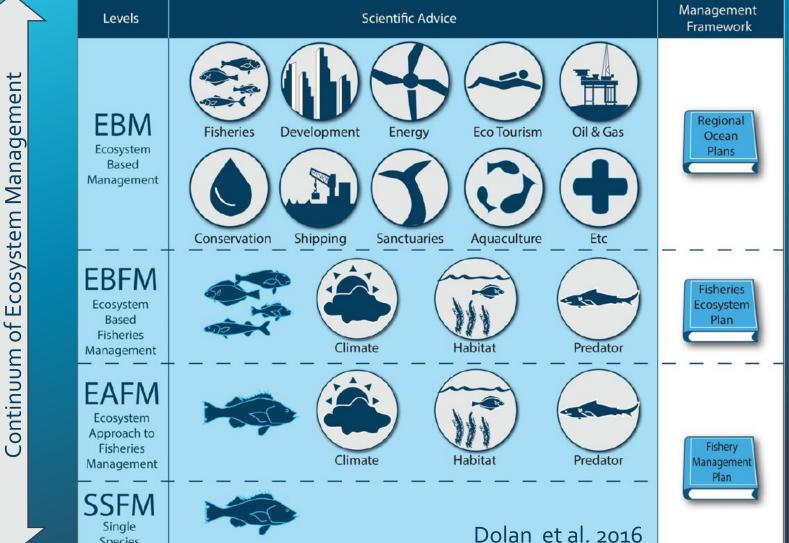


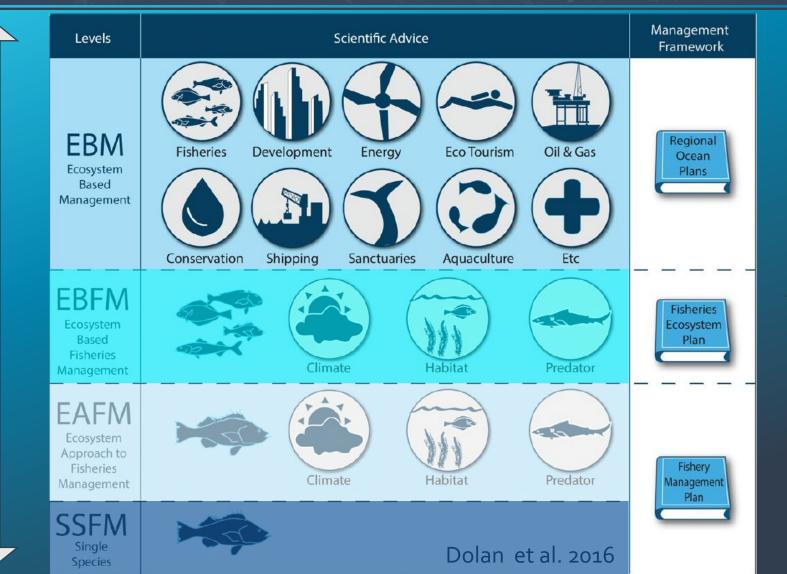
Ecosystem Socioeconomic Profile (ESP)

Definition: A <u>standardized</u> framework that <u>facilitates</u> the integration of <u>ecosystem and socioeconomic</u> factors within the stock assessment process and acts as a proving ground for use in management advice.



Kalei Shotwell, NOAA-AFSC Kalei.Shotwell@noaa.gov

Species


Ecosystem Management (EM)



Operations

Operations ??

Ecosystem Management (EM)

December 2017 BSAI Introduction

STOCK ASSESSMENT AND FISHERY EVALUATION REPORT FOR THE GROUNDEISH RESOURCES

OF THE BERING SEA/ALEUTIAN ISLANDS REGIONS

Compiled by

The Plan Team for the Groundfish Fisheries of the Bering Sea and Aleutian Islands

With contributions b

K. Aydin, S.J. Barbeaux, M. Bryan, J. Cabalan, C. Conrath, M. Dalton, K. Echave, B. Fissel, M. Farumess, D. Hanselman, A. Haynie, A. Hicks, J. Hoff, K. Holsman, T. Honkaletho, D. Pl Handon, J.N. Lanelli, S. Kotwicki, R. Lauth, S. Lowe, C. R. Lamford, C. R. McGillard, D. McKelvey, D. G. Nichol, B. Norcross, O.A. Ormseth, W.A. Palsson, C. J. Rodgeller, C. N. Rooper, C. Siddon, P.D. Spencer, 1B. Spies, D. Stram, T.T. TenBrink, P. G. G. G. Demogno, C. A. Defension and T. W. Midderburg.

cember 2017 GOA Introduction

APPENDIX B

STOCK ASSESSMENT AND FISHERY EVALUATION REPORT

FOR THE GROUNDFISH RESOURCES OF THE GULF OF ALASKA

Compiled by

The Plan Team for the Groundfish Fisheries of the Gulf of Alaska

with contributions b

J. Armstriang, K. Aydin, S. Barbeara, M. Bryan, C. Correft, L. Coners, K. Cound, C. Conridgellan, O. Devis, M. Born, K. Fabrar, C. Farsock, F. Perick, E. Friard, D. Himsteinan, J. Holestic, R. Holman, P. Hollston, J. Horell, M. Asterick, D. Jones, D. Lew, S. Lowe, C. Lumford, A. McCarthy, C. McGillard, S. Moyer, D. Nields, N. Nielssk, A. Olino, O. Ormeth, W. Palsson, C. Gadyerfel, P. Ramille, K. Snervell, K. Spalinger, P. Spencer, I. Spies, J. Sahd, T. Torlitrink, C. Tribuziro, J. Turrock, T. Wilderbuer, B. Williams, N. Williams, O. Yang, S. Williams, O. Yang, S.

November 2017

North Pacific Fishery Management Council 605 W 4th Avenue, Suite 306 Anchorage, AK 99501

December 2017 BSAI Introduction

STOCK ASSESSMENT AND FISHERY EVALUATION REPORT

FOR THE GROUNDFISH RESOURCES OF THE BERING SEA/ALEUTIAN ISLANDS REGIONS

Compiled by

The Plan Team for the Groundfish Fisheries of the Bering Sea and Aleutian Islands

With contributions h

K. Aydin, S.J. Barbeaux, M. Bryan, J. Cahalan, C. Conrath, M. Dalton, K. Echave, B. Fissel, M. Furuness, D. Harselman, A. Haynie, A. Hicks, J. Hoff, K. Holsman, T. Hoskaletho, P. Hulson, J. Sanchiel, S. Kotwicki, R. Lauth, S. Lowe, C. R. Lautfsord, C. McGilliard, D. McCeros, O. A. Ormseth, W.A. Palsson, C.J. Rodgeller, C.N. Rooper, C. Siddon, P.D. Spenner, H. Spies, D. Stram, T.T. TenBrink, G. G. G. Gorgono, C. A. Teistrin, and T.K. Widdeburg.

