

The Snow Crab IBM & BCM: Basis for Potential ESP Indicators?

William T. Stockhausen
Alaska Fisheries Science Center
May, 2022

Acknowledgments

Contributors

- Michael Torre, Christine Stawitz, Bob Foy, Cody Szuwalski
- · Al Hermann, Kelly Kearney, Wei Cheng
- Erin Fedewa, Louise Copeman, Jon Richar
- · Kirstin Holsman, Kerim Aydin, Anne Hollowed

• Funding:

- Magnuson-Stevens Act
- FATE

What am I talking about?

- IBM: individual-based model
 - tracks simulated individuals through larval, postlarval life stages from hatch location to settlement
 - movement patterns
 - ROMS ocean currents
 - vertical movement behavior
 - development (growth)
 - temperature dependence of molt duration (lab experiments)
 - in situ ROMS water column temperatures
 - mortality: assumed rates
 - settlement in benthic nursery habitats
 - (assumed) depth range + temperature range
- BCM: benthic cohort model (follow-on to IBM)
 - tracks benthic instar abundance in ROMS grid by settlement cohort
 - in situ ROMS bottom temperatures
 - temperature dependence of molt duration
 - temperature dependent mortality rates (think "cod predation")

Snow crab IBM

Pelagic life stages

Z1

Z2

M

 temperature-dependent or fixed intermolt durations (IMDs)

- "swim" up or down into preferred depth ranges
 - zooea: 0 20 m (Incze 1987, Ouellet & Ste Marie 2018)
 - megalopae: 50 150 m (Lovrich 1995, Ouellet & Ste Marie 2018)
 - undergo vertical random walks within preferred depth ranges
 - no active horizontal movement (just drift)
- settlement habitat (suitable benthic nursery habitat)
 - assumed depth ranges (25-200 m)
 - assumed temperatureranges

Model start

Annual model runs

- 1971-2019
- start: hatch date
- end: Dec. 1

5 hatch dates

- Apr 1, 15
- May 1, 15
- Jun 1

32,651 individuals/hatch \$

• 3 km spacing

Example Trajectories

Adding in variability in egg production: spatiotemporal variation old shell female biomass

Hatch Patterns: 1982-2001

Settlement Patterns: 1982-2001

Settlement Patterns: 1982-2001

Hatch Patterns: 2002-2019

Settlement Patterns: 2002-2019

Base Model

Settlement Patterns: 2002-2019

Settlement results by temperature regime

Settlement Abundance Time Series

Model uncertainty

- within-season hatch variation
- benthic nursery characteristics
 - temperature range
 - bottom type
 - other factors
- mortality rates
 - starvation
 - predation

Model uncertainty: Mortality rates

Model uncertainty: variability with BNT

Predicted Settlement And Recruitment

Recruitment lagged 5 years

Correlations between settlement and recruitment

IBM Results: Key points

- integrates what we (think we) know about early life stages
 - lots we don't know
- EBS likely contributes to Chukchi stocks
- Some transport to southeast (counter to ratchet effect)
- moderate temperature years may be most productive
 - warmer temps -> faster development -> less pelagic mortality
 - colder temps -> more extensive settlement habitat
- settlement and recruitment are decoupled:
 - predicted settlement abundance has little relationship to estimated recruitment 5 years in the future
 - possibilities
 - IBM is missing a key factor?
 - starvation? spatiotemporal patterns in predation?
 - decoupling due to processes in benthic nurseries?

Benthic Cohort Progression Model

- Initial pattern: IBM settlement pattern by ROMS grid cell
- Molt stage projected using ROMS bottom temps, lab-determined development rates*
- Can include instar-specific, temperaturedependent mortality rates ("cod predation")
- Daily integration for abundance, instar within each ROMS grid cell

*Yamamoto et al (2015)

Cohort Progression: Warm vs. Cold Years

no mortality

1993

2012

Cold pool extents: settlement to recruitment

by settlement year

 predation by cod excluded from cold pools?

Example Cohort Progression

- C5: 16 mm CW
- C6: 21 mm CW
- C7: 30 mm CW

Indices

Indices

Summary

- Bit disappointing in terms of correlation with recruitment
- What's missing?
 - better description of P. cod predation?
 - density dependence?
 - other mortality factors?
- Next steps?

