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* |ntro to module

e Brief background
e Module overview:

a) Synthesize current & projected climate change impacts

b) Rapid Climate Vulnerability Assessments,

c¢) Operationalized climate change management strategy evaluations (MSEs)

d) Project changes in species distributions and phenology

e) Performance, validation, and operationalized delivery of 9 month seasonal forecasts

* Next Steps:

O Taskforce
O Products
O Tracking progress



GOAL:

“support climate change adaptation pathways and long-term
resilience for the coupled social-ecological system of the Eastern
Bering Sea”

v’ synthesize current knowledge regarding climate change effects on the EBS system,

v' identify potential climate-resilient management measures that can improve adaptive
capacity and avoid maladaptation

v’ evaluate the risk, timescale, and probability of success of various climate-resilient
management policies under future scenarios of change.

Policy relevant not policy prescriptive

(climate-resilient management would go through the existing
Council process)




v’ Risk inherently depends on values
v Include a “plurality of perspectives” *

v Consider interacting (non-linear) pressures

“Interconnections among risks can span sectors and regions with multiple
climatic and non-climatic influences, including societal responses to climate
change and other issues (Helbing 2013; Moser and Hart 2015; Oppenheimer
2013)”

- Mach et al. 2016




“One ongoing challenge is developing and addressing research questions from a
Traditional Knowledge lens rather than solely from a western researcher's perspective.”

Raymond-Yakoubian, J., & Daniel, R. (2018). Marine Policy, 97:101-108.

WHO?

Taskforce comprised of diverse knowledge
holders and experts




d)

WHAT:

Synthesize current and projected climate change impacts on the coupled social-ecological Bering
Sea system through synthesis of diverse knowledge sources of understanding, context and impacts
of change and evaluation of future impacts and risk.

Rapid Climate Vulnerability Assessments, which use expert knowledge to identify vulnerable
species and communities to climate change and prioritize research needs.

Operationalized climate change management strategy evaluations (MSEs) of various alternative
harvest strategies for key species under the most recent Intergovernmental Panel on Climate
Change projections of carbon mitigation scenarios (sensu ACLIM: Alaska Climate Integrated
Modeling Project). Include synthesis of current understanding from cross regional and global
coordination of ensemble modeling projects aimed at evaluating climate-resilient management
tools.

Project changes in species distributions and phenology which includes projected changes in
habitat under future climate scenarios in order to estimate potential shifts in BSAl FMP species
distributions and potential fishing grounds (sensu Predicting changes in habitat for groundfishes
under future climate scenarios using spatial distribution modeling)

Performance, validation, and operationalized delivery of 9 month seasonal forecasts of Bering
Sea conditions and fish and fisheries specifically aimed at informing the annual groundfish
assessment cycle (sensu The Bering Seasons Project).




WHY?
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| Mean warming not variability drives marine heatwave trends

“We find that mean SST change was the dominant driver of

increasing MHW exposure over nearly two thirds of the ocean,
G Spingar g Gt Geymany patof Seinge e 2019 and of changes in MHW intensity over approximately one third
of the ocean. “

Eric C. J. Oliver'®




Climate change effects Economic impact

Ocean warming

Ocean acidification

Sea-level rise

Reduced oxygenation

Ocean & atmosphere
circulaion changes

Changes in precipitatio

Increase in extreme
weather events

Reduce ice & snow pack

Marine industries
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Confidence in effects
Il Very high
Il High to very high
I High
B Medium high
I Medium
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*IPCC confidence levels assigned to impacts on marine industries

Ocean warming
Ocean acidification

Reduced oxygenation ——_—__
Increase in extreme weather events

Ocean & atmosphere circulation changes

Wild-capture fisheries
Aguaculture

Pharmaceuticals, chemicals
Tourism

— Harvesting of living resources®

— Commerce and trade
in and around the ocean

— Extraction of non-living resources,
generation of new resources
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— Responses to ocean health challenges

Type ofimpacton  Level of industry

marine industry developmemt
B Positive [l Established
B Negative B Emergent
Neutral or New
ambiguous

Climate change in the oceans: Human impacts and responses E. Allison and H. R. Bassett (November 12, 2015) Science 350 (6262), 778-782.
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Holsman, K. K., Hazen, E. L., Haynie, A., Gourguet, S., Hollowed, A., Bograd, S. J., ... Aydin, K. (2019). Towards climate resiliency in fisheries
management. ICES Journal of Marine Science. https://doi.org/10.1093/icesims/fsz031




Test new & existing tools

gm—

incremental (normative) adaptation to preserve current livelihoods,
health, and well being and meet future demands

