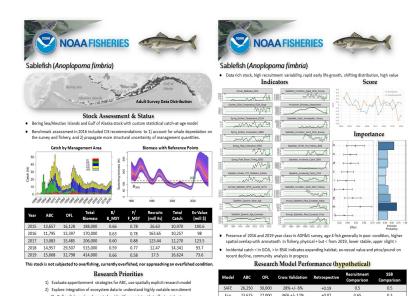
Ecosystem & Socioeconomic Profile Update Report

Kalei Shotwell, Erin Fedewa, Brian Garber-Yonts

May 2024, Presentation to the Crab Plan Team

ESP Definition


Process

Important ecosystem and socioeconomic indicators are identified and analyzed at the stock level

Product

Supplemental report that synthesizes the results of the indicator analysis and communicates drivers of stock dynamics

ESP Decisions

Qualitative

additional context

- Risk Tables
- Rebuilding Plans
- TAC Discussions
- Survey Planning
- Research Priorities
- Request for Proposals

Quantitative

assumptions

choices

covariates

- Mechanistic linkages
- Consistency with stock life history
- Biological realism

- Inform data conditioning
- Time blocks
- Parameter values consistent with existing info
- Indicator time series directly included in model (e.g. Woods Hole Assessment Model)

General Timeline

Recommendation to conduct ESP (Oct, Dec)

ESP Report Cards (Sept, Nov)

Request for Information (Jan, Mar)

Full ESP (May, Sept)

ESP Review (Apr, June)

Update

Timeline

Changes to delivery of ESP statistical products, report card alignment with risk tables

National

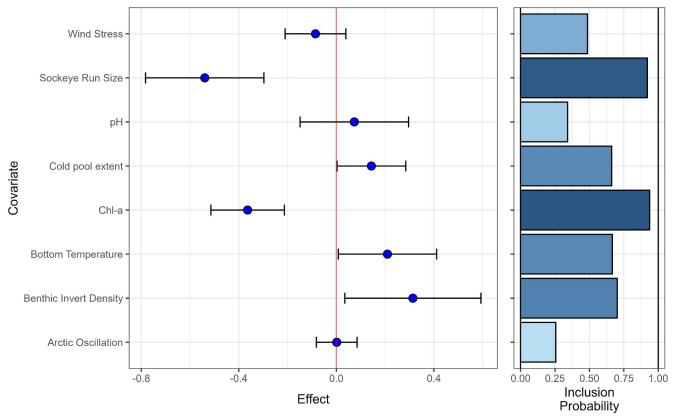
Coordination project, climate readiness, data management and reproducibility project

Capacity

Developing socioeconomic indicators, creating general ESP report cards for all stocks

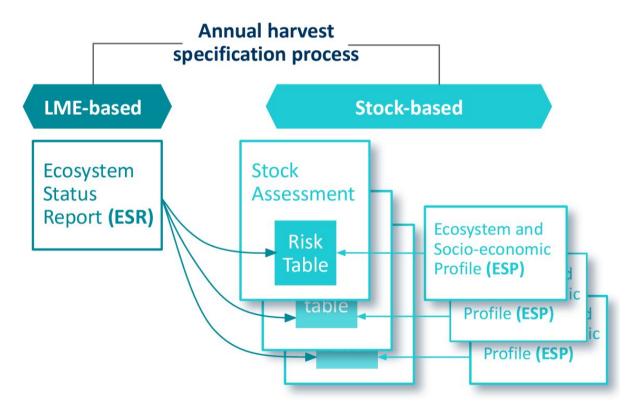
Importance Methods Project - Transition Year 2024

- Evaluating statistical methods for sablefish (Oke et al., in prep)
 - Bayesian adaptive sampling (BAS)
 - Boosted regression trees (BRT)
 - General additive models (GAMs)
 - Dynamic factor analysis (DFA) + robust regression
 - Dynamic structural equation modeling (DSEM)*
- Apply some of these methods on stocks with full ESPs
- Results presented in May for crab assessment authors

