟 �
2

 , 

where y is the quantity of interest, 𝑦𝑦� is intended to approximate the true-but-unknown value of y, and ra is 
the level of risk aversion, where any value of ra > 0 implies true risk aversion, the special case of ra = 0 
implies risk neutrality, and any value of ra < 0 implies “negative” risk aversion (i.e., risk proclivity).  
Here, risk aversion means that any underestimate is preferred to an overestimate of the same magnitude.  

The following procedure is fairly general, and should be applicable to a wide range of choices as to the 
quantity of interest, with two constraints:  1) the quantity of interest cannot take negative values; and 2) if 
any value of ra other than 0 is chosen, the scaling of the quantity has to be consistent with the meaning of 
risk aversion given above.   

As shown in Appendix A, the risk-minimizing value of 𝑦𝑦� is the y mean of order 1−ra, defined as the 
(1−ra)th root of the (1−ra)th noncentral moment of the y pdf (𝑔𝑔𝑦𝑦(𝑦𝑦)). 

𝑚𝑚𝑦𝑦(1 − 𝑟𝑟𝑟𝑟) = �� 𝑔𝑔𝑦𝑦(𝑦𝑦)𝑦𝑦1−𝑟𝑟𝑟𝑟𝑑𝑑𝑑𝑑
∞

0
�
1 (1−𝑟𝑟𝑟𝑟)⁄

 . 



For an ensemble containing nmod candidate models, model averaging by cross-conditional decision 
analysis consists of the following steps: 

1. Choose a value for ra. 
2. For each model i = 1,2,...,nmod (referred to below as the “pivot” model, indexed): 

a. Fit pivot model i to the data; this is the “base” run of the pivot model.  
b. Using the parameters estimated from the base run, generate nsim sets of conditional 

parametric bootstrap data. 
c. Fit pivot model i to each bootstrap data set k=1,2,...,nsim, resulting in a set of nsim 

estimates of y (yesti), which will be taken to characterize the distribution of y, conditional 
on the structure of the pivot model being “true.” 

d. Compute the risk-minimizing value of 𝑦𝑦� (yopti) conditional on the structure of the pivot 
model being “true,” which will be the yesti mean of order 1−ra. 

e. Fit each model 𝑗𝑗 ≠ 𝑖𝑖 in the ensemble to each of the nsim sets of bootstrap data generated 
by pivot model i, resulting in a vector yestj for each such model, which, together with 
yesti, form the columns of the matrix Yesti (note: after steps 2a-2e have been completed 
for all pivot models, a total of nmod Yest matrices will have been created, one for each 
pivot model, and each Yest matrix will consist of nsim rows and nmod columns). 

f. For each set of bootstrap data k=1,2,...,nsim, if any of the nmod fitted models fails to 
produce a positive definite Hessian matrix or if the maximum gradient exceeds a 
specified tolerance (e.g., 0.01), delete the corresponding row from Yesti, resulting in a 
matrix Yest_usei. 

g. Determine the probability (pi) that the structure pivot model i corresponds to the structure 
of the true model, using either quantitative or qualitative methods. 

3. Create a vector of weights w, where each element 0 ≤ 𝑤𝑤𝑖𝑖 ≤ 1, i = 1,2,..,nmod, and the vector is 
constrained to sum to unity; set equal initially to the vector of probabilities p.   

4. Define a conditional risk for each pivot model i=1,2,...,nmod as follows: 

𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟(𝐰𝐰)𝑖𝑖 = �
1

𝑛𝑛𝑛𝑛𝑛𝑛𝑛𝑛𝑖𝑖
� � 𝑙𝑙𝑙𝑙𝑙𝑙𝑙𝑙� � �𝑤𝑤𝑗𝑗(𝐘𝐘𝐘𝐘𝐘𝐘𝐘𝐘_𝐮𝐮𝐮𝐮𝐮𝐮𝑖𝑖)𝑘𝑘,𝑗𝑗�

𝑛𝑛𝑛𝑛𝑛𝑛𝑛𝑛

𝑗𝑗=1

| 𝑦𝑦𝑦𝑦𝑦𝑦𝑦𝑦𝑖𝑖 , 𝑟𝑟𝑟𝑟�  ,
𝑛𝑛𝑛𝑛𝑛𝑛𝑛𝑛𝑖𝑖

𝑘𝑘=1

 

5. Define the overall risk (i.e., expected loss) associated with w as  
 

𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟(𝐰𝐰) = � (𝑝𝑝𝑖𝑖𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐(𝐰𝐰)𝑖𝑖) .
𝑛𝑛𝑛𝑛𝑛𝑛𝑛𝑛

𝑖𝑖=1

 

 
6. Minimize risk(w) w.r.t. w. 
7. Form a set of nbin=4 equal-sized histogram bins spanning the range from min(Yest_use) to 

max(Yest_use); note that the number of bins will be adjusted later. 
8. For each combination of pivot model i=1,2,...,nmod and candidate model j=1,2,...,nmod, form a 

histogram from 𝐘𝐘𝐘𝐘𝐘𝐘𝐘𝐘_𝐮𝐮𝐮𝐮𝐮𝐮𝑖𝑖〈𝑗𝑗〉. 
9. Form an nmod×nmod matrix of probability mass functions (Pmf) by converting each histogram 

into a probability mass function by normalizing so that the sum of the bar heights equals unity. 
10. Form a weighted average probability mass function (pmf) across models by computing the 

probability in each bin=1,2,...,nbin follows: 
 



𝑝𝑝𝑝𝑝𝑝𝑝𝑏𝑏𝑏𝑏𝑏𝑏 = � 𝑝𝑝𝑖𝑖 � 𝑤𝑤𝑗𝑗�𝑃𝑃𝑃𝑃𝑃𝑃𝑖𝑖,𝑗𝑗�𝑏𝑏𝑏𝑏𝑏𝑏

𝑛𝑛𝑛𝑛𝑛𝑛𝑛𝑛

𝑗𝑗=1

𝑛𝑛𝑛𝑛𝑛𝑛𝑛𝑛

𝑖𝑖=1

 . 

 
11. Form a weighted average cumulative mass function (cmf) by computing the cumulative 

probability in each bin=1,2,...,nbin as follows: 
 

𝑐𝑐𝑐𝑐𝑐𝑐𝑏𝑏𝑏𝑏𝑏𝑏 = � 𝑝𝑝𝑝𝑝𝑝𝑝𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖

𝑏𝑏𝑏𝑏𝑏𝑏

𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖=1

 . 

 
12. Compute the median of the distribution by interpolating linearly between cmfbinlo and cmfbinhi, 

where binlo is the largest value of bin such that cmfbin<0.5 and binhi is the smallest value of bin 
such that cmfbin>0.5. 

13. Double the number of equal-sized histogram bins, return to step 8, and repeat until the median 
computed in step 12 does not change by more than a specified tolerance (e.g., 0.001). 

14. Compute the overall risk-minimizing value of 𝑦𝑦� (as opposed to the risk-minimizing value of 𝑦𝑦� 
computed for each pivot model i, yopti, in step 2d), which will be the mean of order 1−ra, based 
on the probability mass function computed in step 10. 

15. Optional:  Perform a series of 10-fold cross validations to estimate the distribution of w estimates 
and to explore the distribution of risk when CCDA is applied to data not included in the 
estimation of w (i.e., the out-of-sample performance). 

As a test case, CCDA was applied to an ensemble of simple surplus production models, with ofl chosen as 
the quantity of interest.  Full details are described in Appendix B, but the most important feature of the 
ensemble is that the natural mortality rate is, potentially, a function of up to nv environmental covariates, 
where the values of all values in the time series of all environmental covariates were assumed to be 
measured without error. 

An ensemble of eight models was created by setting nv=3 and using a full factorial design as follows: 

• Model 1 included no environmental covariates. 
• Models 2-4 included exactly one environmental covariate: 

o Model 2 included covariate #1. 
o Model 3 included covariate #2. 
o Model 4 included covariate #3. 

• Models 5-7 included exactly two environmental covariates: 
o Model 5 included covariates #1 and #2. 
o Model 6 included covariates #1 and #3. 
o Model 7 included covariates #2 and #3. 

• Model 8 included all three environmental covariates. 

Model 5 was chosen as the “true” model, and so was used as the operating model that generated the data 
set to which the base run of each model was fit.  Once the base run for each model was made, nsim=500 
sets of data were generated by a parametric bootstrap, conditional on the respective pivot model.   

The probability of model i being true was a linear function of the number of environmental covariates 
used in that model (nvari, as distinguished from nv=max(nvar)): 



𝑝𝑝𝑖𝑖 = (5 + 𝑛𝑛𝑛𝑛𝑛𝑛𝑛𝑛𝑖𝑖)�5𝑛𝑛𝑛𝑛𝑛𝑛𝑛𝑛 + � 𝑛𝑛𝑛𝑛𝑛𝑛𝑛𝑛𝑗𝑗

𝑛𝑛𝑛𝑛𝑛𝑛𝑛𝑛

𝑗𝑗=1

�

−1

 . 

The decision analysis was conducted twice, once with ra=0, representing risk neutrality, and once with 
ra=2, representing a risk-averse alternative. 