cember 2017 GOA Introduction

APPENDIX B

STOCK ASSESSMENT AND FISHERY EVALUATION REPORT

FOR THE GROUNDFISH RESOURCES OF THE GULF OF ALASKA

Compiled by

The Plan Team for the Groundfish Fisheries of the Gulf of Alaska

with contributions by

J. Armstrong, K. Aydin, S. Burbeaux, M. Boyan, C. Corardi, I. Conners, K. Couté, C. Connieghan, D. Devis, M. Dura, K. Edway, C. Flauce, F. Briede, D. Hambonn, J. Hoferk, K. Holman, P. Holton, J. Burelli, M. Jaerciek, D. Jones, D. Lew, S. Lowe, C. Lumford, A. McCarthy, C. McGillard, S. Moyer, D. Nichol, N. Nichols, A. Olhon, O. Omentik, P. Palsone, C. Rogelergi, J. Ramike, K. Shorwell, K. Spalinger, P. Spencer, I. Speis, J. Sahd, T. Tenffenis, C. Tribuzio, J. Turnock, T. Wilderbuer, B. Williams, K. Williams, N. Willia

November 2017

North Pacific Fishery Management Council 605 W 4th Avenue, Suite 306 Anchorage, AK 99501

Fisheries Management SAFE **ESR** Ecosystem/ Stock Economic Assessment Assessment December 2017 FRS Forms

Ecosystem Considerations 2017

Status of the Eastern Bering Sea Marine Ecosystem

Edited by:

Ellizabeth Siddon¹ and Stephani Zador²

¹Auke Bay Laboratories, Alaska Fisheries Science Cente
National Marine Fisheries Service, NOAA

17109 Pt. Lena Loop Road

Juneau, AK 99801

²Resource Ecology and Fisheries Management Division, Alaska Fisheries Science Center, National Marine Fisheries Service, NOAA

With contributions from:

Ans. Andrews, Kerin Aydin, John Bengton, Jennine Boldt, Nick Bond, LDe Bett, Hillige Bergens, Krisin Cock, Amer Marte Erk, Lin Elsere, Ed Barby, Designals Breds, Sanaton Fürgerald, Robert Fey, Sarah Gaidan, Jeanstete Gann, Colleen Harpold, Ron Heintz, Jerry Hol, Kristin Helsman, Karbarie Brownel, Himaldi, Tyder Javis, Timody Josos, Robb Keler, Saver Kappendi, Dovid Kimmel, Kulty Koletz, Liz Labunda, Corol Ladd, Chrisis Lang, Coeff Lang, Bort Land, Ama Dancie, Jean Lee, Doniel, Kern Michael Littory, Jennieft Mondreyan, Franz Moster, Jam Murphy, John V, Olson, Jim Overland, Jalia Ferich, Bolf Bonn, Beather Binner, Can Rehar, Marc Roman, Chris Ropers, Sprill Salo, Ellander, Soldon, Kim Sparker, Peplin Salaeon, Kaic Stafford, Jermy Sterling, Maryini Szynkowick, Grant Drougen, Rod Tiwoul, Salaeon, Kaic Stafford, Jermy Sterling, Maryini Szynkowick, Grant Drougen, Rod Tiwoul,

NPFMC Bering Sea and Aleutian Islands SAFE

STOCK ASSESSMENT AND FISHERY EVALUATION REPORT FOR THE GROUNDFISH FISHERIES OF THE GULF OF ALASKA AND BERING SEA/ALEUTIAN ISLANDS AREA:

ECONOMIC STATUS OF THE GROUNDFISH FISHERIES OFF ALASKA, 2016

b

Ben Fissel, Michael Dalton, Brian Garber-Yonts, Alan Haynie, Stephen Kasperski, Jean Lee, Dan Lew, Anna Lavoie, Chang Seung, Kim Sparks, Sarah Wise.

Economic and Social Sciences Research Program Resource Ecology and Fisheries Management Division Alaska Fisheries Science Center National Marine Fisheries Service National Oceanie and Atmospheric Administration Company of the Company of the Company of the Company Company of the Company of t

December 20, 2017

NPFMC Gulf of Alaska SAFE

December 2017 BSAI Introduction

STOCK ASSESSMENT AND FISHERY EVALUATION REPORT

FOR THE GROUNDFISH RESOURCES
OF THE BERING SEA/ALEUTIAN ISLANDS REGIONS

Compiled by

The Plan Team for the Groundfish Fisheries of the Bering Sea and Aleutian Islands

With contributions b

K. Aydin, S.J. Barbeaux, M. Bryan, J. Cahalan, C. Conrath, M. Dalton, K. Echave, B. Fissel, M. Furuness, I. Hancelman, A. Haynie, A. Hicks, J. Hoff, K. Holsman, T. Honkaletho, P.J. Hulson, J.N. Ianelli, S. Kowick, R. Lauth, S. Lowe, C. R. Lumford, G. McGillard, D. McGresso, O. A. Ormsetl, W.A. Paleson, C.J. Rodgeeller, C.N. Rooper, C. Siddon, P.D. Spencer, I.B. Spies, D. Stram, T.T. TenBrinl, D. G. G. G. Domeson, C. A. Tabbert, and T. F. Waldshouse.

10

APPENDIX B

STOCK ASSESSMENT AND FISHERY EVALUATION REPORT

FOR THE GROUNDFISH RESOURCES OF THE GULF OF ALASKA

Compiled by

The Plan Team for the Groundfish Fisheries of the Gulf of Alaska

with contributions be

J. Armstrong, K. Aydin, S. Barbaux, M. Bryan, C. Corrath, L. Conners, K. Coutré, C. Cunninghum, O. Davis, M. Ders, K. Echuve, C. Fausce, K. Fende, B. Fissel, D. Hanselman, J. Heidez, K. Holsman, P. Hulson, J. Innelli, M. Jaenicke, D. Jones, D. Lew, S. Lowe, C. Lumsford, A. McCarthy, C. McGilland, S. Moyer, D. Nicholy, N. Nichols, A. Olton, O. Ormesth, W. Pilsson, C. Rodgeleller, J. Smuhle, K. Showell, K. Spalinger, P. Spencer, J. Spies, J. Stahl, T. Tenlfeink, C. Tribuzio, J. Turnock, T. Wilderbuer, B. Williams, Q. Vang, S. Zador

November 2017

forth Pacific Fishery Management Council 605 W 4th Avenue, Suite 306 Anchorage, AK 99501

Fisheries Management SAFE **ESR** Ecosystem/ Stock Economic ??? Assessment Assessment No Standard Framework

December 2017 EBS Ecosys

Ecosystem Considerations 2017

Status of the Eastern Bering Sea Marine Ecosystem

Edited by:

Elizabeth Siddon¹ and Stephani Zador²

¹Auke Bay Laboratories, Alaska Fisheries Science Centonal Marine Fisheries Service, NOAA

17109 Pt. Lena Loop Road

Juneau, AK 99801

²Resource Ecology and Fisheries Management Division, Alaska Fisheries Science Center, National Marine Fisheries Service, NOAA

With contributions from:

NPFMC Bering Sea and Aleutian Eslands SAFE

STOCK ASSESSMENT AND FISHERY EVALUATION REPORT FOR THE GROUNDFISH FISHERIES OF THE GULF OF ALASKA AND BERING SEA/ALEUTIAN ISLANDS AREA:

ECONOMIC STATUS OF THE GROUNDFISH FISHERIES OFF ALASKA, 2016

by

Ben Fissel, Michael Dalton, Brian Garber-Yonts, Alan Haynie, Stephen Kasperski, Jean Lee, Dan Lew, Anna Lavoie, Chang Seung, Kim Sparks, Sarah Wise.