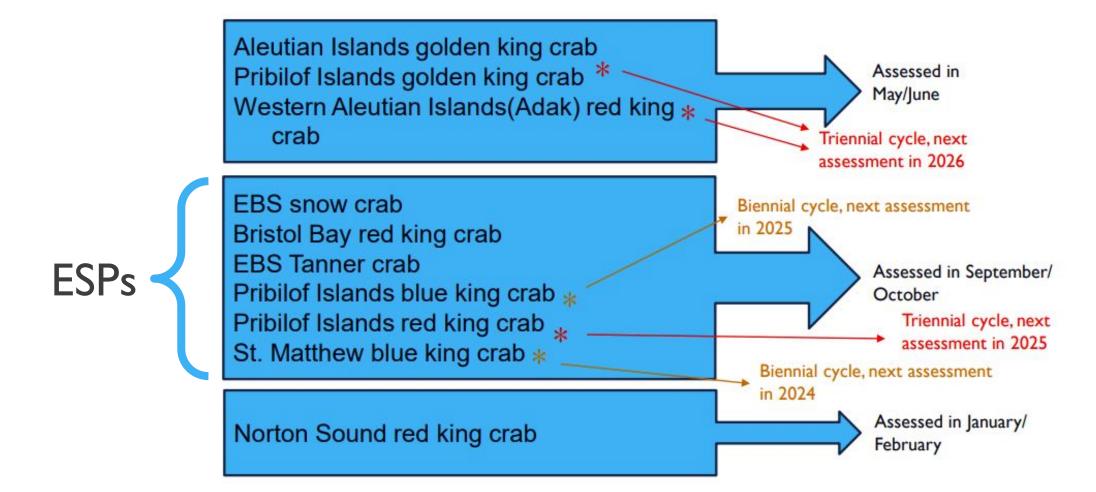


Importance Example - Bristol Bay Red King Crab

May Importance Result


Note: only for ecosystem indicators

September Report Card


Indicator	2019 Status	2020 Status	2021 Status	2022 Status	2023 Status	
Winter Spring Arctic Oscillation Index Model	neutral	high	neutral	neutral	neutral	-
Summer Cold Pool SEBS BBRKC Survey	low	NA	low	neutral	neutral	-
Summer Temperature Bottom BBRKC Survey	high	NA	neutral	neutral	neutral	-
Spring pH BBRKC Model	low	low	low	low	low	
Summer Wind Stress BBRKC Satellite	high	neutral	high	neutral	neutral	
Spring Chlorophylla Biomass SEBS Inner Shelf Satellite	neutral	neutral	neutral	low	low	0.9
Summer Sockeye Salmon Abundance EBS Survey	NA	NA	NA	high	NA	0.9
Summer Pacific Cod Density BBRKC Survey	low	NA	neutral	neutral	NA	
Summer Benthic Invertebrate Density BBRKC Survey	neutral	NA	neutral	neutral	NA	0.7
Summer Red King Crab Male Area Occupied BBRKC Model	high	NA	neutral	high	neutral	
Summer Red King Crab Female Area Occupied BBRKC Model	high	NA	high	neutral	neutral	-1
Annual Red King Crab Catch Distance Shore BBRKC Fishery	high	neutral	neutral	neutral	NA	

Risk Table Alignment

- Risk tables will soon be created for crab stocks
- ESR and ESP information feeds into these tables
 - Coordinated effort to write up the ecosystem category
 - May also inform pop dy and fisheries performance
- Proposed to meet following CPT for different schedules

Risk Table Timing

Update

Timeline

Changes to delivery of ESP statistical products, report card alignment with risk tables

National

Coordination project, climate readiness, data management and reproducibility project

Capacity

Developing socioeconomic indicators, creating general ESP report cards for all stocks

National ESP Initiative - Coordination Project

NWFSC:

petrale, sablefish toward

risk table

AFSC:

sablefish, pollock, Pacific cod, king crab, snow crab (17 total recommendations)

PIFSC: uku, (kona crab recommendation) bluefish, black sea bass, Atlantic

cod, tilefish, (flounder, mackerel,

NEFSC:

herring scheduled)

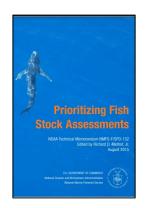
SWFSC:

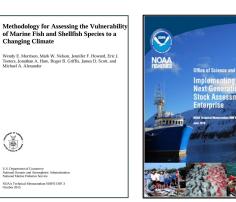
<u>ecosystem</u>

<u>initiative</u>

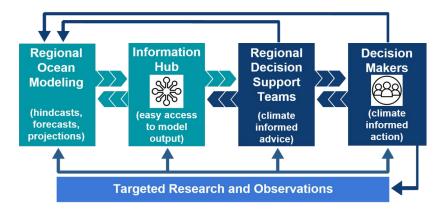


~gray snapper




Using ESPs for Climate and EBFM

EBFM Policy and Roadmap



NOAA Fisheries Initiatives

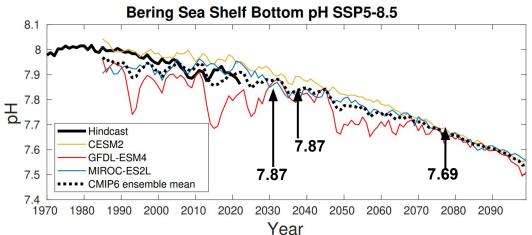
Climate, Ecosystem, Fisheries Initiative*