Results 

Figure 1 shows some of the results of the base run for each model, giving estimates of the msy 
exploitation rate (umsy), the projection year stock size (xpro), and the projection year ofl; all relative to 
the respective true value. 

Out of 4000 bootstrap data sets (8 models × 500 bootstrap data sets per model), all models were 
determined to have converged in 2594 (64.8% of all runs).  The number of usable runs for each pivot 
model were as follow: 

Model: 1 2 3 4 5 6 7 8 
Runs: 265 307 340 334 361 295 352 340 

 
The complete set of 8×8 histograms of oflest_use are shown in Appendix C, with one figure per pivot 
model and results (histograms) from eight candidate models per pivot model. 

The value of yopt (i.e., the risk-minimizing value of y for a given model when fit to the bootstrap data sets 
generated from its own base run) for each model is shown below, for both the risk-neutral (ra=0) and 
risk-averse (ra=2) cases, along with the estimate of ofl from the respective base run: 

Model: 1 2 3 4 5 6 7 8 
Base: 0.275 0.320 0.171 0.296 0.177 0.299 0.192 0.191 
ra=0: 0.301 0.381 0.199 0.365 0.222 0.376 0.271 0.224 
ra=2: 0.261 0.340 0.193 0.342 0.219 0.347 0.241 0.219 

The values of yopt are higher than the base value in all instances except one (Model 1, with ra=2), and the 
value of yopt from the risk-averse case is closer to the base value than the value of yopt from the risk-
neutral case in all instances. 

A matrix of cross-conditional risks (CCR), independent of both p and w, was computed first by 
computing nominal values for each pivot model i=1,2,...,nmod and candidate model j=1,2,...,nmod as 

𝑐𝑐𝑐𝑐𝑐𝑐𝑖𝑖,𝑗𝑗 = �
1

𝑛𝑛𝑛𝑛𝑛𝑛𝑛𝑛𝑖𝑖
� � 𝑙𝑙𝑙𝑙𝑙𝑙𝑙𝑙�(𝐘𝐘𝐘𝐘𝐘𝐘𝐘𝐘_𝐮𝐮𝐮𝐮𝐮𝐮𝑖𝑖)𝑘𝑘,𝑗𝑗| 𝑦𝑦𝑦𝑦𝑦𝑦𝑦𝑦𝑖𝑖 , 𝑟𝑟𝑟𝑟� ,
𝑛𝑛𝑛𝑛𝑛𝑛𝑛𝑛𝑖𝑖

𝑘𝑘=1

 

and then normalizing so that the values sum to unity, giving a matrix of cross conditional relative risks 
(CCRR): 

𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶 = 𝐶𝐶𝐶𝐶𝐶𝐶� � � 𝑐𝑐𝑐𝑐𝑐𝑐𝑖𝑖,𝑗𝑗

𝑛𝑛𝑛𝑛𝑛𝑛𝑛𝑛

𝑗𝑗=1

𝑛𝑛𝑛𝑛𝑛𝑛𝑛𝑛

𝑖𝑖=1

�

−1

 



The results of the above calculations are shown in Table 1.  For the risk-neutral (ra=0) case, the riskiest 
combinations tended to occur when Model 1 was the pivot model or when Model 3 was the candidate 
model, as indicated by cells shaded toward the green end of the red-green scale.  For the risk-averse 
(ra=2) case, the riskiest combinations tended to occur when either Model 4 or Model 6 was the pivot 
model or when Model 3 or Model 7 was the candidate model.  (Note that results cannot be compared 
between the two halves of Table 1, as only results for a common value of ra are comparable.) 

Correlations between model results may also be of interest.  The full set of cross-conditional correlations 
between candidate models and pivot models is shown in Table 2.  The vast majority of correlations were 
positive, with only 46 out of a possible 224 (about 21%) being negative.  The largest (in absolute value) 
negative correlation was −0.289. 

The mean off-diagonal correlations between models were as follow: 

Model: 1 2 3 4 5 6 7 8 
Corr.: 0.516 0.461 0.405 0.437 0.348 0.441 0.352 0.361 

 
The optimal model weights for ra=0 were: 

Model: 1 2 3 4 5 6 7 8 
w: 0.198 0.160 0.000 0.114 0.427 0.000 0.093 0.007 

 
The optimal model weights for ra=2 were: 

Model: 1 2 3 4 5 6 7 8 
w: 0.026 0.000 0.162 0.008 0.419 0.369 0.000 0.017 

 
Under both values of ra, Model 5, which was the true model, was given the most weight. 

Table 3 shows the conditional risks (step 4 in the algorithm described in the Methods section) in both 
absolute and relative terms for the risk-averse (ra=0) and risk-neutral (ra=2) cases, and, for each case, 
under both equal weighting (i.e., where the elements of w were all set equal to 1/nmod, but p was 
unchanged) and optimal weighting.  Under all case×weighting combinations, Model 7 contributes the 
least to the overall risk.  Model 6 contributes the most in the risk-neutral case under both equal weighting 
and optimal weighting, while Model 3 contributes the most in the risk averse case under both equal 
weighting and optimal weighting. 

An alternative way to express the relative risk associated with a given model i is to compute a “risk ratio,” 
in which the numerator consists of the expected loss under 𝑤𝑤𝑖𝑖 = 1 and 𝑤𝑤𝑗𝑗 = 0 for all 𝑗𝑗 ≠ 𝑖𝑖 and the 
denominator consists of the expected loss under optimal weighting (p is unchanged). 

The risk ratios, expressed on a log (base 10) scale, were as follow (the last column shows another 
alternative risk ratio in which the numerator consists of the expected loss under w=p): 

ra 1 2 3 4 5 6 7 8 w=p 
0 0.224 0.450 0.316 0.368 0.164 0.351 0.434 0.220 0.026 
2 0.205 0.281 7.523 0.242 7.043 0.260 7.557 7.181 0.037 

 
Note that assigning all weight to Model 5, which is the true model, results in a large increase in expected 
loss in the risk-averse (ra=2) case. 



Table 4 shows various statistics of the distributions for the risk-neutral (ra=0) and risk-averse (ra=2) 
cases.  The values in this table are based on an nbin value of 2048, as the median values showed no 
changes out to three significant digits between nbin values of 1024 and 2048.  The optimal value of y for 
the risk-averse case (0.250) is about 10% less than the optimal value for the risk-neutral case (0.278).  
The final row in the table shows the cumulative probability (p*) associated with the optimal value in the 
respective distribution.  It may also be of interest to note the cumulative probability associated with the 
risk-averse optimum as computed from the risk-neutral distribution, which is 0.490. 

The large ratio between the number of bins and the number of usable ofl estimates means that pmf is quite 
noisy, so it was smoothed by averaging across the nearest nsmooth points (in both directions, to the extent 
possible), where nsmooth was set at the largest value that resulted in each of the first three non-central 
moments of the smoothed distribution diverging from the unsmoothed distribution by a relative value of 
no more than 0.005, giving nsmooth values of 26 and 24 for the risk-neutral and risk-averse cases, 
respectively.  The smoothed pmfs are shown in Figure 2a, and both the smoothed and unsmoothed cmfs 
are shown in Figure 2b.  In Figure 2b, the almost exact matches between the solid green and dashed red 
curves and between the solid black and dashed yellow curves shows that the amount of smoothing was 
not excessive.  The vertical dashed lines in Figure 2 show the locations of the respective optima for the 
risk-neutral (green) and risk-averse (black) cases.  Although most of the statistics in Table 4 appear very 
similar between the two cases, Figure 2 shows that the shapes of the distributions are quite distinct.  In 
particular, the risk-averse pmf shows clear bimodality. 

Figure 3 shows smoothed probability mass functions for the individual models in the risk-neutral (Figure 
3a) and risk-averse (Figure 3b) cases, unweighted by their respective probabilities, while Figure 4 shows 
the analogous results when weighted by the respective probabilities.  It is clear that Models 5, 7, and 8 
contribute most to the bimodality exhibited by the overall pmf in the risk-averse case. 

Table 5 shows the results of the cross-validation exercise, in which the 10-fold cross-validation was 
repeated 10 times, with the folds chosen randomly each time.  Results are shown with respect to model 
weights in Table 5a, and with respect to expected loss in Table 5b.  The mean weights from the training 
data sets are very close to the weights computed from the overall data set in both the risk-neutral and risk-
averse cases.  As expected, the mean expected loss from the training data sets is close to the expected loss 
from the overall data set, while the mean expected loss from the testing data sets is slightly higher, and 
the standard deviation of expected loss is greater for the testing data sets than for the training data sets. 

Discussion 

Using CCDA to produce harvest specifications 

To produce an optimal estimate of the ofl corresponding to a particular level of risk aversion, the 
approach developed here involves three distinct levels of optimization, the first of which involves nmod 
individual optimizations: 

• Optimize the conditional (on each pivot model) ofl  
• Optimize the ensemble pmf 
• Optimize the ensemble ofl 

In the example presented here, results for two levels of ra were provided; the first corresponding to ra=0, 
representing a risk-neutral perspective and yielding an ensemble ofl of 0.278, and the second 
corresponding to ra=2, representing a risk-averse perspective and yielding an ensemble ofl of 0.250.  In 
general terms, the former would be a natural choice for a “limit” harvest amount, while the latter would 
be a natural choice for a “target” reference amount.   



