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Road map for today

e Review how Pearson are used
e When and why they are wrong

e Build intuition for OSA
= Solves non-normality
= Solves correlation
= Properties: iid Z
Work through set of examples
Propose standard protocol for how to report/interpret them
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Current approach for Pearson residuals

 Pearson residuals
nlotted age vs year

e Implicitly assume
standard normal
e Patterns and large

residuals (Jr[>3) suggest

model misfit and
potential solutions
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Current approach for Pearson residuals

* Pearson residuals
nlotted age vs year . :
« Implicitly assume [ & e
standard normal R R 3
« Patterns and large R Rt R R :
residuals (|r[>3) suggest  w- : s :
model misfit and N EREHEHHEH R HA :
potential solutions L EELLLS :
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Pearson residual calculations

Pearson residuals are common in GLM _ y—i observed — expected

regreSS|0nS | 'p = Sd(ﬁ) - Sd(expected)
“Pearson residuals can be skewed for
nonnormal responses” (Faraway 2006) For the multinomial:
Age bins calculated independently (@) = —2@QP@

. . P -
Output implicitly assumed to be (@ (1-5@)
standard normal (how many SDs from p = observed proportion

the mean) p = expected proportion

If there is a large positive Pearson n= iampli size
residual, the others must be negative! a = age bn
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Pearson residuals are wrong, OSA are right

o Pearson resids don’t represent what we assume for two reasons
= They ignore correlation between age/length bins
= They are not iid Z when using skewed distributions

* One step ahead (OSA) residuals solve both issues
= Expanded from timeseries to all TMB models by Thygessen et al. 2017
= Expanded to composition data for assessments by Trijoulet et al. 2023

» Note: Pearson and OSA are identical when the data are
Independent and normal
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Model validation basics
» Assume some statistical model fitted to some data y

« \We want to validate the model by asking the question:
Could the observed data have come from the model?

« The model has a multivariate distribution of predicted data
= \We compare where the observed data falls in that distribution

 This multivariate data distribution will not be normal and may
have correlations for several reasons
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Solving issue 1: non-normality . _ . ..

* In skewed distributions (e.g., ] /ﬁ
multinomial) the residual is not the |

number of SDs from the mean -
* The solution is to use quantile residuals

0.0 02 0.4 06 1 08 10

= Convert quantile to u=CDF(x) in (0,1) B A
= Then r=CDF(u) of standard normal Il
= U~U(O’1) S0 r~N(O,1) .| n y =1.758 ; z=0.214
e Can be done with simulation 2 jﬁ
(DHARMa) or analytically if known CDF - /Fm== -l
y ~ Gamma(a = 1, = 2) z ~ N(0,1)

Havron et al. in prep., http:/florianhartig.github.io/DHARMa/
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Solving issue 2: correlation

« Assume we have 3d multivariate
normal with a single vector of
observations (blue point)

e First, ignore correlations and
calculate marginal residuals

@) NOAA FISHERIES

Residual=-2.125

Residual= 1.881

N

Residual= 1.388

i
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Solving issue 2: correlation

Residual=-2.125

« Assume we have 3d multivariate Residual= -2.125
normal with a single vector of ]
observations (blue points)

» Now, decorrelate (red lines) via a
Cholesky decomposition rotation

 Blue arrow shows how
observations moves

e 3" residual goes from 1.4 to -0.7

* The residuals are wrong w/o
rotation. (Even the sign!)

Residual= 1.881

Residual=1.102

Residual= 1.388

Pacidiial= -
~esidua U. £
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Solving issue 2: correlation

 Rotation changes order and thus quantiles so residuals are invalid when
correlations exist

 What causes correlations?
= Random effects. This is why OSA is used for mixed effects models more broadly.

= Multivariate distributions which have inherent constraints such as sumto N (multinomial) or sum to 1
(Dirichlet). E.g., the covariance for a multinomial is —np;p; i.e., if one bin goes up, others must go

down
 OSA solves nonnormality and correlations simultaneously. PM(Y; <y, Y ! =yi)
= | think of OSA as an analytical method for quantiles for non-  ~* — PM (Y1 = yi!
normal
correlated distributions. _ J ooy FiY) dr(y)
= The math is intense and uses TMB's Laplace approximation Jicooyy Fi¥) dr(y) + [, o0 fi(¥) dp(y)
machinery. There are several “methods” (ignored here) Thygesen et al, 2017
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OSA overview

OSA residuals are statistically better

» They are available now, calculated externally via R package
(https://github.com/fishfollower/compResidual)

o They are distributed iid N(0,1) under a correct model
o Large residuals (>3 ?) or non-normality suggest model misfit

OSA residuals for composition data introduce a new issue

Due to the constraint (sum to N, etc.) it only makes sense to produce K-1 residuals, in other
words we must drop an age/length bin

e The order of bins also matters, although we likely won't alter that
» Consequently there is no single residual for a certain data point (proportion in a bin).
» Instead the residuals are realizations with the ‘correct properties’
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OSA overview

Questions before we go into examples?
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OSA wi/o length 1
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BSAI Flathead fish lengths

IS the Pearson
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OSA wi/o length bin 1
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OSA w/o length bin 1
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OSA wlo length bin 1
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Summary

« OSAresiduals have better statistical basis and interpretation
[IN(0,1)] for assessments. | don’t recommend normality tests.

» Forayear, they are the residual conditioned on all previous bins

» There is no single residual for an observation, it depends on
order and which bin is dropped.
= But each realization will have the correct statistical properties

 Can be calculated externally for ADMB models, or internally for
TMB models with hierarchical structure.

A
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Recommendations for 2024 and beyond

“Pearson residuals could therefore be wrongly interpreted and result in rejecting a suitable model. This
could have direct consequences when these residuals are used for validating stock assessment
models. Poor composition residuals are typically the basis for changing estimates of selectivity, which
could lead to changes in the resulting management advice.” Trijoulet et al. 2023

It IS time to retire Pearson residuals at the AFSC?

| propose AFSC authors

1. Report OSA residuals (bubble + QQ plot) and compare to Pearson (1 year)
2. Use visual inspection to detect model misfit and justify model changes

3. Do not formally use statistical tests (no p-values)

4. Continue research on AFSC applications
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