Optimizing age-reading efforts
Goal:

Optimally allocate age-reading efforts across samples and species

Approach:

* Break pipeline into four pieces
1. Number of ages Ny ominai to input sample size My,
2. Mynpye affects effective sample size, Nerrective
3. MNggrective affects stock-assessment variance Var(X)
4.  Var(X) affects management performance

* Bootstrap simulation for step #1
e Simulation-test using age-structured operating model

* Theoretical result for step #2
e Simulation-test using population-dynamics model

Thorson, Bryan, Hulson, Punt. 2020. Simulation testing a new multi-stage process to measure
the effect of increased sampling effort on effective sample size for age and length data. ICES
Journal of Marine Science 77:1728-1737.



Optimizing age-reading efforts

Step #1 approach — Simulation evaluation

* Fit age-structured spatio-temporal model to walleye Pollock
and use as operating model

e Simulate proportions using operating model
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Optimizing age-reading efforts
Step #2 approach — Theoretical relationship

é. Based on “linear” Dirichlet-multinomial approach to weighting age/length
ata
0
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2. Decompose variance into model and sampling error
Vartotal = Varsampling + Varmodel mis—specification
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Optimizing age-reading efforts
Step #2 approach — Theoretical relationship
M (t)

anfective (t) — n;nput(t) + ,B
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Optimizing age-reading efforts
Step #2 approach — Simulation evaluation

* Simulate age-structured Prediction , Result

dynamics with age-and-
time varying selectivity

From 20 to 50

* Fit age-structured model

with Dirichlet-multinomial

and constant selectivity

* Age data downweighted due
to model mis-specification

From 20 to 100

Heffective

* Predict change in effective
sample size

 Compare with effective
sample size given larger
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The impact of changes to otolith field-sampling and ageing effort on
input sample sizes and catch recommendation uncertainty

Project Team Dusky Rockfish Pacific Ocean Perch Walleye Pollock
* JimThorson '
* Andre Punt
* Pete Hulson

* Jim lanelli
* Meaghan Bryan

Questions for plan team:

* Important EBS stocks to apply this to?

* s it useful to have this type of analysis become a routine part of
assessments?

e Should AFSC have a formal process to evaluate which stocks need
more/less ageing effort?

Future research questions:

* Corroborate w/ model-based approach to generate N,

* How does reduction in tows affect designed-based index generation?
What is this effect relative to age comps?




Survey age composition

Background
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Dusky Rockfish; Fenske et al. (2020)

Sample Sizes

Can otolith sampling efforts be redistributed across species
w/o increasing survey effort or catch recommendation
uncertainty?

* What are the tradeoffs re: sampling cost & revenue?

How would changes to sampling affect data weighting?
* Multinomial vs. Dirichlet-Multinomial (D-M) likelihood
* Multinomial typically paired w/ iterative tuning
* D-M provides similar estimates of N w/o iterative process

 Estimate 8 (governs ratio of N, & Ngg)

Input

* Nominal (NomSS): # of otoliths collected & aged
* Input (N, ) initial relative weighting of comps data in model; upper bound on D-M weighting
* Effective (N): estimated weighting based on fit of comps data in model

Dirichlet
Multinomial

Ng ~
F(nt + 1) F(@nt) F(Tltﬂa,t + Hntﬂa,t)

L(T,;m,0,n,) =

H?ilr(ntﬁa,t + 1) [(n; + 6n;) o1 F(Gntna,t)



Objectives

1. Identify the effect of re-distributing otolith sampling & ageing efforts among data-rich,

data-moderate, and data-poor species on N, ; calculations

2. Associate a monetary cost to changes in otolith sampling & ageing efforts; define
relationship between cost & uncertainty in catch recommendations from stock
assessment models

3. Determine potential changes in revenue as a function of changing catch recommendation
uncertainty across sampling rate scenarios



Work Flow

Bootstrap
Estimator

Conduct
Stock
Assessment

* Generate new datasets
of age data

* Sample & change
number of tows or
otoliths

* Resample tows &
otoliths

* Calculate input sample

size (Nynpe)

* Use age compositions
generated from new
datasets

* Usecalculated N,

* Dirichlet-Multinomial
distribution & &-based
N calculation

*  Run assessment

models

 Bootstrap Sampling Methods:

Changing the number of otoliths for each tow (‘Otoliths Changed’)
Changing the number of tows (‘“Tows Changed’)

e Bootstrap Sampling Scenarios:

+ 0%, £ 33%, £ 67%




Bootstrap Estimator

) T8

Bootstrapping of sample sizes for length- or age-composition
data used 1n stock assessments

Ian J. Stewart and Owen S. Hamel

Pull length data for survey

| Calculate input
_ Expand length data sample size for S, - p)
Sample tows with replacement kep| for each bootstrap =] each bootstrap el 3
\ replicate replicate of length 2‘“ - B
Sample lengths from these comps (B,)
tows, keep sample size




Bootstrap Estimator

Specimen bootstrap |

Pull age data from RACE database

sample otoliths from these
tows at specified rate

Specimen hootstrap dataset (m =1,...,50)

| Expansion bootstrap |

Apply ALK to
expand ages,

Resample age get Pta,b
data by tows &
otohths -on- tows
Initiate expansion, for b=1,..100

v expand lengths;
Sample tows at specified rate p| length composition
\ & indices of

‘Otoliths changed’ method: abundance fixed

Apply Egn 2 to get the

N;ppu(t) for each m

Apply Egn 1 to
get N, , for each b
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_ Za=1Prap X (1-Prap)

N,, = —
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Equation 1

Variance in

bootstrapped comps

Equation 2 Zb—mt.?f)_l

Nlnpllt(t) = ( _100

Harmonic mean
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Bootstrap Estimator

Otoliths Changed

Tows Changed
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* Model runs cycled through
M Od e I O ut p ut (O F L) : *  Nj,u(t) from bootstrap estimator

Scaled Density
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Uncertainty in OFL

Metric

* 0% scenario is just resampled

Dusky Rockfish

Pacific Ocean Perch

Walleye Pollock
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[ Species | $usD/Ib | $usD/mt [ $USD millions |
CO St- Reve nue 0.442 974.4 0.94 r—

0.196 432.1 10.18 ® Otoliths Changed
0.138 304.2 36.12 ® Tows Change
P-star approach: MAD log(OFL) SD log(OFL)
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