Economic and Social Sciences Research Program Resource Ecology and Fisheries Management Division Alaska Fisheries Science Center National Marine Fisheries Service National Oceanic and Atmospheric Administration 7600 Sand Point Way N.E.

December 20, 2017

NPFMC Gulf of Alaska SAFE

GOA Introduction

ESP Process

Grade

- Descriptive Metrics
- Processes and Mechanisms

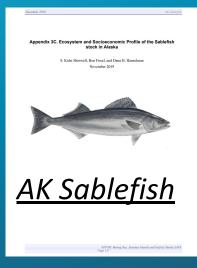
Report

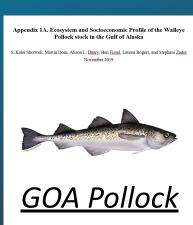
- Standard Templates
- Timely Update

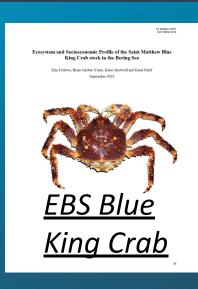
Focus

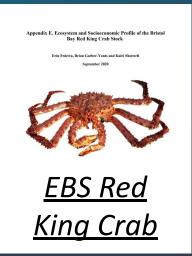
- National Initiatives
- Regional Priorities

Analyze

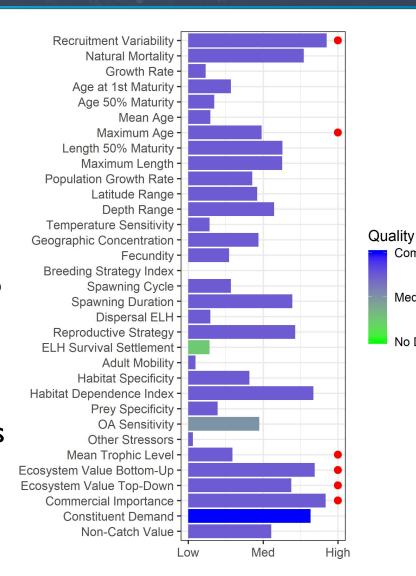

- Indicator Suite
- Monitor and Test


ESP Product


Appendix in SAFE report


- 1) Intro: justification, data
- Metrics assessment:baseline, processes
- 3) Indicators assessment: time series, analyses
- 4) Recommendations:

 assessment summary, data
 gaps, future priorities

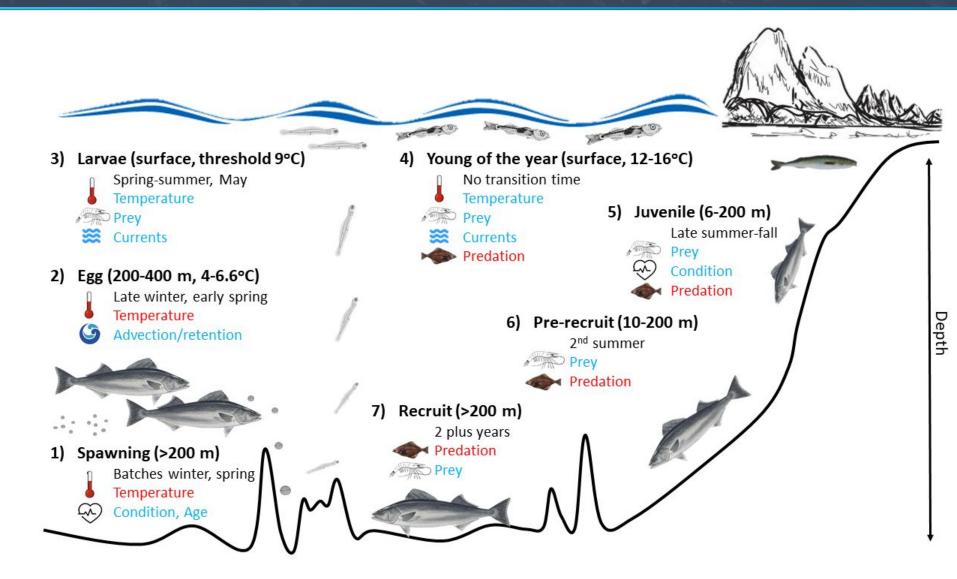

Justification & Data

- Research Priorities
- National Initiatives
 - Prioritization (stock, habitat)
 - Vulnerability (PSA, CVA)
 - Classification (current and target data categories)
- Data Summary
 - Table of data sources
 - References and contacts

Category	Current	Target	Gap	
Catch	5	5	0	
Size/Age	5	5	0	
Abundance	4	5	1	
Life History	5	5	0	
Ecosystem	2	4	2	

Metrics Assessment

- Baseline Metrics
 - Standard measures of stock attributes, ~ physical exam
- Processes
 - Ecosystem section provides info by life history stage to identify bottlenecks and mechanisms
 - Socioeconomic section provides info on fishery performance, econ, community engagement

