ADVANCING ESSENTIAL FISH HABITAT DESCRIPTIONS AND MAPS FOR THE 2022 5-YEAR REVIEW

NED LAMAN¹, JODI PIRTLE²,
JIM THORSON³

PLAN TEAM MEETING SEATTLE, WA 09/08/2020

- ¹ Groundfish Assessment Program (GAP), Alaska Fisheries Science Center (AFSC), Seattle, WA ² Habitat Conservation Division (HCD), NMFS Alaska Region, Juneau, AK
- ³ Habitat and Ecological Processes Research (HEPR) Program, AFSC, Seattle, WA

CONTRIBUTORS / AFFILIATIONS

Cheryl Barnes^{1,2,3}, Christina Conrath⁴, Louise Copeman^{5,6}, Alison Deary⁷, Matt Eagleton⁸, Georgina Gibson⁹, Gretchen Harrington¹, Jeremy Harris¹⁰, Tom Hurst⁵, Ben Laurel⁵, Jennifer Marsh^{1,11}, Franz Mueter¹¹, Chris Rooper¹², S. Kalei Shotwell¹³, William Stockhausen¹⁴

- ¹ Habitat Conservation Division (HCD), NMFS Alaska Region, Juneau, AK
- ² Habitat and Ecological Processes Research (HEPR) Program, AFSC, Seattle, WA
- ³ University of Washington, Seattle, WA
- ⁴ Groundfish Assessment Program (GAP), Alaska Fisheries Science Center (AFSC), Kodiak, AK
- ⁵ Fisheries Behavioral Ecology Program, AFSC, Newport, OR
- ⁶ Oregon State University (OSU), Newport, OR
- ⁷ Recruitment Processes Program, AFSC, Seattle, WA
- ⁸ HCD, NMFS Alaska Region, Anchorage, AK
- ⁹ University of Alaska Fairbanks, Fairbanks, AK
- ¹⁰ GAP, AFSC, Seattle, WA
- ¹¹ University of Alaska Fairbanks, Juneau, AK
- ¹² Department of Fisheries and Oceans, Nanaimo, BC, Canada
- ¹³ Resource Ecology and Fisheries Management (REFM), AFSC, Juneau, AK
- ¹⁴ REFM, AFSC, Seattle, WA

EFH RESEARCH

EFH research objectives to be accomplished by the next EFH 5-year Review (2022):

- 1. Develop EFH Level 1 information (distribution) for life stages and areas where missing.
- 2. Raise EFH level from Level 1 or 2 (habitatrelated density or abundance) to Level 3 (habitat-related growth, reproduction, or survival rates).

OUTLINE

Research

Advancing EFH for North Pacific Species in Alaska (Laman et al.) First Model-based Arctic EFH (Marsh et al.) Juvenile Walleye Pollock Thermal Habitat (Laurel et al.) Individual-based Models to Advance EFH (Shotwell et al.)

Focus Questions

How do we construct the ensemble? How do we map EFH Level 3 (habitat-related growth, survival, or reproduction)?

ADVANCING EFH FOR NORTH PACIFIC SPECIES IN ALASKA (LAMAN et al.)

Since the 2017 EFH Review:

- 5 bottom trawl survey years added (2015-19)
- Improved GOA bathymetry
- Introduced nearshore data and early juvenile life stage – None to Level 2
- Updated maturity schedules and redefined life stages
- Skill testing and model selection
- Modeling refinements None and Level 1 to Level 2
- Habitat-linked growth potential Level 3

SKILL TESTING AND MODEL SELECTION

2017 Review (a priori assignment)

- Maxent
- hGAM
- GAM

2020 Laman et al. (skill testing)

- Maxent
- hGAM
- GAM
- paGAM

2022 Review (skill testing)

- Maxent
- hGAM
- GAM
- paGAM
- Negative binomial
- Ensemble

(cont'd) EVALUATING MODEL PERFORMANCE ("SKILL TESTING")

Root-mean-square-error

$$RMSE = \sqrt{\frac{\sum_{i}^{20} \sum_{j}^{n_{i}} (y_{ij} - x_{ij})^{2}}{\sum_{i}^{20} n_{i}}}$$

y_{ij} is the predicted numerical abundance,
x_{ij} is the observed numerical abundance at trawl
station j in cross validation fold i, and
n_i is the number of trawl stations sampled in the
ith fold

Evolution of EFH

A bridging example for adult sablefish in the eastern Bering Sea

FIRST U.S. ARCTIC MODEL-BASED EFH (MARSH et al.)

Arctic SDM-based EFH maps and descriptions for Arctic cod, saffron cod, and snow crab

SDM covariates

SDM maps and SDM-based EFH maps

LEVEL 3 EFH: THERMAL HABITAT FOR JUVENILE WALLEYE POLLOCK (LAUREL et al.)

- Early juvenile stage pollock (40-120 mm)
- Laboratory studies identified temperature-dependent growth and lipid accumulation (condition) rates for summer and winter
- Map is the product of summer growth rate and an SDM

Vital rates as f(temperature)

Habitat-related growth potential

LEVEL 3 EFH: CO-MAPPING TO LINK SDM PREDICTIONS WITH VITAL RATES FOR EFH MAPS (*LAMAN et al.*)

Areas with the top 25% of SDMpredicted abundance ("hot spots")
roughly correspond to areas of
perennially higher growth potential

Temperature-dependent subadult POP summer growth

INDIVIDUAL-BASED MODELS (IBM) TO ADVANCE EFH (SHOTWELL et al.)

EFH Level 1: Initial IBM run will create the presence/absence map – life stage trajectory of survivors (**Fig. 1a**).

EFH Level 2: Model trajectories are post-processed with spatially-explicit spawning biomass information to create the relative abundance map. (similar to **Fig. 1b**).

EFH Level 3: Trajectories are further post-processed with vital rates to create maps of habitat-related survival and growth potential.

Pacific cod successful epipelagic juveniles

QUESTIONS AND TOPICS FOR DISCUSSION

FOCUS QUESTIONS

- 1. For the ensemble, what criteria should we use for inclusion (when do we drop a constituent) and how do we weight the models (equal or skill-based weighting)?
- 2. Is there a preference for comapping or map products (SDM*vital rate) when combining Level 2 EFH maps with Level 3 vital rates?

ADDITIONAL TOPICS

- How best can we incorporate and visualize uncertainty in mapping EFH?
- What is the best format and timing to communicate results of EFH projects to the Stock Authors for review?
- How can this EFH research support stock assessment and EBFM?

THANKYOU

NED LAMAN

NED.LAMAN@NOAA.GOV 206-526-4832

JODI PIRTLE

JODI.PIRTLE@NOAA.GOV 907-586-7006

MAPPING EFH UNCERTAINTY

- Discussion Topic:

 How best can we
 incorporate and
 visualize uncertainty in
 mapping EFH?
- Example: Arrowtooth flounder standard deviation of predicted abundance among k-fold replicates.

CONSTRUCTING EFH FROM SDM

2017 SDM EFH:

- Minimum threshold for presence
- Values ≤ minimum abundance or probability considered absent
- Fig. 1a

2022 SDM EFH:

- Cumulative distribution function
- Fig. 1b

INTEGRATING VITAL RATES AND SDM TO MAP EFH LEVEL 3

Early Juvenile Walleye Pollock (40-120 mm)

Temperature-dependent growth rate

Growth rates of suitable habitat (co-mapping)

Early juvenile pollock habitat suitability

Habitat-related growth potential (product)