Regional Action Plans & Modeling

Climate Readiness

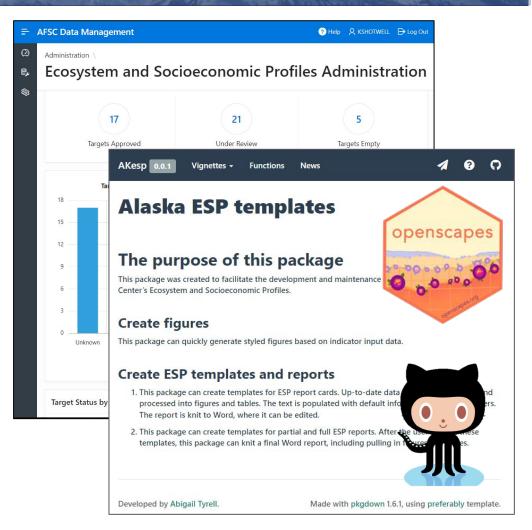
- 1. Focus: use climate vulnerability assessments to determine which stocks are priorities for conducting an ESP
- 2. Synthesize: identify thresholds and bottlenecks that may influence survival in a changing climate
- 3. Analyze: create projections using ocean models to make selected indicators climate informed
- 4. Communicate: include new graphics and measures in standard reporting template to convey climate readiness

Indicator Projections


Indicator Enhancement

- Include different IPCC models and ensemble mean
- Evaluate over a range of emissions scenarios

Indicator Metrics


- Calculate moving mean to account for interannual variability
- Report at various future intervals (e.g., 5, 10, 50 years)

Data Management and Reproducibility

- Submission tool for ESP data
 - Provided by Alaska Fisheries Information Network (AKFIN), started in 2020
 - Metadata, feedback, tracking, auto query
 - Administrative checks & views
- AKESP R package
 - GitHub and AKFIN web service
 - Standard set of graphics available
 - Report templates in R Markdown
- Expanding both utilities to other regions with data modernization IRA/FIS project

Update

Timeline

Changes to delivery of ESP statistical products, report card alignment with risk tables

National

Coordination project, climate readiness, data management and reproducibility project

Capacity

Developing socioeconomic indicators, creating general ESP report cards for all stocks

Feedback on Socioeconomics in ESPs

- Alaska SSC Minutes (2022, 2023) and NPFMC Motion
 - SSC has consistently provided feedback on socioeconomics in ESPs particularly to coordinating multiple products, suggested workshop
 - "The Council recommends NOAA and Council staff review available data and recommend species-level socio-economic indicators appropriate for the Ecosystem and Socioeconomic Profiles (ESPs)..."
- National ESP share workshops
 - Less emphasis on socioeconomics in ESPs (little "s"), low engagement
 - Uncertainty in how to choose or use socioeconomic indicators to best support fisheries management decisions

2024 Progress

Alaska

- Several meetings to discuss AFSC staff capacity to produce socioeconomic indicators for ESPs and ESRs (high level overview by Brian on Thursday)
- Plan to add a few new socioeconomic indicators for a couple groundfish ESPs this year, incorporate Council feedback, then circle back to crab

National ESP Project

- Review existing socioeconomic indicators in ESP/ESR and propose existing and/or develop new stock- or ecosystem-level indicators for ESP/ESR
- Discussion session at ESP Share Workshop on resolution, temporal scale, and type of socioeconomic indicators and initiate guidance document