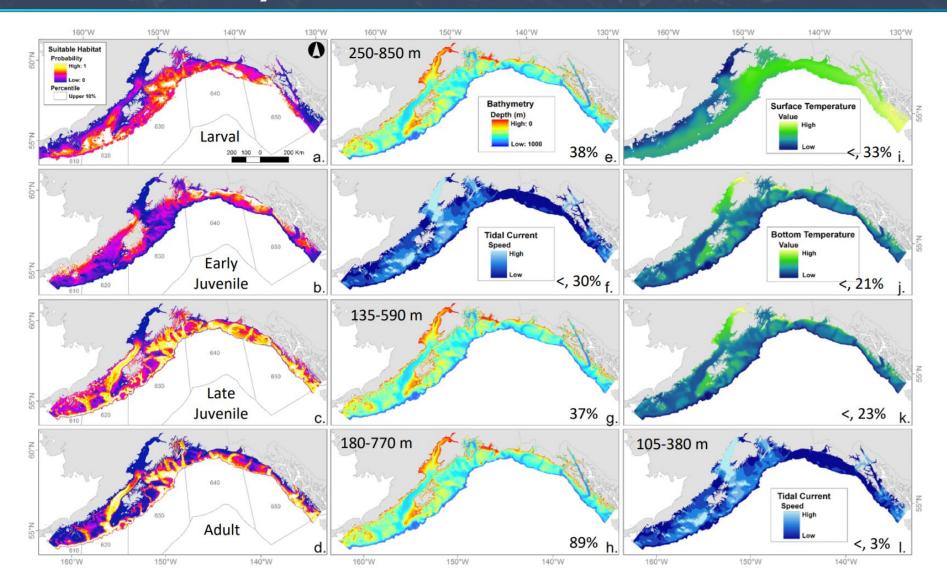


Complete

Medium

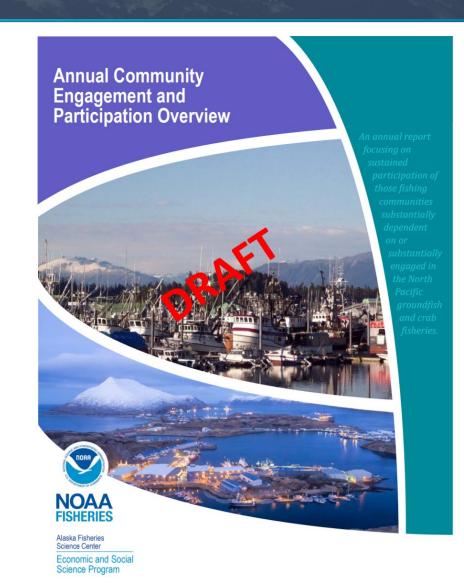
No Data

Ecosystem Processes

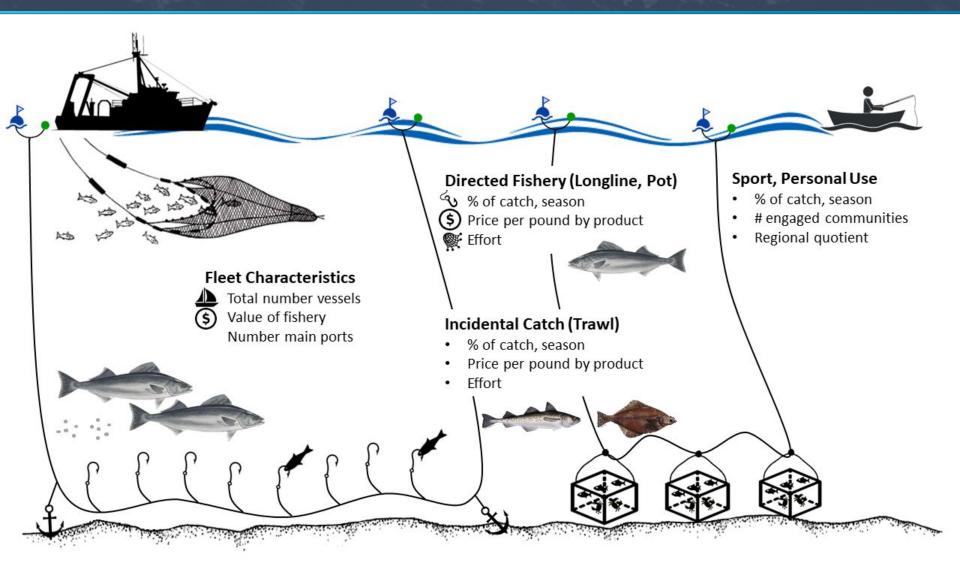

Life History Table

	Stage		Habitat & Distribution	Phenology	Age, Length, Growth	Energetics	Diet	Predators/Competitors
Adult		Recruit	Shelf edge, slope, gullies (>200 m), GOA to Bering, benthic(18)	First recruit to survey and fishery age 2, high movement (10-88%) ₍₁₈₎	Max: 73yrs _(18,19,28) , 134♀/138♂ cm Average: 12 yrs L inf=80♀/68♂ cm, K= 0.22♀/0.29♂	Low conversion efficiency, low metabolic rate ₍₂₁₎	Opportunistic, <u>euphausiids</u> , pol/cod, capelin, herring, squid, jelly _(12,18,REEM)	P: Sperm whales, orca, fisheries, C: slope groundfish ₍₁₈₎
		Spawning	Shelf break ₍₁₎ , deep water pelagic	Winter-spring, batch spawner, peak March, 25 wks, high production _(1,26,17)	1st mature: 5.5 yr 50%: 6.6 yr/65cm ♀, 5 yr/57 cm ♂ _(17,18) , females > males	Oviparous, high fecundity (120- 1000·10³) eggs, Skip- spawning _(1,17,18)	Opportunistic, <u>euphausiids</u> , pol/cod, capelin, herring, squid, jelly _(12,18,REEM)	P: Sperm whales, orca, fisheries, C: slope groundfish ₍₁₈₎
Polactic	eragic	Egg	Slope (>200-400 m), sink to deeper depths, negatively buoyant ₍₁₎	Late winter to early spring, 10 wks peak egg to peak larvae (17)	Egg size: 1.8-2.2 mm, large egg size _(17,RACE)	Max survival to hatch, 34-35ppt, 4-6.6°C (lab) ₍₂₂₎	Yolk (RACE)	
I o'rohs'reaV o	o mearshore	Larvae	Slope (>200-600 m) (hatch to yolk-sac), epipelagic over shelf and slope, 160 km offshore(1,2,7,17)	Late spring and summer, peak end May, 12 wks, epipelagic _(7,16,17,19)	10-80 mm SL _(1,7,16) , 1.2 mm/day, develop as obligate neuston _(7,10,16)	Growth threshold 22°C, optimum 12- 16°C (lab) ₍₉₎	copepod <u>nauplii</u> , <u>nauplii</u> , small copepods, small and large copepods _(1,29)	C: larval cottids, hexagrammids, wrymouths, non-obligate neustonic taxa ₍₇₎
Offshore to Nearshore Pelagic	опзпоть	YOY	Shelf ₍₁₎ , neuston and near surface (upper 10-20 cm of water column) _(1,10,17)	No marked transition time to stage, move to nearshore _(1,19)	60-230 mm FL (120 mm avg, neustonic), rapid growth, 1.2 mm/day ₍₁₀₎	Upper thermal limit near upper limit survival ₍₉₎ , absence lipid regulation ₍₂₃₎	Euphausiids, pelagic tunicates, other crustaceans, larval fish _(1,10)	P: Coho and chinook salmon ₍₃₁₎ , seabirds, C: active inshore migration ₍₁₎
Softlament	oemement	Juvenile	Nearshore (6-214 m), inlet, bay, fjord, strait, mixed mud, soft, proximity to rock _(3,4,6)	Late summer-fall, diel pelagic feeding excursions _(4,30)	300-400 mm after second summer, age 2+ <u>yrs</u> ₍₂₅₎		Herring, smelts, salmon remains, jellies ₍₃₀₎	P: Salmon, halibut (12,31), seabirds, C: macroalgae, sponge, anemone, whip, basket star, eelgrass, shelf groundfish(3, 12,15)
Nearshore Settlement	Pre- Recruit	Nearshore, shelf (10-207 m), inlet, bay, fjord, strait, mixed mud, soft, proximity to rock _(3,4,6,8)	Offshore movement begins after 2 nd summer ₍₂₅₎	<600 mm FL ₍₅₎ , age 2+ <u>yrs</u> ₍₁₀₎		Euphausiids, shrimp, pollock, other fish, other crustaceans, cephalopods, jellies, salmon (12,13,14)	P: Salmon, halibut (12,31), seabirds, C: sponge, whip, sea pen, coral, basket star, anemone, shelf groundfish(3,12)	