More particularly, in the context of U.S. marine fishery management, the former would be a natural 
choice for “the” ofl (i.e., the ofl value specified in regulations), while the latter would a natural choice for 
the “acceptable biological catch” (abc), defined in Federal guidelines (https://federalregister.gov/d/2016-
24500) as an annual catch based on a control rule “that accounts for the scientific uncertainty in the 
estimate of ofl, any other scientific uncertainty, and the Council’s risk policy” (§600.305(f)(1)(ii)).  Here, 
the “Council’s risk policy” would consist of a specified value of ra>0.  Note that ofl is still the quantity of 
interest in the procedure used to produce an abc value; the difference is simply the level of risk aversion 
associated with the respective optimal values. 

Some previous applications of Bayesian decision analysis (e.g., Thompson 1992, 1996, and 1999; also 
section 3.1 of Restrepo et al. 1998), have cast the distinction between limit and target harvest rates 
differently, with a focus on determining which reference points should be used to define the limit and 
target control rules, whereas here the focus is on optimizing the catches resulting from estimates of those 
control rule reference points (and any other parameters that are needed to estimate those catches).  See 
also Appendix A. 

What constitutes a Bayesian decision analysis? 

As noted in the Introduction, whether in a single-model or ensemble context, the fishery assessment and 
management literature evidences some disagreement about the necessary elements of a Bayesian decision 
analysis.  Many studies that invoke this label use it to mean simply that a Bayesian posterior will be the 
end product, with the “decision analysis” consisting of finding the value of the quantity of interest that 
corresponds to a specified cumulative probability (e.g., the p* approach of Shertzer et al. 2008, which has 
become something of a standard in U.S. marine fishery management).  The approach taken here, on the 
other hand, follows authors such as DeGroot (1970), who require that the distribution be used together 
with a loss function to solve for the risk-minimizing decision (or, equivalently, use of the distribution 
together with a utility function to solve for the decision that maximizes expected utility). 

Given the loss function used here, the two approaches are similar to the extent that the “decision” can be 
computed directly from the distribution (the value that corresponds to a critical percentile in the former 
case; an order mean in the latter).  They are also similar in that both require specification of a decision 
criterion (the critical percentile in the former; the level of risk aversion in the latter).  They are dissimilar 
in that the former is based on satisfying a constraint, whereas the latter is based on optimization.  They are 
also dissimilar in that the former considers only the question of whether 𝑦𝑦� > 𝑦𝑦, without regard to the 
amount by which 𝑦𝑦� might differ from y or the consequences of such errors, in contrast to the latter. 

One way to interpret the difference between the two approaches is that, although both use Bayesian 
posterior distributions, the former uses them in an essentially “frequentist” manner to generate a decision, 
whereas the latter maintains the Bayesian perspective all the way through the decision-making process. 

Bootstrap distributions as an approximation of Bayesian posterior distributions 

As CCDA has been implemented so far, the distribution of the quantity of interest for each pivot model is 
based on a set of conditional parametric bootstraps.  Use of bootstrap distributions has a long history in 
fishery science, going back at least as far as Deriso et al. (1985) and Kimura and Balsiger (1985).  
However, bootstrap distributions are only approximations to Bayesian posterior distributions.  Therefore, 
if a method can be found for obtaining the Bayesian posterior distributions needed by CCDA, it would 
probably be preferable to use such an approach (subject to computational feasibility), but this appears 
difficult, given the need to generate a parallel set of distributions for each candidate model.  Whether 
bootstrapped distributions are sufficiently good approximations of Bayesian posterior distributions 
remains an open question, with many studies having been conducted, often with divergent conclusions.  

https://federalregister.gov/d/2016-24500
https://federalregister.gov/d/2016-24500


Among the studies that have evaluated the performance of alternative uncertainty estimators (Bayesian 
posterior distribution, various types of bootstrap distributions, Hessian matrix inversion, delta method, 
frequentist methods, likelihood methods, and MCMC) are those by Mohn (1993, 2009), Punt and 
Butterworth (1993), Gavaris (1999), Patterson (1999), Gavaris et al. (2000), Restrepo et al. (2000), 
Patterson et al. (2001), Zhou (2002), Magnusson et al. (2013), and Elvarsson et al. (2014).  

Differences in results have been attributed (see, for example, Magnusson et al. 2013) to the specific type 
of bootstrap being evaluated (e.g., parametric versus non-parametric, bias-corrected versus not), the 
performance measure being used (full pdfs versus confidence intervals or variances), the overall approach 
(empirical versus simulation-based), and, in the case of simulation-based approaches, the complexity of 
the operating model.  Another possible issue is the effect of assuming the wrong functional form for the 
likelihood when generating the posterior distribution. 

In their review of methods for model averaging, Millar et al. (2015) considered weights based on 
bootstrapping, but focused primarily non-parametric bootstraps, which they noted are often not well 
suited to fishery applications.  They suggested that parametric bootstraps might be a better alternative, but 
cautioned that the operating model underlying the parametric bootstraps might cause over-weighting of 
those models whose structures were the most similar to the operating model.  However, the cross-
conditioning aspect of CCDA addresses such potential over-weighting explicitly, by requiring each model 
to take a turn as the operating model. 

Given the facts that: 1) all fishery modeling involves approximations, bootstrap approximations to 
Bayesian posterior distributions remain a contender after extensive analysis, and 3) the potential 
shortcoming noted by Millar et al. (2015) has been addressed; it is reasonable to conclude that their use in 
CCDA is likely not a critical flaw. 

Assuming that the ensemble contains the true model 

The assumption that the ensemble contains the true model, while almost surely invalid in the strict sense, 
is widely made in the model selection literature, particularly that portion of the literature that advocates 
use of BIC (e.g., Bernardo and Smith (1994), Kadane and Lazar (2004), Chaurasia and Harel (2013), Aho 
et al. (2014)).  Another consideration is that, even when the impossibility of ever identifying the true 
model is acknowledged, the fact remains that, in practice, the setting of harvest specifications typically 
proceeds as though one of the models in the ensemble is the true model (e.g., Kass and Raftery 1995).   

It should be emphasized that the reason for making this assumption here is that it is needed to generate 
true data on which the ensemble can be trained.  The assumption that the ensemble contains the true 
model should therefore be viewed as a matter of convenience (or even necessity) rather than ontology. 

Practical considerations 

1. A significant practical consideration for implementing CCDA here is the amount of time required to 
conduct the analysis.  For example, in the application presented here, an ensemble of nmod=8 models was 
involved, each of which was used to generate nsim=500 bootstrap data sets, each of which had to be fit by 
each candidate model, resulting in a total of nmod×nsim×nmod=32,000 model runs to conduct a single 
CCDA.  Even though the models in the ensemble involved only 5-8 estimated parameters (Appendix B) 
and all steps were fully automated, performing all of the model runs still took at least a couple of days.  
Of course, use of smaller values for either nmod or nsim might be acceptable, but if the ensemble involves 
very complicated models, application of CCDA could potentially take a long time.  In the event that the 
turn-around time for a stock assessment (i.e., the interval between the time when the new data become 
available and the time when the assessment must be completed) is too short to permit a full CCDA, a 



reasonable compromise might be to estimate the performance weights on the basis of the data used in the 
previous assessment and assume that they are unchanged for the current assessment (of course, this would 
require that the ensemble not change between assessments). 

2. Two other practical considerations arise from subtleties involved with step 2b in the algorithm (see 
Methods):  2a) The resulting bootstrap data will truly be “conditional” only if the parameters estimated by 
the pivot model include one or more parameters describing the distribution of one or more data sets (e.g., 
if the measurement error variance for a particular data set is estimated by the pivot model).  For any data 
set that does not involve any parameters that are estimated by any of the models, a single set of nsim 
bootstrap data sets can be generated and used for all models, thus saving at least a little time in applying 
CCDA.  2b) It may be the case that some model “A” might estimate the measurement error variance for 
some data set “B,” while model “C” might not use data set “B” at all, meaning that, when model C takes 
its turn as the pivot model, not only will it not be possible to generate bootstrap values for data set B that 
are truly conditional on model C being the true model, it is not even obvious how the suggestion 
presented for subtlety 2a would be applied.  A straightforward solution would be to generate the bootstrap 
data from the parameter values estimated on the basis of the sampling design, which are typically 
available for the data sets most commonly used in fishery stock assessments.  In the event that estimating 
the parameter values on the basis of the sampling design is impossible, it might be necessary to remove 
either model A or model B from the ensemble, but this circumstance does not appear likely. 