ESP Review Process

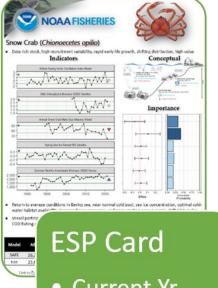
Step 1

- Plan Team
- Priorities
- Request ESP

Step 2



Submissions


• Team Review

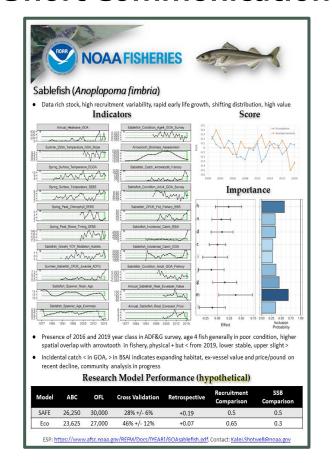
Decision

Step 3

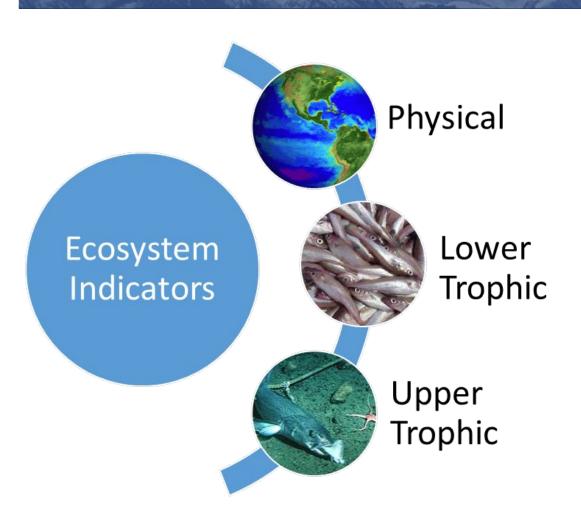
Step 4

- Current Yr
- Sept PT
- Oct Council

General ESP Report Cards

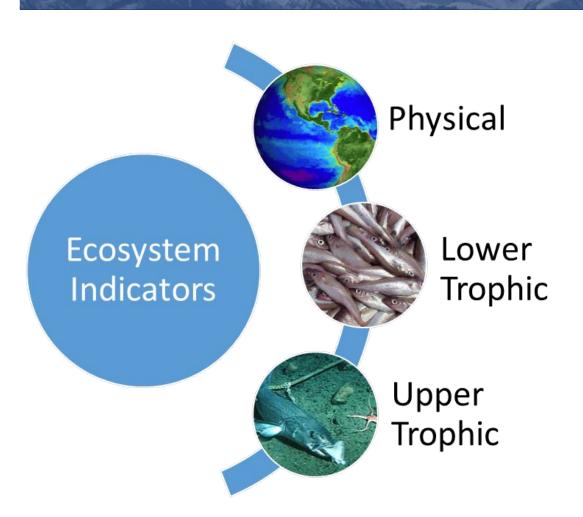

Indicator suite

- Data are accessible, consistent, timely
- Applicable to many stocks (e.g., satellite, large survey, modeled)
- Prefer on AKFIN or database available

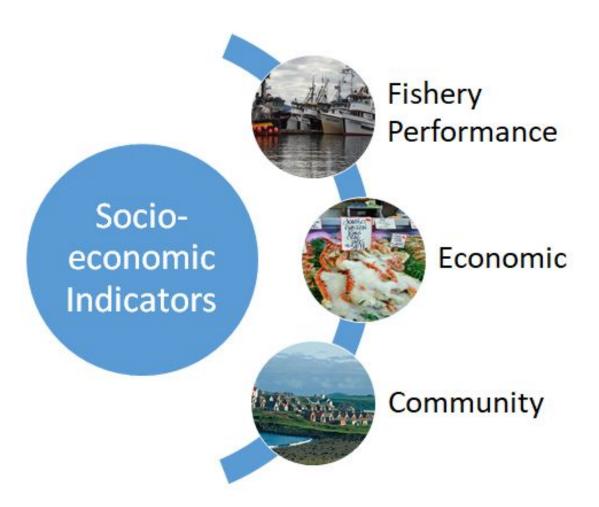

Report card

- Selection by author through dashboard
- Simple set of tables and graphics
- Reports automated, available Sept/Nov
- Use for risk table evaluation