Life History Table


	Stage	Processes Affecting Survival	Relationship to Sablefish			
Adult	Recruit	Abundance of predators/competitors in preferred slope habitat Bottom temperature	Increases in main predators of sablefish would be negative but minor predators or competitors may indicate sablefish biomass increase. Increases in bottom temperature may impact spawning habitat.			
Ad	Spawning	 Large-scale offshore thermal environment winter before spawning₍₂₀₎ Condition, age of female spawners 	Stability of offshore thermal environment may be necessary for spawning and provide buffer. Poor body condition or earlier age of female spawners may result in lowered productivity, more variable spawn timing or skip spawning, and mismatch with spring bloom.			
e Pelagic	Egg	 Bottom temperatures Advection/retention Oxygen minimum zone 	Increases in bottom temperature and advection would be negative for egg stage resulting in early hatching or dispersal from preferred habitat. Shoaling of the oxygen minimum zone may also adversely impact survival to hatch.			
Offshore to Nearshore Pelagic	Larvae	 Surface temperature in neuston Match with spring bloom₍₁₇₎, abundant prey Currents that facilitate nearshore transport₍₁₎ 	Increases in temperature and zooplankton prey may be positive for sablefish that can utilize multiple prey types and have a high growth potential at warmer temperatures. Increases in nearshore transport to preferred habitat would be positive for sablefish during settlement transition.			
Offshore	YOY	 Surface temperature in neuston Spring/summer abundance of zooplankton prey(11) Currents that transport onto shelf(1) Predation 	Increases in temperature and zooplankton prey may be positive for sablefish similar to the larval stage. Increases in nearshore transport would assist with settlement to preferred habitat and increases in predation would be negative for sablefish although this is not an abundant species and not a common prey item.			
Settlement	Juvenile	 Summer/fall abundance of zooplankton prey (11) Bottom temperature in nearshore Predation 	Increases in preferred zooplankton prey would be positive for sablefish condition as they prepare to overwinter in the nearshore and higher bottom temperatures may assist with energetic costs of settlement. Predation would be negative for sablefish, although sablefish is not a primary prey item for most stocks.			
Nearshore Settlement	Pre- Recruit	Abundance of predators/competitors during transition from nearshore to offshore habitat Top-down predation increase on age 2+	Increases in encounter of main competitors and predators of juvenile sablefish would be negative but minor predators or competitors may indicate sablefish biomass increase. Increases in main predator of sablefish would be negative but minor predators such as seabirds may indicate sablefish biomass increase.			

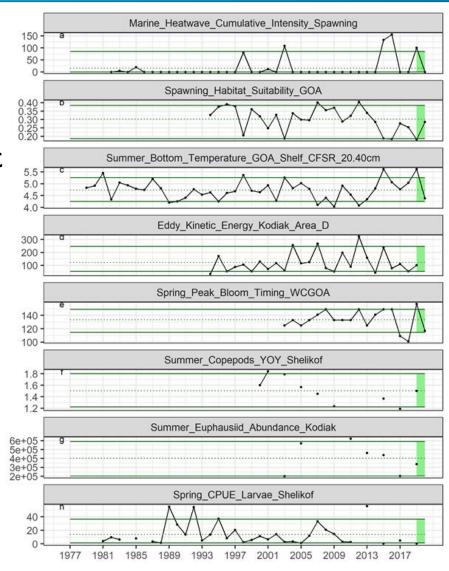
Ecosystem Processes - EFH



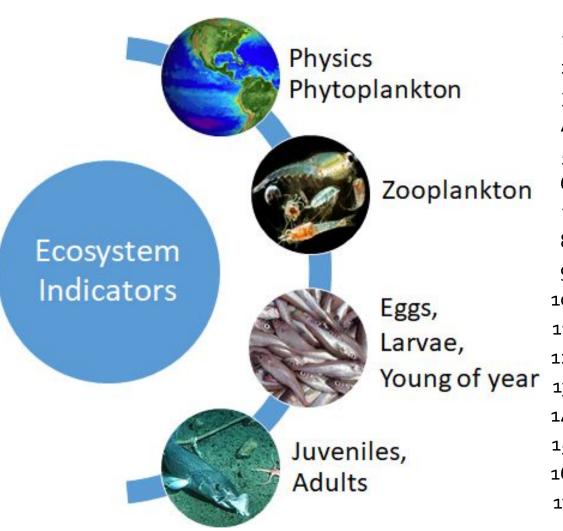
Socioeconomic Processes

- Economic Performance
 - Paired down version of economic performance report (~15 produced)
 - Highlight fishery statuswith 5yr summary tables
- Community engagement
 - Based on ACEPO report
 - Discusses communities dependent on stock

Socioeconomic Processes

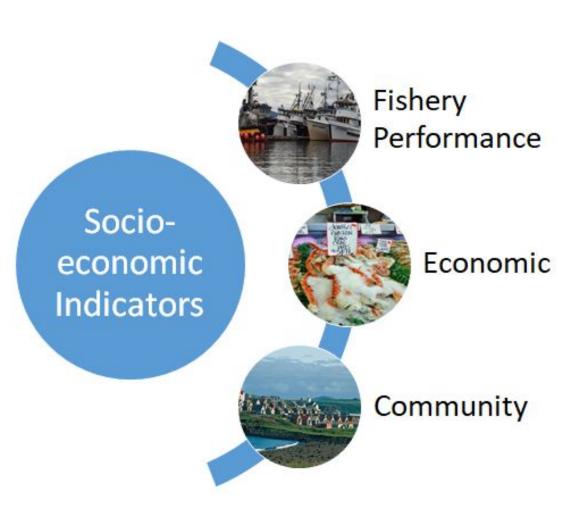

Indicators Assessment

Indicator Suite


- •Time series proxies for critical processes in metrics assessment
- Accessible, Consistent, Timely

Indicator Analysis

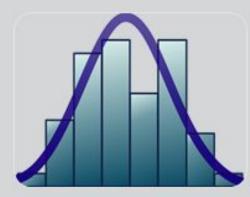
- •3 stages: traffic light simple scoring, importance methods, research ecosystem model
- Use results to provide context for management advice