Adaptation =
transformational adaptation, especially to address/prevent continued

marginalization and promote diverse well being, values, and views

Build capacity to revaluate &
enable transformative actions

Iterative Decision Cycles
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Fig. 1 from Wise et al. 2014. Reconceptualising adaptation to climate change as part of pathways
of change and response. Global Environmental Change 28: 325-336
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Adaptation goals, limits, and thresholds evolve over time (Adger et al. 2009)


any limits to adaptation depend on the goals of adaptation, which are themselves dependent on diverse values.
adaptation need not be limited by uncertain knowledge of future climate change.
social and individual characteristics act as limits to adaptation
the systematic undervaluation of involuntary loss of places and cultures disguises real, experienced but subjective limits to adaptation

“issues of values and ethics, risk, knowledge and culture construct societal limits to adaptation, but that these limits are mutable”
Adger et al. (2009). Are there social limits to adaptation to climate change? Climatic Change, 93(3–4), 335–354. https://doi.org/10.1007/s10584-008-9520-z
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‘Adaptive Policymaking’
Every 5 Yr

1 Describe current
situation, objectives,
-

& uncertainties
- ' \
10 Monitor

2 Analyze the problem,
vulnerabilities &
A NNua4d | |y Q@ opportunities using
S& transient scenarios
S &
Development of
9 Implement the . 3 Identify actions o
plan dynamic e
4 adaptive policy / \ \‘
: _ pathways ‘.
8 Specify a dynamic 4a Assess efficacy, 4bReassess '
adaptive plan sell-by date of vulnerabilities  §
actions with & opportunities ,
transient scenarios :

- X f 4 Annually
7 Determine contingency <4

_ ; 5 Develop adaptation __ _« .
actions and triggers pathways and map D urin g M Od u | e
\\ 6 Select preferred /
pathway(s)

Fig. 4. The Dynamic Adaptive Policy Pathways approach.

M. Haasnoot et al. / Global Environmental Change 23 (2013) 488 485-498
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Modeled effect of coastal biogeochemical processes, climate
variability, and ocean acidification on aragonite saturation state in the
Bering Sea

Annual Mean Surface

March 06, 2019

H (2003-2012)

Pilcher, D.]., D.M. Naiman, J.N. Cross, A.]). Hermann, S.A. Siedlecki, G.A. Gibson, and
J.T. Mathis (2019): Modeled effect of coastal biogeochemical processes, climate
variability, and ocean acidification on aragonite saturation state in the Bering

Sea. Front. Mar. Sci., 5, 508, doi: 10.3389/fmars.2018.00508.

Due to naturally cold, low carbonate concentration waters, the Bering Sea is
highly vulnerable to ocean acidification (OA), the process in which the
absorption of human-released carbon dioxide by the oceans leads to a decrease
in ocean water pH and carbonate ion concentration. Emerging evidence
suggests that a number of important species in the Bering Sea (such as red

e 180°W 170w 160°W king crab and Pacific cod) are vulnerable to OA due to direct (e.g., reduced
growth and survival rates) and indirect (e.g., reduced food sources) effects.
However, the harsh winter conditions, prevalence of sea ice, and large size of

Modeled annual mean surface pH over the 2003-12
timeframe. Cooler colors indicate corrosive, low pH water
while warmer colors indicate relatively buffered, high pH
water

In this paper, the authors developed a computational
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ICES Journal of Marine Science (2019), doi:10.1093/icesjms/fsz043

Contribution to the Symposium: ‘The effects of climate change on the world’s oceans’
Projected biophysical conditions of the Bering Sea to 2100
under multiple emission scenarios

Albert J. Hermann"?*, Georgina A. Gibson?, Wei Cheng'?, Ivonne Ortiz", Kerim Aydin®,
Muyin Wang'?, Anne B. Hollowed®, and Kirstin K. Holsman*
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conditions of the Bering Sea to 2100 under multiple emission scenarios. ICES. doi: 10.1093/ices/fsz043




HOW?

b) Climate Vulnerability Assessments



Presenter
Presentation Notes




Methodology — Framework

[Species Vulnerability]

r—y

Exposure

Sea surface temperature
Bottom temperature

Air temperature

Salinity

Ocean acidification (pH)
Precipitation

Currents

Sea surface height
Large zooplankton
biomass

Phytoplankton biomass
and bloom timing

Mixed layer depth

Sensitivity

Habitat Specificity

Prey Specificity
Sensitivity to Ocean
Acidification

Sensitivity to Temperature
Stock Size/Status

Other Stressors

Adult Mobility

Spawning Cycle

Complexity in Reproductive
Strategy

Early Life History Survival
and Settlement
Requirements

Population Growth Rate
Dispersal of Early Life
Stages

Slide credit: P. Spencer
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12 Sensitivity attributes
Exposure variables will change depending on the region
12 Sensitivity variables will be consistent across all regions.