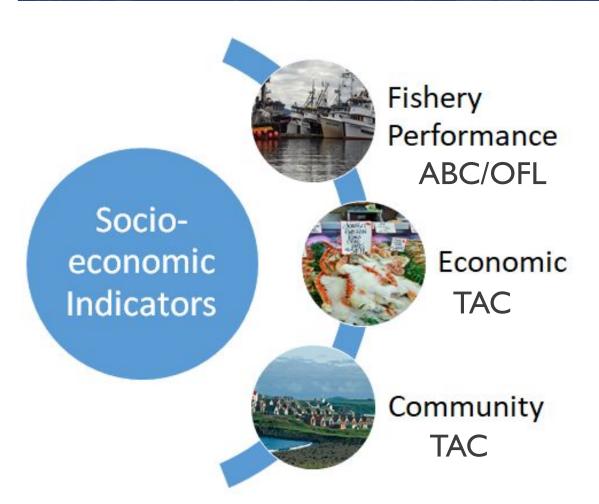
Short Communication


Ecosystem Indicators

- 1. Marine heatwave index (model)
- 2. Bottom temperature (survey, **ROMS**)
- 3. SST, wind stress, sea-ice (satellite)
- 4. Corrosivity or pH index (ROMS-NPZ)
- 5. Production (chlorophyll a, satellite)
- 6. Small/Large copepods (survey)
- 7. Euphausiids (survey)
- 8. Seabird reproductive success (survey)
- 9. Larval fish abundance, condition (survey)
- 10. YOY biomass, growth seabird diets (survey)
- 11. Juvenile CPUE, condition (survey)
- 12. Juvenile predation mortality (model)
- 13. Proportion euphausiid in fish diet (survey)
- 14. Adult condition (survey, fishery)
- 15. Center of gravity, area occupied (model)
- 16. Predator biomass (stock assessment)
- 17. Steller sea lion non-pup estimates (survey)


Ecosystem Indicators

- 1. Marine heatwave index (model)
- 2. Bottom temperature (survey, ROMS)
- 3. SST, wind stress, sea-ice (satellite)
- 4. Corrosivity or pH index (ROMS-NPZ)
- 5. Production (chlorophyll a, satellite)
- 6. Small/Large copepods (survey)
- 7. Euphausiids (survey)
- 8. Seabird reproductive success (survey)
- 9. Larval fish abundance, condition (survey)
- 10. YOY biomass, growth seabird diets (survey)
- 11. Juvenile CPUE, condition (survey)
- 12. Juvenile predation mortality (model)
- 13. Proportion euphausiid in fish diet (survey)
- 14. Adult condition (survey, fishery)
- 15. Center of gravity, area occupied (model)
- 16. Predator biomass (stock assessment)
- 17. Steller sea lion non-pup estimates (survey)


Socioeconomic Indicators

- 1. CPUE by season, gear
- 2. Effort (#vessels, #processors)
- 3. Bycatch by gear, region
- 4. Centroid of the fishery
- 5. Ex-vessel value
- 6. Ex-vessel price per pound (size)
- 7. Ex-vessel revenue per unit effort
- 8. Price, price by size class
- 9. Roe per-unit-catch
- 10. Fish condition in the fishery
- TAC utilization (percent)
- 12. Processors active in fishery
- 13. Processing employment
- 14. Local, regional quotient harvesting
- 15. Local, regional quotient processing
- 16. Skipper surveys

Socioeconomic Indicators

- 1. CPUE by season, gear
- Effort (#vessels, #processors)
- 3. Bycatch by gear, region
- 4. Centroid of the fishery
- 5. Ex-vessel value
- 6. Ex-vessel price per pound (size)
- 7. Ex-vessel revenue per unit effort
- 8. Price, price by size class*
- 9. Roe per-unit-catch
- 10. Fish condition in the fishery
- 11. TAC utilization (percent)
- 12. Processors active in fishery
- 13. Processing employment
- 14. Local, regional quotient harvesting
- 15. Local, regional quotient processing
- 16. Skipper surveys

Proposed General Crab Indicator Suite

Ecosystem Indicators

- Bottom temperature (ROMS/survey)
- pH (ROMS)
- Primary production (chla, satellite)
- Center of gravity (survey)
- Area Occupied (survey)
- Predator Biomass (survey)

Socioeconomic Indicators

- Catch per unit effort
- Effort (#vessels, #processors)
- Bycatch by gear, region
- Centroid of the fishery

Discussion

- What do we do with different timing of stocks?
- 2) Can ESPs be a vehicle for climate forecasts and projections? Other ideas than those presented?
- 3) Does the generalized ESP seem useful for informing risk tables? Other indicators than those presented?
- 4) Are there any thoughts or concerns on the plans for socioeconomic data in ESPs? (for Thursday)

Contact:

Erin Fedewa, AFSC Kalei Shotwell, AFSC Brian Garber-Yonts, AFSC

erin.fedewa@noaa.gov kalei.shotwell@noaa.gov brian.garber-yonts@noaa.gov

ESP Summary

Stock	Year initiated	Full ESP	Partial update	Report card*
Sablefish	2017	2017 - <u>2019</u>	2020	<u>2021, 2022, 2023</u>
Gulf of Alaska Pollock	2019	2019	2020	<u>2021, 2022, 2023</u>
EBS Pacific Cod	2020	2021		2021, 2022, 2023
GOA Pacific Cod	2020	2021		<u>2021, 2022, 2023</u>
St Matthew Blue King Crab	2019	2019	2020	2022
Bristol Bay Red King Crab	2020	2020		2021, 2022, 2023
Bering Sea Snow Crab	2021	2022		2023