Current ESP Indicators

- 1. Marine heatwave index
- 2. Bottom temperature (LL, BT, ROMS)
- 3. SST, wind stress, sea-ice (satellite)
- 4. Corrosivity index (ROMS-NPZ)
- 5. Production (chlorophyll a, satellite)
- 6. Small/Large copepods (CPR, survey)
- 7. Euphausiids (acoustic backscatter)
- 8. Seabird reproductive success
- 9. Larval fish abundance, condition
- 10. YOY biomass, growth seabird diets
- 11. Juvenile CPUE, condition (survey)
- 12. Juvenile predation mortality (model)
- 13. Proportion euphausiid in fish diet
- 14. Adult condition (survey, fishery)
- 15. Center of gravity, area occupied (VAST)
- 16. Predator biomass (ATF, Pacific cod)
- 17. Steller sea lion non-pup estimates

Current Socioeconomic Indicators



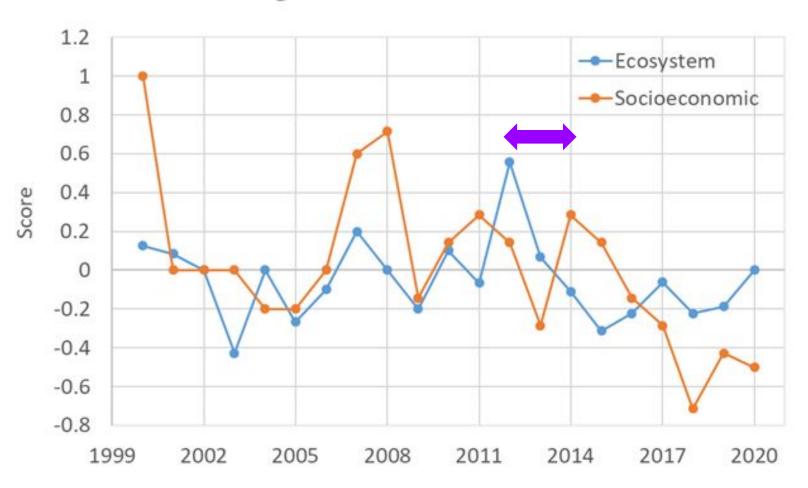
- 1. CPUE by season, gear
- 2. Effort (#vessels, #processors)
- 3. Bycatch by gear, region
- 4. Ex-vessel value, revenue share
- 5. Ex-vessel price per pound
- 6. Price by size class
- 7. Roe per-unit-catch
- 8. Fish condition in the fishery
- TAC utilization (percent)
- 10. Processors active in fishery
- 11. Processing employment
- 12. Local, Regional Quotient

Indicator Analysis Stages

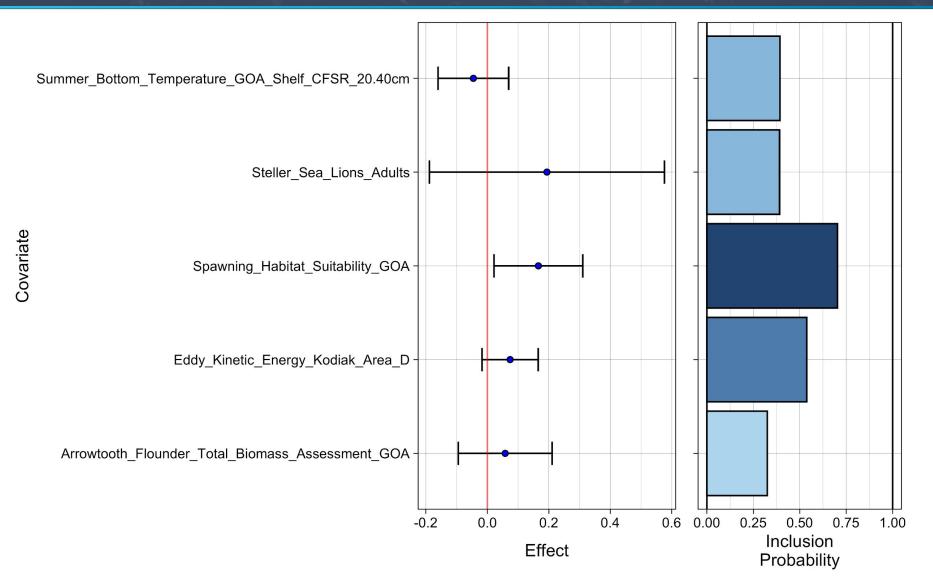
Traffic Light

- Historical simple score (SSC)
- Current year trends relative to mean of series
- Evaluate whole suite utility

Importance

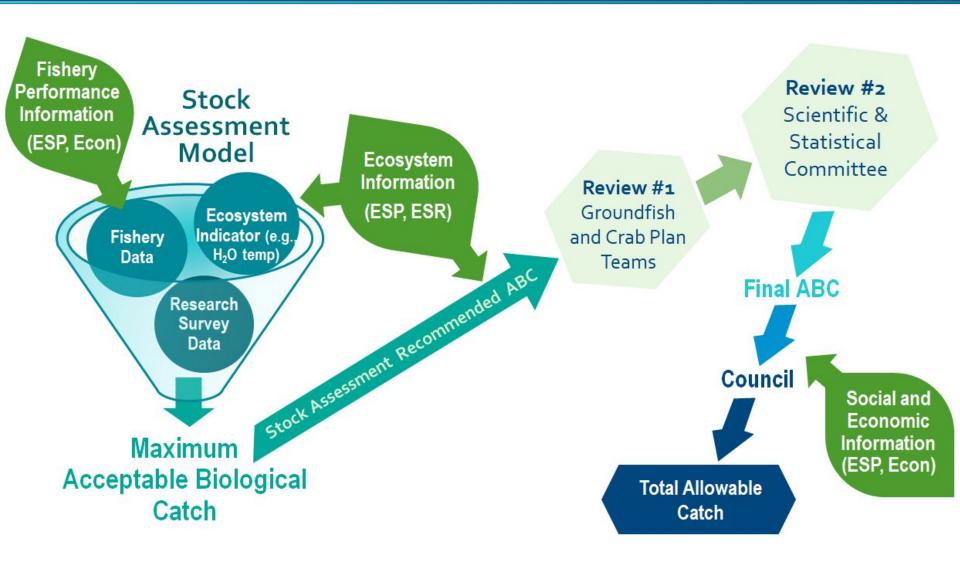

- Regression R²
- Direction, magnitude, uncertainty, inclusion weight
- Prediction performance

Ecosystem Model Run


- Comparison w/ operational
- Retrospective
- Prediction performance
- Terminal SSB

Stage 1 Historical Score

Overall Stage 1 Score for GOA Pacific Cod


Stage 2 Importance

Recommendations

- Ecosystem and Socioeconomic Summary
 - Main takeaways from the metric and indicator assessment for both the ecosystem and socioeconomics
 - Test results from indicator analysis stages 1-3
- Data Gaps and Research Priorities
 - Includes caveats of current indicators, discussion of needed indicators or improvements
 - Statement of ecosystem and socioeconomic research priorities for the ESP

Management Process

ESP in Management

Risk

ESP summary used in contextual manner to identify additional uncertainty not in model