3. A third practical consideration relates to the difference between the two main interpretations of 
Bayesian decision analysis discussed above, where one takes an essentially frequentist approach in 
deriving a decision from the posterior distribution and the other maintains the Bayesian perspective all the 
way through the decision-making process, which is that the optimal estimate of ofl may in some cases 
exceed the median of the optimized ofl distribution.  This occurred in the example presented here (Table 
4), where the optimal ofl given ra=0 occurred at the 63rd percentile of the corresponding distribution and 
the optimal ofl given ra=2 was barely above the median of the corresponding distribution (but below the 
median of the distribution given ra=0).  In the frequentist interpretation of the posterior distribution, these 
results are concerning, particularly for the optimal ofl given ra=0, because, in the frequentist 
interpretation, the only thing that matters is the probability of being above or below the true-but-unknown 
value of ofl; how much above or below is irrelevant.  Therefore, in the frequentist interpretation, any 
estimate of ofl that lies above the median appears “risky,” even if it is the optimal risk-neutral (or risk-
averse) estimate.  In the fully Bayesian interpretation, on the other hand, the percentile of the distribution 
is irrelevant, because the entire distribution (not just the median, or any other single percentile) has been 
factored systematically into the calculation of the optimum, including, importantly, the relative 
undesirability of each possible over- or under-estimate. 

One fact that might give added weight to this (third) practical consideration, at least in the context of U.S. 
marine fishery management, is the U.S. Court of Appeals (2000) decision in the case of the fishery for 
summer flounder (Paralichthys dentatus) off the northeastern coast of the U.S. (Tercerio 2002).  There, the 
court ruled that a harvest limit in excess of the median was impermissible, based on “the at-least-50% 
likelihood required by statute and regulation.”  However, the statute and regulation to which the court 
referred are unclear.  For example, the Magnuson-Stevens Fishery Conservation and Magnuson Act 
(MSFCMA) makes no mention of such a requirement, and neither did the version of the Federal 
guidelines for National Standard 1 of the MSFCMA that was current at the time of the ruling (at least not 
in the context of setting a harvest limit).  Moreover, the current version of those guidelines 
(https://federalregister.gov/d/2016-24500) explicitly renders the 50% standard optional 
(§600.305(f)(2)(i)) and, when introducing the changes that were contemplated when developing the 
current version (https://www.federalregister.gov/documents/2015/01/20/2015-00586/magnuson-stevens-
act-provisions-national-standard-guidelines), the National Marine Fisheries Service explicitly cited 
“expressed interest in using a decision theoretic approach” as one of the reasons for making the 50% 

https://federalregister.gov/d/2016-24500
https://www.federalregister.gov/documents/2015/01/20/2015-00586/magnuson-stevens-act-provisions-national-standard-guidelines
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standard optional.  Thus, the extent to which the summer flounder ruling continues to be a constraint on 
admissible methods for producing harvest specifications is at least questionable.  In the event that the 
ruling is interpreted as constituting a continuing constraint, the optimal values produced by CCDA would 
have to be supplemented by language to the effect, “or the median of the corresponding distribution, 
whichever is less.” 

4. A fourth practical consideration is the need to estimate each model’s probability of being “true.”  While 
quantitative estimation of these probabilities would clearly be desirable, it appears likely that qualitative 
estimation based on purely subjective evaluations of relative “plausibility” will be more common.  
Butterworth et al. (1996) provide one possible set of guidelines for such evaluations.  In the event that it is 
simply impossible to afford any single model more probability of being “true” than any other model, then 
assigning equal probability to all models would be the obvious course of action. 

5. A final practical consideration is the need to choose one or more ra values.  If the objective is to 
produce a risk-neutral optimum, setting ra=0 is a straightforward choice.  However, if the choice is to 
produce a risk-averse or risk-prone optimum, it will be necessary to choose some 𝑟𝑟𝑟𝑟 ≠ 0.  If the 
management system already contains both limit and target harvest control rules, it may be possible to 
reverse-engineer the ra value that is implicit in the existing target harvest control rule.  Otherwise, it may 
be necessary to simulate a large number of examples across a range of ra values and a range of data 
imprecision and ask fishery managers to select the ra value that captures the attitude toward risk that is 
most appropriate for managing the fisheries under their jurisdiction.  Although selecting an appropriate ra 
value is a nontrivial problem, surely it is no more difficult than selecting an appropriate p* value.  
Moreover, because the fully Bayesian approach considers both the magnitudes and relative undesirability 
of possible estimation errors, as opposed to considering only the probability that a positive error will 
occur (e.g., an ofl estimate higher than the true-but-unknown value), ra may actually be more meaningful 
to fishery managers than p*. 

Conclusion 

CCDA provides a solution to the tension between model weighting based on posterior probability and 
model weighting based on predictive performance.  Importantly, CCDA is applicable to cases in which 
true values of the quantity of interest are not available, which would ordinarily preclude “training” of an 
ensemble.  By taking a fully Bayesian approach, CCDA allows the same risk attitude to be incorporated 
throughout the entire decision analysis, and so produces a fully integrated and highly coherent set of 
results.  By performing separate CCDAs for alternative levels of risk aversion, the implications of 
alternative risk attitudes can be explored and used to make management recommendations.  However, the 
substantial time requirements of CCDA may pose challenges for stock assessments with a short turn-
around time. 
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Tables 

Table 1.  Cross-conditional relative risks.  Color scales extend from red (low) to green (high), with 
separate scales for each table half: 1) the main body, 2) the “Sum” row, and 3) the “Sum” column. 

 

ra = 0

Pivot 1 2 3 4 5 6 7 8 Sum
1 0.019 0.032 0.022 0.037 0.017 0.031 0.030 0.018 0.207
2 0.019 0.022 0.030 0.011 0.021 0.013 0.023 0.022 0.161
3 0.008 0.026 0.003 0.021 0.003 0.019 0.016 0.004 0.101
4 0.016 0.018 0.027 0.015 0.018 0.015 0.024 0.019 0.153
5 0.009 0.020 0.002 0.014 0.001 0.015 0.014 0.003 0.077
6 0.018 0.020 0.032 0.016 0.024 0.018 0.029 0.026 0.183
7 0.005 0.011 0.006 0.010 0.003 0.009 0.015 0.005 0.065
8 0.004 0.015 0.001 0.013 0.001 0.011 0.007 0.001 0.054

Sum 0.099 0.164 0.123 0.138 0.087 0.132 0.159 0.099 1.000

ra = 2

Pivot 1 2 3 4 5 6 7 8 Sum
1 0.000 0.000 0.055 0.000 0.009 0.000 0.000 0.081 0.144
2 0.000 0.000 0.048 0.000 0.000 0.000 0.000 0.000 0.048
3 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000
4 0.000 0.000 0.095 0.000 0.000 0.000 0.312 0.000 0.407
5 0.000 0.000 0.070 0.000 0.000 0.000 0.000 0.000 0.070
6 0.000 0.000 0.080 0.000 0.097 0.000 0.069 0.084 0.331
7 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000
8 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000

Sum 0.000 0.000 0.348 0.000 0.106 0.000 0.382 0.165 1.000

Candidate

Candidate



Table 2.  Cross-conditional correlations between models.  The pivot model in each sub-table is highlighted. 

1 1 2 3 4 5 6 7 8 5 1 2 3 4 5 6 7 8
1 1.000 0.839 0.153 0.259 0.221 0.548 -0.008 0.177 1 1.000 0.930 0.038 0.298 0.208 0.797 -0.245 -0.017
2 0.839 1.000 0.150 0.210 0.291 0.631 -0.020 0.236 2 0.930 1.000 -0.074 0.220 0.276 0.832 -0.289 0.014
3 0.153 0.150 1.000 0.736 0.927 0.633 0.800 0.820 3 0.038 -0.074 1.000 0.419 0.569 0.116 0.553 0.500
4 0.259 0.210 0.736 1.000 0.696 0.675 0.693 0.626 4 0.298 0.220 0.419 1.000 0.484 0.605 0.547 0.640
5 0.221 0.291 0.927 0.696 1.000 0.720 0.702 0.860 5 0.208 0.276 0.569 0.484 1.000 0.475 0.267 0.520
6 0.548 0.631 0.633 0.675 0.720 1.000 0.439 0.641 6 0.797 0.832 0.116 0.605 0.475 1.000 0.026 0.379
7 -0.008 -0.020 0.800 0.693 0.702 0.439 1.000 0.798 7 -0.245 -0.289 0.553 0.547 0.267 0.026 1.000 0.645
8 0.177 0.236 0.820 0.626 0.860 0.641 0.798 1.000 8 -0.017 0.014 0.500 0.640 0.520 0.379 0.645 1.000

2 1 2 3 4 5 6 7 8 6 1 2 3 4 5 6 7 8
1 1.000 0.824 0.278 0.312 0.446 0.582 -0.007 0.255 1 1.000 0.787 -0.003 0.175 0.059 0.557 -0.139 0.025
2 0.824 1.000 0.131 0.218 0.486 0.677 -0.079 0.274 2 0.787 1.000 -0.070 0.085 0.161 0.636 -0.179 0.095
3 0.278 0.131 1.000 0.594 0.719 0.378 0.542 0.476 3 -0.003 -0.070 1.000 0.723 0.897 0.447 0.769 0.801
4 0.312 0.218 0.594 1.000 0.551 0.724 0.635 0.611 4 0.175 0.085 0.723 1.000 0.686 0.639 0.693 0.735
5 0.446 0.486 0.719 0.551 1.000 0.610 0.381 0.680 5 0.059 0.161 0.897 0.686 1.000 0.567 0.641 0.889
6 0.582 0.677 0.378 0.724 0.610 1.000 0.306 0.582 6 0.557 0.636 0.447 0.639 0.567 1.000 0.331 0.600
7 -0.007 -0.079 0.542 0.635 0.381 0.306 1.000 0.729 7 -0.139 -0.179 0.769 0.693 0.641 0.331 1.000 0.743
8 0.255 0.274 0.476 0.611 0.680 0.582 0.729 1.000 8 0.025 0.095 0.801 0.735 0.889 0.600 0.743 1.000