Note– exposure is future climate with current distribution…. Sensitivity is the here and now



Pacific ocean perch — Sebastes alufus
Overall Vulnerability Rank = Moderate
Biological Sensitivity = High ]
Climate Exposure = Moderate
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Slide credit: P. Spencer
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This graph shows two types of uncertainty – the distribution of scores across the ranking categories, and the bootstrap analysis.
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Fig. 11. Individual components of the final ocean acidification risk index for each census area.
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Exposure and dependency



Marine Policy 51 (2015) 119-127

Contents lists available at ScienceDirect

Marine Policy

journal homepage: www.elsevier.com/locate/marpol

Vessels, risks, and rules: Planning for safe shipping in Bering Strait @CM

Henry P. Huntington **, Raychelle Daniel ®, Andrew Hartsig ¢, Kevin Harun ¢,
Marilyn Heiman ", Rosa Meehan ¢, George Noongwook ', Leslie Pearson #,
Melissa Prior-Parks”, Martin Robards", George Stetson'

Table 1

Comparison of environmental and cultural risks (columns) and regulatory measures (rows). The first four risks are environmental ones and also cultural risks for those who
depend on the environment for food and well-being. Note that most or all regulatory measures can be implemented by voluntary, domestic, or international action. Which
vessels would be covered by each type of action, and how much of the risk would be reduced, depends on the details of the shipping activities in question.

Risk/Regulatory measure Ship Noise Discharges and Accidental oil Vessel Disturbance to Damage to cultural
strikes contamination spills collisions hunting heritage
Shipping lanes X X X X X
Areas-to-be-avoided X X X X X X
Speed limits X X X X
Communications X X X X
Reporting systems X X
Emission controls X X X
Salvage and oil spill prevention and X X
preparedness
Rescue tug capability X X
Voyage and contingency planning X X X X X
Charting X X
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c) Operationalized climate change management
strategy evaluations (MSEs)
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Global Climate Models (x 7) ACLIM
ECHO-G Alaska Climate Integrated Modeling Project

MIROC3.2 med res. Anne Hollowed (AFSC, SSMA/REFM)
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AR5 RCP 45 Jonathan Reum (UW SAFS)
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The ACLIM team

Anne Hollowed  Kirstin Holsman Alan Haynie Kerim Aydin ~ Albert Hermann Wei Cheng  Stephen Kasperski

>
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Jim lanelli Buck Stockhausen
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o e oF &

Paul Spencer Michael Dalton Darren Pilcher  Tom Wilderbuer  Cody Szuwalski Jim Thorson Ingrid Spies

www.fisheries.noaa.gov/alaska/ecosystems/alaska-climate-integrated-modeling-project
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http://www.fisheries.noaa.gov/alaska/ecosystems/alaska-climate-integrated-modeling-project

Challenges to evaluating adaptation options:

e long time horizons of adaptation outcomes;

e the shifting baseline and uncertainty around climate hazards;

e assessing attribution of any results;

e addressing the additional climate risk and counterfactual scenarios

“an approach built on mixed methods, participation and learning helps alleviate some
of the uncertainties around interpreting results on adaptation.” Craft & Fisher 2018, Fisher 2015

Repeated engagement

Dec 2018
FEP & .
climate April 2019
ACLIM b 2018 module S5C
May 2017 Presented to Fe 1 adopted Social-
Fisheries ecosystem Ecosystem by ecological
Forum (CA) subcommittee workshop NPFMC ppt
Summer ‘ October ‘ Oct 2018 ‘ Jan 2019 ’ April 2019
szill\; c 20y ACLIM ssC P
ACLIM BO projections ROMSNPZ Sce”kaﬂos
Econ results included in presentation workshop
scerllaLlos presented CEATTLE
workshop to Council multispp

assmnt
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Pollock Spawning biomass

Scenario 1

Scenario 2

0,
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I I
2000 2020

lanelli, J KK Holsman, AE Punt, K Aydin (2016). Multi-model inference for incorporating trophic and
climate uncertainty into stock assessment estimates of fishery biological reference points. Deep Sea
Res Il. 134: 379-389 DOI: 10.1016/j.dsr2.2015.04.002




HOW?

d) Project changes in species distributions and
phenology
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Future Essential Fish Habitat

(Chris Rooper, Ivonne Ortiz, Ned Laman, Al Hermann, in prep)
Used Slope, SE Bering Sea shelf and Northern Bering Sea data
to build EFH models 1982-2017 except when noted

1) AK plaice 6) Walleye pollock

2) Arrowtooth flounder (1993-) 7) Red king crab (1996- )
3) flathead sole 8) Snow crab

4) Northern rock sole (2001-) 9) Tanner crab

5) Pacific cod 10)Yellowfin sole

Variables used: depth, slope, maximum tidal current, sediment
grain size, mean bottom ocean current, bottom temperature

Slide credit: I. Ortiz
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* |ntro to module

e Brief background
e Module overview:

a) Synthesize current & projected climate change impacts

b) Rapid Climate Vulnerability Assessments,

c¢) Operationalized climate change management strategy evaluations (MSEs)

d) Project changes in species distributions and phenology

e) Performance, validation, and operationalized delivery of 9 month seasonal forecasts

* Next Steps:

O Taskforce
O Products
O Tracking progress
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