Rebuilding

Indicator suite used to define regime for rebuilding plans

Readiness

ESP provides an on-ramp for indicators and an early warning system for extreme change

ESP Developments

•ESP Workshops, 2019-2021

- Three workshops funded by AFSC regional work plan
- Used to develop and implement ESPs for the AFSC
- Allow for program awareness, innovation, collaboration

•ESP Coordination

- New data accessibility option from ESP workshops
- Five ESP teams initiated since 2019, cross program reps
- Full and partial reporting templates, new report card
- Working group to coordinate EBFM activities at the AFSC

Workshop Organization

Data (<u>2019</u>) Review ESP Process

Coordinate

Create

Model (2020)

Review ESP

Discuss

Perform

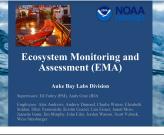
Improve

Advice (2021)

Update ESP

Forecast

Evaluate


Provide

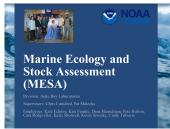
Data Workshop

Recruitment, Energetics,

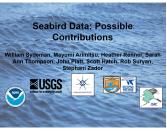
and Coastal Assessment

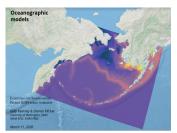
(RECA)

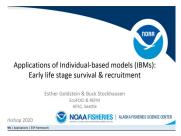
Employees: Emily Fergusson, Corey Fugate, Larry Holland, Jacek Maselko, Michele Masuda, Katharine Miller, John Moran, Matthew Rogers, Fletcher Sewall, Rob Suryan, Johanna Vollenweider


Science Support: Bryan Cormack, Tayler Jarvis, Darcie Neff, Haila

Supervisors: Todd Miller, Mandy Lindeberg (acting)




Alaska Regional Office Habitat Conservation Division Juneau, Alaska


Habitat and **Ecosystem Process** Research program James Thorson Core team: Mike Cameron. Phil Ganz, Tom Hurst, Mandy Lindeberg, Beth Matta

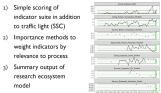
Model Workshop

Fleet Performance

NMFS Alaska Fisheries Science Center

Indicator

Marysia Szymkowiak

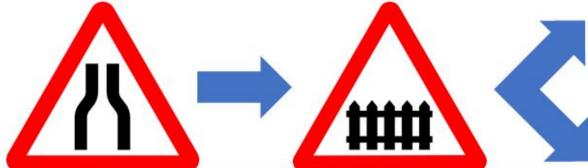


pecies Distribution Modeling (SDN

to Describe

Essential Fish Habitat (EFH)

in Alaska



Discussion sessions were limited due to COVID-19

Model Discussion Workshop

GATE 1: ESP

GATE 2: Model

Workshop #3

Management Advice

ESP Data

•ESP Data List from 2019 Workshop

- 130 plus indicators entered from many programs
- Lots of potential datasets that do not have a home
- Some indicators listed that are subsets of ESR indicators

•ESP Dashboard on AKFIN

- Same location as stock assessment dashboard, new tab
- Allows for increased visibility for these potential datasets
- Funded through AFSC Regional Work Plan and FIS

ESP Dashboard

Stock Assessment

Home

Favorites ▼

Signed In As Kalei Shotwell ▼

FSP Data

This page contains data of interest to generate Ecosystem and Socioeconomic Profiles (ESP's) for groundfish and crab stocks of Alaska.

Ecosystem

Oceanographic

MUR Temperature

Open Queries for downloading Multi-Resolution sea surface temperature by station and management areas.

CRW Temperature

Open Queries for downloading Coral Reef Watch, sea surface temperature, anomaly and marine heatwave by station and management area.

BASIS Ocean - Chlorophyll

Open A guery of the BASIS OCEAN database that summarizes average chlorophyll pivoted by CTD filter size.

BASIS Ocean - Surface Nutrients

Socioeconomics

Fishery Performance

CPUF

Catalog

Open Queries for downloading catch-per-uniteffort from fishery dependent sources.

Effort

Open Queries for downloading effort from fishery dependent sources.

Condition

Open Queries for downloading fish condition by sector.

Economics

Value

Open Queries for downloading price, revenue, and value by sector.

Exploratory

Surveys

BASIS Fish Catch All 0

Open A query of the BASIS FISH database that includes all stations sampled for a given year for all species juvenile catch records. The empty records are then filled in for all species with 0 catches. Catch includes fish from all life history stages.

BASIS Fish and Ocean

Open A combination of the BASIS FISH and OCEAN databases that reports on catch with average temperature and salinity along with average nutrients for the first 10 depths. Pivoted by all species.

Laboratory

RECA Energetics

ESP Teams & Reports

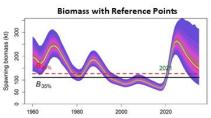
•ESP Teams

- Consist of subject matter experts from AFSC programs
- Contain a representative from status reporting teams
- Sablefish, GOA pollock, Pacific cod, Crab, Data-limited

•ESP Reports

- •Full template completed when ESP first initiated, ~5 years
- Partial template based on SAFE format, annual
- New report card template for updating in fall

Report Card Template


Sablefish (Anoplopoma fimbria)

Stock Assessment & Status

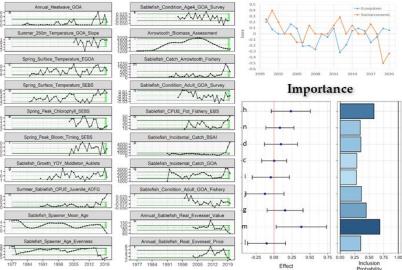
- Bering Sea/Aleutian Islands and Gulf of Alaska stock with custom statistical catch-at-age model
- Benchmark assessment in 2016 included CIE recommendations to 1) account for whale depredation on the survey and fishery, and 2) propagate more structural uncertainty of management quantities.

Year	ABC	OFL	Total Biomass	B/ B_MSY	F/ F_MSY	Recruits (mill #s)	Total Catch	Ex-Value (mill \$)
2015	13,657	16,128	188,000	0.66	0.78	26.63	10,970	100.6
2016	11,795	13,397	170,000	0.63	0.78	163.65	10,257	98
2017	13,083	15,485	206,000	0.60	0.88	123.44	12,270	123.5
2018	14,957	29,507	515,000	0.59	0.77	12.47	14,341	93.7
2019	15,068	32,798	414,000	0.66	0.58	17.5	16,624	73.6

This stock is not subjected to overfishing, currently overfished, nor approaching an overfished condition.