3 1 2 3 4 5 6 7 8 7 1 2 3 4 5 6 7 8
1 1.000 0.900 0.047 0.156 0.212 0.729 -0.191 0.106 1 1.000 0.882 0.056 0.208 0.318 0.741 -0.164 0.025
2 0.900 1.000 -0.060 0.082 0.202 0.835 -0.224 0.114 2 0.882 1.000 -0.102 0.105 0.312 0.760 -0.237 0.016
3 0.047 -0.060 1.000 0.686 0.893 0.207 0.627 0.786 3 0.056 -0.102 1.000 0.608 0.622 0.164 0.672 0.451
4 0.156 0.082 0.686 1.000 0.671 0.364 0.566 0.659 4 0.208 0.105 0.608 1.000 0.535 0.489 0.575 0.444
5 0.212 0.202 0.893 0.671 1.000 0.471 0.463 0.873 5 0.318 0.312 0.622 0.535 1.000 0.513 0.350 0.483
6 0.729 0.835 0.207 0.364 0.471 1.000 0.069 0.456 6 0.741 0.760 0.164 0.489 0.513 1.000 0.064 0.316
7 -0.191 -0.224 0.627 0.566 0.463 0.069 1.000 0.648 7 -0.164 -0.237 0.672 0.575 0.350 0.064 1.000 0.656
8 0.106 0.114 0.786 0.659 0.873 0.456 0.648 1.000 8 0.025 0.016 0.451 0.444 0.483 0.316 0.656 1.000

4 1 2 3 4 5 6 7 8 8 1 2 3 4 5 6 7 8
1 1.000 0.854 0.114 0.239 0.218 0.558 -0.120 0.108 1 1.000 0.858 0.215 0.245 0.383 0.704 -0.180 0.147
2 0.854 1.000 0.008 0.120 0.224 0.655 -0.183 0.104 2 0.858 1.000 0.004 0.141 0.356 0.879 -0.232 0.162
3 0.114 0.008 1.000 0.629 0.860 0.424 0.714 0.778 3 0.215 0.004 1.000 0.426 0.661 0.144 0.493 0.409
4 0.239 0.120 0.629 1.000 0.597 0.634 0.619 0.680 4 0.245 0.141 0.426 1.000 0.502 0.337 0.510 0.463
5 0.218 0.224 0.860 0.597 1.000 0.579 0.537 0.818 5 0.383 0.356 0.661 0.502 1.000 0.525 0.321 0.701
6 0.558 0.655 0.424 0.634 0.579 1.000 0.239 0.534 6 0.704 0.879 0.144 0.337 0.525 1.000 -0.023 0.423
7 -0.120 -0.183 0.714 0.619 0.537 0.239 1.000 0.686 7 -0.180 -0.232 0.493 0.510 0.321 -0.023 1.000 0.538
8 0.108 0.104 0.778 0.680 0.818 0.534 0.686 1.000 8 0.147 0.162 0.409 0.463 0.701 0.423 0.538 1.000



Table 3.  Absolute and relative contributions to expected loss (i.e., risk) from each model for the risk-
averse (ra=0) and risk-neutral (ra=2) cases, and also for equal and optimal weighting in each case.  
Color scales extend from red (low) to green (high), with separate scales for each colored column. 

 

  

Model ra =0 ra =2 ra =0 ra =2 ra =0 ra =2 ra =0 ra =2
1 0.0015 0.0878 0.1663 0.0850 0.0013 0.0785 0.1543 0.0831
2 0.0016 0.1076 0.1786 0.1041 0.0017 0.1193 0.2009 0.1263
3 0.0010 0.2823 0.1110 0.2732 0.0009 0.2313 0.1025 0.2449
4 0.0013 0.1032 0.1489 0.0999 0.0013 0.1198 0.1600 0.1268
5 0.0006 0.1304 0.0736 0.1262 0.0005 0.0936 0.0627 0.0991
6 0.0020 0.1395 0.2276 0.1350 0.0020 0.1701 0.2392 0.1800
7 0.0003 0.0576 0.0383 0.0557 0.0003 0.0402 0.0308 0.0426
8 0.0005 0.1249 0.0557 0.1209 0.0004 0.0919 0.0495 0.0972

Ensemble 0.0088 1.0333 1.0000 1.0000 0.0084 0.9447 1.0000 1.0000

Equal weighting Optimal weighting
Absolute Relative Absolute Relative



Table 4.  Statistics of the OFL distributions in the risk neutral (ra=0) and risk averse (ra=2) cases.  The 
optimal value for each case is shaded.  The cumulative probability corresponding to the optimal value, 
given the probability mass function for that case, is indicated by p*. 

 

 

  

Statistic ra =0 ra =2
median 0.252 0.249
arithmetic mean 0.278 0.275
geometric mean 0.264 0.261
harmonic mean 0.254 0.250
standard deviation 0.113 0.110
coefficient of variation 0.405 0.401
skewness 3.933 3.701
p* 0.634 0.505



Table 5a.  Results of cross-validation with respect to model weights for the risk-neutral (ra=0) and risk-
averse (ra=2) cases.  Color shading extends from red (low) to green (high) in each respective column. 

 

 

Table 5b.  Results of cross-validation with respect to expected loss (i.e., risk) for the risk-neutral (ra=0) 
and risk-averse (ra=2) cases. 

  

Model Mean Sdev Mean Sdev
1 0.1975 0.1968 0.0228 0.0259 0.0273 0.0122
2 0.1603 0.1603 0.0126 0.0000 0.0000 0.0000
3 0.0000 0.0008 0.0063 0.1620 0.1583 0.0273
4 0.1142 0.1144 0.0103 0.0076 0.0100 0.0115
5 0.4274 0.4230 0.0189 0.4185 0.4191 0.0388
6 0.0000 0.0005 0.0027 0.3685 0.3637 0.0154
7 0.0934 0.0920 0.0088 0.0000 0.0000 0.0000
8 0.0073 0.0121 0.0124 0.0174 0.0216 0.0140

All data Training data
ra  = 0 ra  = 2

All data Training data

Subset Mean Sdev Subset Mean Sdev
train 0.0084 0.0002 train 0.9439 0.0120
test 0.0085 0.0017 test 0.9631 0.1247

All data All dataCross validation data Cross validation data

0.0084 0.9447

ra  = 0 ra  = 2



Figures 

 

Figure 1.  MSY exploitation rate, projected stock size, and overfishing level; all relative to true value. 
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Figure 2a.  Probability mass functions under optimzed model weights for the risk-neutral (green) and 
risk-averse (black) cases.  Vertical dashed lines indicate respective optima. 

 

Figure 2b.  Cumulative distribution functions under optimized model weights for the risk-neutral (green) 
and risk-averse (black) cases.  Vertical dashed lines indicate respective optima. 
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Figure 3a.  Smoothed probability mass functions specific to each pivot model (with optimized weights for 
the risk neutral case, but not multiplied by the respective pivot model’s probability). 

 

Figure 3b.  Smoothed probability mass functions specific to each pivot model (with optimized weights for 
the risk-averse case, but not multiplied by the respective pivot model’s probability). 
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Figure 4a.  Smoothed probability mass functions specific to each pivot model (with optimized weights for 
the risk neutral case, multiplied by the respective pivot model’s probability). 

 

Figure 4b.  Smoothed probability mass functions specific to each pivot model (with optimized weights for 
the risk-averse case, multiplied by the respective pivot model’s probability). 
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Appendix A: Properties of the loss function 

Background: constant relative risk aversion 

Let relative yield yrel(f) be defined as a ratio of long-term yields (specifically, yields in the limit as time 
approaches infinity), where the numerator is the long-term yield obtained under some management-
specified fishing mortality rate f and the denominator is the maximum sustainable yield (msy). 

The following loss function formed the basis for the decision-theoretic optima described by Thompson 
(1992, 1996, 1999) and Restrepo et al. (1998; see section 3.1), as well as the buffer between “acceptable 
biological catch” and ofl in “Tier 1” of the North Pacific Fishery Management Council (NPFMC) 
groundfish harvest control rules (NPFMC 2018): 

𝑙𝑙𝑙𝑙𝑙𝑙𝑙𝑙(𝑦𝑦𝑦𝑦𝑦𝑦𝑦𝑦|𝑓𝑓, 𝑟𝑟𝑟𝑟) =
1 − 𝑦𝑦𝑦𝑦𝑦𝑦𝑦𝑦(𝑓𝑓)1−𝑟𝑟𝑟𝑟

1 − 𝑟𝑟𝑟𝑟
 , 

where ra represents risk aversion.  In the limit as ra→1, the above converges to −ln(𝑦𝑦𝑦𝑦𝑦𝑦𝑦𝑦(𝑓𝑓)).   