Research Priorities

- 1) Evaluate apportionment strategies for ABC, use spatially explicit research model
- ${\hbox{\bf 2)}} \quad \hbox{\bf Explore integration of ecosystem data to understand highly variable recruitment} \\$
 - 3) Refine fishery abundance index, identify covariates that affect catch rates



Sablefish (Anoplopoma fimbria)

Data rich stock, high recruitment variability, rapid early life growth, shifting distribution, high value

Indicators Score

- Presence of 2016 and 2019 year class in ADF&G survey, age 4 fish generally in poor condition, higher spatial overlap with arrowtooth in fishery, physical + but < from 2019, lower stable, upper slight >
- Incidental catch < in GOA, > in BSAI indicates expanding habitat, ex-vessel value and price/pound on recent decline, community analysis in progress

Research Model Performance (hypothetical)

Model	ABC	OFL	Cross Validation	Retrospective	Recruitment Comparison	SSB Comparison
SAFE	26,250	30,000	28% +/- 6%	+0.19	0.5	0.5
Eco	23,625	27,000	46% +/- 12%	+0.07	0.65	0.3

Assessment: https://www.afsc.noaa.gov/REFM/Docs/2019/GOAsablefish.pdf, Contact: Dana.Hanselman@noaa.gov ESP: https://www.afsc.noaa.gov/REFM/Docs/YEAR1/GOAsablefish.pdf, Contact: Kalei.Shotwell@noaa.gov

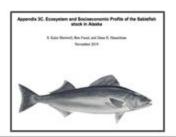
ESP Timeline

Recommendation to conduct ESP (Oct, Dec)

ESP Report Cards (Sept, Nov)

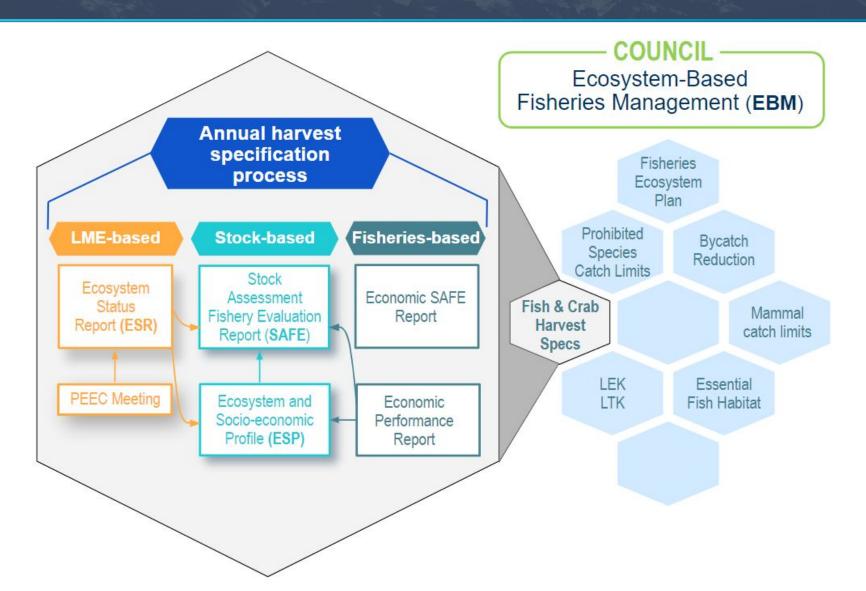
ESP Team Forms (Winter)

ESP Review (May, June)


Metric/Indicator Assessment (Spring)

AFSC EBM Activities

Coordinated Reporting


STOCK ASSSESSMENT AND FISHERY EVALUATION REPORT FOR THE GROUNDFISH FISHERIES OF THE GULF OF ALASKA AND BERING SEA/ALUTIAN ISLANDS AREA:

ECONOMIC STATUS OF THE GROUNDFISH FISHERIES OFF ALASKA,2018

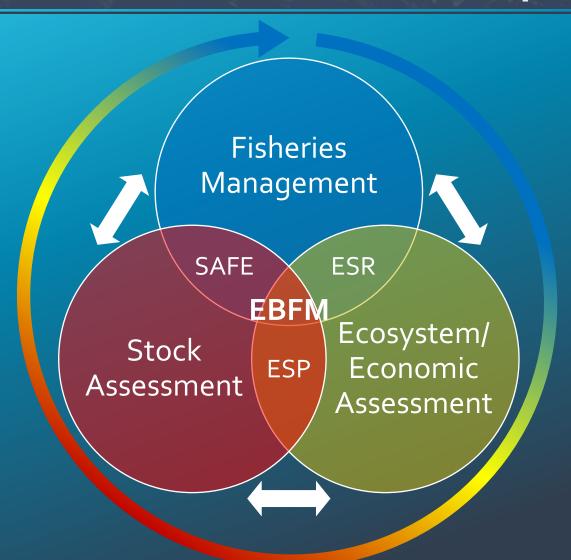
Report		ESR	ESP	Economic SAFE	SAFE Chapters	
Spatial	EFE!	Large Marine Ecosystem	Stock-Specific	FMP	Stock-Specific	
Temporal (Annual	Annual	Annual	Annual	
Ecological Community		Mixed	Stock-specific		Stock-specific	
Socio-Econ Community	8	Mixed	Fishery specific	Place/Practice	Fishery specific	
Intent		Summary	Assessment	Summary	Assessment	

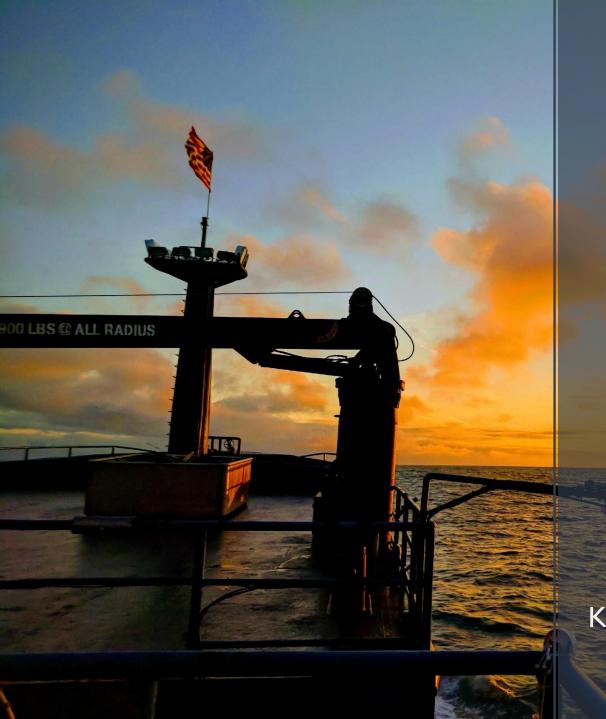
Coordinated Communication

Next Steps

•2021 Plans

- Advice Workshop, March 15-17, 2021
- ESP review ESPs: May PEEC & CPT, June SSC
- 4 partial ESPs, 4 new ESPs, 8 report cards


Coordination


- Continue developing dashboard on AKFIN
- Standard indicator suite (EFH, ESR), automation

Manuscripts

• ESP introduction (In Review), workshop summary

Communication Loop

Questions?

Contact:

Kalei Shotwell, NOAA-AFSC Kalei.Shotwell@noaa.gov