More precisely, this loss function is said to exhibit “constant relative risk aversion” (CRRA) because it 
satisfies the following for all values of yrel and ra (Pratt 1964; Arrow 1965, 1971): 

𝑟𝑟𝑟𝑟 ≡ −𝑦𝑦𝑦𝑦𝑦𝑦𝑦𝑦(𝑓𝑓)

⎝

⎛
𝑑𝑑2𝑙𝑙𝑙𝑙𝑙𝑙𝑙𝑙(𝑦𝑦𝑦𝑦𝑦𝑦𝑦𝑦|𝑓𝑓, 𝑟𝑟𝑟𝑟)

𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑(𝑓𝑓)2
𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑(𝑦𝑦𝑦𝑦𝑦𝑦𝑦𝑦|𝑓𝑓, 𝑟𝑟𝑟𝑟)

𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑(𝑓𝑓) ⎠

⎞ . 

Next, let 𝑚𝑚𝑦𝑦(𝑞𝑞) represent the “y mean of order q” for some positive random variable y; that is, the qth 
root of the qth noncentral moment (note that q need not be an integer; it can be any real number): 

𝑚𝑚𝑦𝑦(𝑞𝑞) = �� 𝑔𝑔𝑦𝑦(𝑦𝑦)𝑦𝑦𝑞𝑞𝑑𝑑𝑑𝑑
∞

0
�
1 𝑞𝑞⁄

, 

where 𝑔𝑔𝑦𝑦(𝑦𝑦) represents the pdf of y, and k is an arbitrary constant.  In the limit as q approaches zero, 
𝑚𝑚𝑦𝑦(𝑞𝑞) converges to 

𝑚𝑚𝑦𝑦(0) = 𝑒𝑒𝑒𝑒𝑒𝑒 �� 𝑔𝑔𝑦𝑦(𝑦𝑦)ln(y)𝑑𝑑𝑑𝑑
∞

−∞
� . 

Familiar examples of order means include the arithmetic (q = 1), geometric (q = 0), and harmonic (q = 
−1) means.  It may be noted that 𝑚𝑚𝑦𝑦(𝑞𝑞 + ∆) > 𝑚𝑚𝑦𝑦(𝑞𝑞) for any positive value of ∆ (e.g., Mitrinović 1970). 

The risk (i.e., expected loss) in this case is given by 

𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟(𝑓𝑓) = � 𝑔𝑔𝑦𝑦𝑦𝑦𝑦𝑦𝑦𝑦(𝑦𝑦𝑦𝑦𝑦𝑦𝑦𝑦(𝑓𝑓))
∞

0
𝑙𝑙𝑙𝑙𝑙𝑙𝑙𝑙(𝑦𝑦𝑦𝑦𝑦𝑦𝑦𝑦|𝑓𝑓, 𝑟𝑟𝑟𝑟)𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑 =

1 −𝑚𝑚𝑦𝑦𝑦𝑦𝑦𝑦𝑦𝑦(1 − 𝑟𝑟𝑟𝑟|𝑓𝑓)1−𝑟𝑟𝑟𝑟

1 − 𝑟𝑟𝑟𝑟
 

Thus, risk is minimized by fishing at the value of f that maximizes the yrel mean of order 1−ra.   



In Thompson (1992), ra was set at unity, so the objective was to maximize the geometric mean of relative 
yield, which, in the particular model considered in that paper, was achieved by fishing at the harmonic 
mean of the msy fishing mortality rate. 

Loss function used in this analysis 

The CRRA loss function is useful for problems like the one described above, where, in the absence of 
uncertainty, the quantity of interest itself is the thing to be minimized (−𝑦𝑦𝑦𝑦𝑦𝑦𝑦𝑦(𝑓𝑓), in the above).  Thus, for 
a very simple harvest control rule in which the fishing mortality rate does not vary, the analysis described 
above can be used to define that rate.  Thus, following that analysis, the f that should define the control 
rule is that which maximizes the yrel mean of order 1−ra.  For example, by setting ra=0, maximizing the 
geometric mean of yrel gives a risk-neutral estimate of the msy fishing mortality rate. 

However, the fact that this is simply an estimate of the msy fishing mortality rate is significant.  
Moreover, so are the values of any other parameters that are required to specify a catch limit, such as ofl, 
for some future harvest season (i.e., they are all estimates).  Use of ofl as the quantity of interest in the 
CRRA loss function would not be appropriate, because, in the absence of uncertainty, ofl is not the thing 
to be minimized; rather, the error in estimating it is the thing to be minimized (obviously, in the absence 
of uncertainty, minimizing estimation error is a trivial problem, but the concept still applies).  The 
difference is that the CRRA loss function is appropriate when the quantity of interest varies 
monotonically (and in the “right” direction), but is not appropriate for estimating a state of nature, such as 
the true-but-unknown value of ofl. 

An alternative to the CRRA loss function that is appropriate for estimating a state of nature is 

𝑙𝑙𝑙𝑙𝑙𝑙𝑙𝑙(𝑦𝑦|𝑦𝑦�, 𝑟𝑟𝑟𝑟) = �
𝑦𝑦1−𝑟𝑟𝑟𝑟 − 𝑦𝑦�1−𝑟𝑟𝑟𝑟

1 − 𝑟𝑟𝑟𝑟 �
2

 , 

where y is the uncertain state of nature to be estimated and 𝑦𝑦� is the estimate (note that y must be 
constrained to non-negative values only).  In the limit as ra approaches unity, this loss function converges 
to (ln(𝑦𝑦) − ln(𝑦𝑦�))2.   

Note that this function does not exhibit constant relative risk aversion, meaning that ra no longer has its 
original interpretation, although it can be viewed as an ad hoc measure of risk aversion. 

The risk (i.e., expected loss) in this case is given by 

𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟(𝑦𝑦�) = � 𝑔𝑔𝑦𝑦(𝑦𝑦)
∞

0
𝑙𝑙𝑙𝑙𝑙𝑙𝑙𝑙(𝑦𝑦|𝑦𝑦�, 𝑟𝑟𝑟𝑟)𝑑𝑑𝑑𝑑 =

𝑚𝑚𝑦𝑦(2(1− 𝑟𝑟𝑟𝑟))2(1−𝑟𝑟𝑟𝑟) − 2𝑚𝑚𝑦𝑦(1− 𝑟𝑟𝑟𝑟)1−𝑟𝑟𝑟𝑟𝑦𝑦�1−𝑟𝑟𝑟𝑟 + 𝑦𝑦�2(1−𝑟𝑟𝑟𝑟)

(1 − 𝑟𝑟𝑟𝑟)2
 . 

The derivative of risk w.r.t. 𝑦𝑦� is 

𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑
𝑑𝑑𝑦𝑦�

= 2𝑦𝑦�−𝑟𝑟𝑟𝑟 �
𝑦𝑦�1−𝑟𝑟𝑟𝑟 − 𝑚𝑚𝑦𝑦(1 − 𝑟𝑟𝑟𝑟)1−𝑟𝑟𝑟𝑟

1 − 𝑟𝑟𝑟𝑟 � , 

 
which is solved by setting 𝑦𝑦� = 𝑚𝑚𝑦𝑦(1 − 𝑟𝑟𝑟𝑟). 

Thus, risk minimization involves a mean of order 1−ra is in both the CRRA loss function and the loss 
function used here.  In the former, risk is minimized by fishing at the rate that maximizes the yrel mean of 



order 1−ra, whereas in the loss function used here, risk is minimized by setting 𝑦𝑦�  equal to the y mean of 
order 1−ra. 

Example behaviors of the loss function for integer values of ra ranging from −0.2 to 0.2 are shown, 
conditional on y=10, in Figure A1.  The way that ra determines the shape of the loss function can be seen 
by comparing the heights of a particular curve at 𝑦𝑦 = 𝑦𝑦� + ∆ and at 𝑦𝑦 = 𝑦𝑦� − ∆.  The point 𝑦𝑦 = 𝑦𝑦� + ∆ 
corresponds to an underestimate, because it implies 𝑦𝑦� = 𝑦𝑦 − ∆ , whereas the point 𝑦𝑦 = 𝑦𝑦� − ∆ corresponds 
to an overestimate, because it implies 𝑦𝑦� = 𝑦𝑦 + ∆.  Curves with negative values of ra are higher at 𝑦𝑦 =
𝑦𝑦� + ∆ than at 𝑦𝑦 = 𝑦𝑦� − ∆, implying that an underestimate is associated with greater loss than an 
overestimate of the same magnitude.  Conversely, curves with positive values of ra are higher at 𝑦𝑦 = 𝑦𝑦� −
∆ than at 𝑦𝑦 = 𝑦𝑦� + ∆, implying that an overestimate is associated with greater loss than an underestimate 
of the same magnitude.   

A more explicitly quantitative interpretation of the manner in which ra “characterizes” the extent to 
which an underestimate is preferable to an overestimate, can be constructed as follows:  First, define an 
“over-under” ratio in terms of positive and negative displacements ∆ from a starting value of unity: 

𝑜𝑜𝑜𝑜𝑜𝑜𝑜𝑜𝑜𝑜𝑜𝑜𝑜𝑜𝑜𝑜𝑜𝑜(∆|𝑦𝑦�, 𝑟𝑟𝑟𝑟) =
𝑙𝑙𝑙𝑙𝑙𝑙𝑙𝑙(𝑦𝑦�(1 − ∆)|𝑦𝑦�, 𝑟𝑟𝑟𝑟)
𝑙𝑙𝑙𝑙𝑙𝑙𝑙𝑙(𝑦𝑦�(1 + ∆)|𝑦𝑦�, 𝑟𝑟𝑟𝑟) . 

Figure A2 illustrates the over-under ratio for the same five values of ra used in Figure A1, showing that 
the curves share a common vertical intercept at a value of 1.0.  This figure also shows that the over-under 
ratio varies considerably with ∆, making it hard to use the over-under ratio, by itself, to give an intuitive 
meaning to the ra parameter.   

The derivative of the over-under ratio, however, allows for a simple interpretation of ra, because the 
derivative always approaches a lower limit of 2ra as ∆ approaches 0, as shown in Figure A3. 

Decision-theoretic estimates of risk are invariant under positive linear transforms of the loss function.  
However, because the loss function here is scaled so that the minimum possible loss (achieved at 
ratio=1.0) is zero, ratios of risks are meaningful. 
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Figure A1.  Loss function under five levels of risk aversion, for 𝑦𝑦� = 10.  A y value less than 10 means that 
𝑦𝑦� is an overestimate, while a y value greater than 10 means that 𝑦𝑦� is an underestimate. 
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Figure A2a.  Ratio of two loss function values, where 𝑦𝑦� = 10 and y in the numerator and denominator is 
replaced by 𝑦𝑦�(1 − 𝛥𝛥) and 𝑦𝑦�(1 − 𝛥𝛥), respectively. 

 

Figure A2b.  Derivative of the over-under ratio with respect to ∆, showing limit at 2ra as ∆→0. 
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Appendix B: Simple Beverton-Holt surplus production model 

Structure 

An example of a simple assessment model can be based around the following assumptions: 

1. Observations of stock size x and catch c are available for nt years. 
2. Observed stock size xobs is measured, with error 𝛆𝛆~𝑙𝑙𝑙𝑙𝑙𝑙𝑙𝑙𝑙𝑙𝑙𝑙𝑙𝑙𝑙𝑙𝑙𝑙 �− 𝑠𝑠2

2
, 𝑠𝑠2�, in numbers of fish. 

3. Catch is measured, without error, in numbers of fish. 
4. Process error is entirely absent. 
5. Recruitment in year t+1 follows a Beverton-Holt function of the number of fish in year t. 
6. Fishing mortality is described either as a constant discrete annual rate 𝑢𝑢� or as a vector of time-

varying discrete annual rates u. 
7. Natural mortality is described either as a constant discrete annual rate 𝑣̅𝑣 or as a vector of time-

varying discrete annual rates 𝐯𝐯 = 𝑣̅𝑣 + 𝐙𝐙𝐙𝐙, where the columns of Z represent nvar time-varying 
environmental variables measured without error and where d is a vector of coefficients. 

8. The processes of recruitment, fishing mortality, and natural mortality do not overlap intra-
annually, and occur in the following order: 

a. Recruitment 
b. Fishing mortality 
c. Natural mortality 

In a simulation/estimation context, an ensemble of such models can be developed easily by dropping the 
assumption that the identity of Z is known, and instead generating a set of number of environmental 
variables that could potentially affect natural mortality, identifying each possible subset of those 
variables, and associating one model with each such subset.  

The transition from xt to xt+1 can be written 

𝑥𝑥𝑡𝑡+1 = 𝑥𝑥𝑡𝑡 +
𝑎𝑎𝑎𝑎𝑥𝑥𝑡𝑡
𝑏𝑏 + 𝑥𝑥𝑡𝑡

− �𝑢𝑢𝑡𝑡 + 𝑣𝑣𝑡𝑡(1− 𝑢𝑢𝑡𝑡)�𝑥𝑥𝑡𝑡 , 

where a is the slope of the stock-recruitment curve at the origin and b is the stock size at which a tangent 
through the origin intersects the asymptotic recruitment level ab. 

Equilibrium stock size and yield under constant 𝑢𝑢𝑡𝑡 = 𝑢𝑢� and 𝑣𝑣𝑡𝑡 = 𝑣̅𝑣 are given by 

𝑥𝑥𝑥𝑥𝑥𝑥𝑥𝑥(𝑢𝑢�) = �
𝑎𝑎

𝑢𝑢� + 𝑣̅𝑣(1 − 𝑢𝑢�) − 1� 𝑏𝑏   and   𝑦𝑦𝑦𝑦𝑦𝑦𝑦𝑦(𝑢𝑢�) = �
𝑎𝑎

𝑢𝑢� + 𝑣̅𝑣(1− 𝑢𝑢�) − 1� 𝑏𝑏𝑢𝑢�  . 

The equilibrium fishing mortality rate that sets equilibrium stock size equal to zero is 

𝑢𝑢𝑢𝑢𝑢𝑢𝑢𝑢 = 𝑚𝑚𝑚𝑚𝑚𝑚 �1,
𝑎𝑎 − 𝑣̅𝑣
1 − 𝑣̅𝑣

� . 

Maximum sustainable yield (msy) and fishing mortality at msy are given by 

𝑚𝑚𝑚𝑚𝑚𝑚 = �
𝑎𝑎 + 𝑣̅𝑣 − 2√𝑎𝑎𝑣̅𝑣

1 − 𝑣̅𝑣 �𝑏𝑏   and   𝑢𝑢𝑢𝑢𝑢𝑢𝑢𝑢 =
√𝑎𝑎𝑣̅𝑣 − 𝑣̅𝑣

1 − 𝑣̅𝑣
 . 



In order to keep umsy within the range (0,1), the following constraint is necessary: 𝑣̅𝑣 < 𝑎𝑎 < 1 𝑣̅𝑣⁄ .  Note 
that the popular rule of thumb in which the fishing mortality rate at msy equals the natural mortality rate 
will hold if and only if 𝑎𝑎 = (2 − 𝑣̅𝑣)2𝑣̅𝑣. 

Simulation 

For the simulation that formed the basis of the analysis described in the main text, nt was set at a value of 
40, and an ensemble was formed by including three columns in the “master” Z matrix, then associating a 
model with each possible subset of those columns (including the null subset), giving a total of eight 
models, configured as shown below: 

Model: 1 2 3 4 5 6 7 8 
nvar: 0 1 1 1 2 2 2 3 
columns of Z: none 1 2 3 1,2 1,3 2,3 1,2,3 

 
The parameter values used were as follow (note: the scale of the stock size is arbitrary): 

Parameter: a b di s 𝑣̅𝑣 x1 
Value: 0.648 1.000 0.024 0.050 0.200 2.240 

 
(Notes:  1) The a parameter was set, conditional on 𝑣̅𝑣, so as to satisfy the umsy= 𝑣̅𝑣 rule of thumb.  2) The 
elements of d were set, conditional on 𝑣̅𝑣 the maximum value of nvar across all models in the ensemble, at 
a single positive value such that the chance of achieving a negative natural mortality rate was 
approximately 1E-06.  3) Initial stock size x1 was set at the equilibrium unexploited level xequ(0), 
conditional on a, b, and  𝑣̅𝑣.) 

To generate x, Model 5 was chosen as the true model.   

To generate u, each value of ut (t = 1, ..., nt) was drawn randomly from a lognormal distribution with a 
median value set at 75% of umsy and a log-scale standard deviation set such that the probability of 
exceeding umsy in any single year was 5%.  

To generate xobs, each value of xobst (t = 1, ..., nt) was generated as the product of xt and an error term εt 
drawn randomly from a mean-unbiased lognormal distribution with log-scale standard deviation s.   

To generate c, each value of ct was generated as the product of xt and ut (t = 1, ..., nt).  

To generate Z, each element was drawn randomly from a (0,1) normal distribution, then each column was 
normalized to exhibit zero mean and unit variance. 

The simulated time series of x and u (true values, unknown to the estimation algorithm) and xobs, c, and 
Z (data, known to the estimation algorithm) are shown in Table B1. 

The time series of v for each model, implied by the equation 𝐯𝐯 = 𝑣̅𝑣 + 𝐙𝐙(model)𝐝𝐝 (where 𝑣̅𝑣 and d are true 
values, unknown to the estimation algorithm, and each Z(model) consists of the model-specific columns 
of Z, known to the estimation algorithm), are shown in Table B2.  Each column in Table B2 has a mean 
equal to the true value of 𝑣̅𝑣 (0.2), with model-specific minima and maxima as shown below: 

 Model 1 Model 2 Model 3 Model 4 Model 5 Model 6 Model 7 Model 8 
Min: 0.200 0.148 0.146 0.160 0.121 0.131 0.113 0.087 
Max: 0.200 0.254 0.249 0.251 0.277 0.269 0.270 0.292 



 
 

        
Estimation 

Parameters were estimated by the method of maximum likelihood, where most parameters were either 
log- or logit-transformed in order to remove potential difficulties associated with parameter estimates 
hitting logical bounds.  Specifically: 

• Parameters left on the natural scale: d 
• Log-transformed parameters: b, s, x1 
• Logit-transformed parameters: a, 𝑣̅𝑣 

The logit transform of 𝑣̅𝑣 was computed in the usual way, viz., 𝑙𝑙𝑙𝑙(𝑣̅𝑣 (1 − 𝑣̅𝑣)⁄ ).  However, due to the 
constraint on feasible values of a described above (i.e., 𝑣̅𝑣 < 𝑎𝑎 < 1 𝑣̅𝑣⁄ ), the logit transform of a needed to 
be conditional on 𝑣̅𝑣, taking the form 

𝑙𝑙𝑙𝑙𝑙𝑙𝑙𝑙𝑙𝑙(𝑎𝑎) = 𝑙𝑙𝑙𝑙 �
(𝑎𝑎 − 𝑣̅𝑣)𝑣̅𝑣
1 − 𝑎𝑎𝑣̅𝑣 � . 

Note that, given an estimate of each xt, the corresponding ut can be estimated in closed form as ct /xt 
(recall that ct is assumed to be measured without error), so u was simply a transform of the data and the 
statistically estimated parameters.  The total number of statistically estimated parameters is only 5+nvar. 

  



Table B1.  Time series of states (true values, unknown to the estimation algorithm) and data (known to 
the estimation algorithm) used in the simple Beverton-Holt surplus production model. 

  

t x u xobs c Z<1> Z<2> Z<3>

1 2.240 0.166 2.379 0.373 -0.857 -2.207 -1.390
2 2.081 0.135 1.973 0.281 0.099 0.600 -1.566
3 1.847 0.128 1.926 0.237 -0.038 -0.288 0.279
4 1.722 0.155 1.818 0.267 -1.510 0.719 -0.233
5 1.601 0.202 1.554 0.324 0.863 1.374 0.112
6 1.352 0.212 1.331 0.287 -0.354 2.022 -1.054
7 1.181 0.199 1.247 0.235 1.340 -1.125 -0.005
8 1.103 0.126 1.078 0.140 -0.552 0.664 -0.979
9 1.108 0.136 1.125 0.151 -0.754 0.346 0.886

10 1.115 0.156 1.219 0.174 0.379 0.961 0.311
11 1.064 0.144 1.052 0.153 0.599 0.470 0.930
12 1.039 0.168 1.030 0.174 1.842 0.203 0.499
13 0.979 0.183 1.054 0.179 -0.245 -0.407 -0.820
14 0.973 0.162 0.943 0.158 -2.160 -0.755 -0.674
15 1.030 0.133 1.020 0.137 -1.470 -1.786 -1.378
16 1.114 0.154 1.057 0.172 -0.249 -0.613 -1.226
17 1.115 0.155 1.082 0.173 -0.032 -1.720 -1.267
18 1.135 0.139 1.119 0.158 1.183 -0.752 1.141
19 1.116 0.174 1.114 0.194 1.345 1.121 -0.401
20 1.024 0.134 1.033 0.138 -0.810 -1.175 -1.419
21 1.080 0.160 1.176 0.173 -0.763 -0.516 2.110
22 1.090 0.161 1.072 0.175 -1.340 1.643 -0.764
23 1.063 0.164 1.012 0.174 0.478 -0.163 1.466
24 1.038 0.163 0.993 0.169 1.406 -1.250 -0.118
25 1.022 0.175 1.049 0.179 -0.098 -1.277 0.214
26 1.030 0.142 1.058 0.146 0.054 0.299 1.184
27 1.028 0.174 1.013 0.179 0.914 0.688 1.030
28 0.975 0.190 0.986 0.186 0.451 -0.596 1.132
29 0.954 0.115 0.921 0.109 2.235 0.926 0.621
30 0.927 0.131 0.908 0.121 -1.261 0.018 0.853
31 0.981 0.144 1.098 0.141 -0.551 2.036 0.857
32 0.962 0.137 0.958 0.131 -0.694 0.923 0.738
33 0.978 0.120 0.933 0.117 -0.430 -0.129 -0.959
34 1.020 0.148 1.029 0.151 0.487 0.120 1.653
35 1.010 0.151 1.028 0.152 -0.002 0.425 -0.552
36 1.003 0.137 0.898 0.137 0.702 0.055 -1.647
37 1.001 0.171 1.043 0.172 0.456 -0.118 -0.200
38 0.981 0.134 0.947 0.131 -1.593 -0.115 0.454
39 1.036 0.131 1.012 0.136 1.025 0.096 0.584
40 1.025 0.150 0.948 0.154 -0.097 -0.715 -0.400

DataTrue values



Table B2.  Model-specific time series of natural mortality (true values, conditional on the functional form 
of the respective model). 

 

Model 1 Model 2 Model 3 Model 4 Model 5 Model 6 Model 7 Model 8
0.200 0.179 0.146 0.166 0.126 0.145 0.113 0.092
0.200 0.202 0.215 0.162 0.217 0.164 0.177 0.179
0.200 0.199 0.193 0.207 0.192 0.206 0.200 0.199
0.200 0.163 0.217 0.194 0.181 0.158 0.212 0.175
0.200 0.221 0.233 0.203 0.254 0.224 0.236 0.257
0.200 0.191 0.249 0.174 0.241 0.166 0.224 0.215
0.200 0.233 0.173 0.200 0.205 0.232 0.173 0.205
0.200 0.187 0.216 0.176 0.203 0.163 0.192 0.179
0.200 0.182 0.208 0.222 0.190 0.203 0.230 0.212
0.200 0.209 0.223 0.208 0.233 0.217 0.231 0.240
0.200 0.215 0.211 0.223 0.226 0.237 0.234 0.249
0.200 0.245 0.205 0.212 0.250 0.257 0.217 0.262
0.200 0.194 0.190 0.180 0.184 0.174 0.170 0.164
0.200 0.148 0.182 0.184 0.129 0.131 0.165 0.113
0.200 0.164 0.157 0.167 0.121 0.131 0.123 0.087
0.200 0.194 0.185 0.170 0.179 0.164 0.155 0.149
0.200 0.199 0.158 0.169 0.157 0.168 0.127 0.127
0.200 0.229 0.182 0.228 0.210 0.256 0.209 0.238
0.200 0.233 0.227 0.190 0.260 0.223 0.217 0.250
0.200 0.180 0.171 0.166 0.152 0.146 0.137 0.117
0.200 0.181 0.187 0.251 0.169 0.233 0.239 0.220
0.200 0.167 0.240 0.181 0.207 0.149 0.221 0.189
0.200 0.212 0.196 0.236 0.208 0.247 0.232 0.243
0.200 0.234 0.170 0.197 0.204 0.231 0.167 0.201
0.200 0.198 0.169 0.205 0.167 0.203 0.174 0.172
0.200 0.201 0.207 0.229 0.209 0.230 0.236 0.237
0.200 0.222 0.217 0.225 0.239 0.247 0.242 0.264
0.200 0.211 0.186 0.227 0.196 0.238 0.213 0.224
0.200 0.254 0.222 0.215 0.277 0.269 0.238 0.292
0.200 0.169 0.200 0.221 0.170 0.190 0.221 0.191
0.200 0.187 0.249 0.221 0.236 0.207 0.270 0.257
0.200 0.183 0.222 0.218 0.206 0.201 0.240 0.224
0.200 0.190 0.197 0.177 0.186 0.166 0.174 0.163
0.200 0.212 0.203 0.240 0.215 0.252 0.243 0.255
0.200 0.200 0.210 0.187 0.210 0.187 0.197 0.197
0.200 0.217 0.201 0.160 0.218 0.177 0.161 0.178
0.200 0.211 0.197 0.195 0.208 0.206 0.192 0.203
0.200 0.161 0.197 0.211 0.159 0.172 0.208 0.170
0.200 0.225 0.202 0.214 0.227 0.239 0.216 0.241
0.200 0.198 0.183 0.190 0.180 0.188 0.173 0.171

Natural mortality v



Appendix C: OFL histograms 

Figure C1.  Histogram of OFL for each candidate model, given pivot = Model 1. 
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Figure C2.  Histogram of OFL for each candidate model, given pivot = Model 2. 
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Figure C3.  Histogram of OFL for each candidate model, given pivot = Model 3. 
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Figure C4.  Histogram of OFL for each candidate model, given pivot = Model 4. 
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Figure C5.  Histogram of OFL for each candidate model, given pivot = Model 5. 
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Figure C6.  Histogram of OFL for each candidate model, given pivot = Model 6. 
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Figure C7.  Histogram of OFL for each candidate model, given pivot = Model 7. 
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Figure C8.  Histogram of OFL for each candidate model, given pivot = Model 8. 
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