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Abstract 
Fish stocks in the Bering Sea, Aleutian Islands, and Gulf of Alaska are managed by the North Pacific 
Fisheries Management Council through a six tier system. These tiers are defined by the data availability 
and complexity of assessment method. In particular, Tiers 4 and 5 of this system use the area-swept 
biomass from bottom trawl surveys performed by the Alaska Fisheries Science Center in a random effects 
model to estimate total biomass from which management quantities of Acceptable Biological Catch and 
the Overfishing Limit are determined. In this study, we present a method in which population indices 
from a longline survey are also incorporated into the random effects model using the Gulf of Alaska 
shortraker rockfish and shortspine thornyhead stocks as examples of the development of this method. 
Overall, we find that estimates of biomass, as well as apportionment of biomass among sub-regions of the 
Gulf of Alaska, become more stable over time when random effects models incorporate longline survey 
population indices in addition to bottom trawl survey biomass estimates. We also show that this method 
can be used to evaluate spatial estimation of the catchability coefficient between the two surveys, as well 
as relative weighting of the longline survey index. This method may also be useful for several other Tier 5 
species, as well as sub-region apportionment of biomass for Tier 3 stocks that are captured by both 
surveys. 

Introduction 
In the Fishery Management Plan (FMP) for groundfish in the Bering Sea (BS), Aleutian Islands (AI), and 
Gulf of Alaska (GOA) a tier system that defines the complexity of assessment methods is utilized to 
manage exploited fish stocks (e.g., NPFMC 2018a, NPFMC 2018b). This system has six tiers defined by 
data and assessment result requirements. Estimates of spawning biomass and management quantities in 
tier’s 1-3 are provided by age-structured assessment models and are differentiated by the quality of the 
model’s estimates of biomass, fishing mortality rates, and the their uncertainty. Exploitable biomass and 
management quantities in tier’s 4-6 are provided by fishery-independent survey estimates of biomass 
(tier’s 4 and 5) or fishery catch (tier 6). Specifically, in tiers 4 and 5, exploitable biomass is estimated 
through the use of area-swept biomass estimates that are provided by Alaska Fisheries Science Center 
(AFSC) bottom trawl surveys (hereon called the ‘bottom trawl survey’). Historically, the estimates of 
exploitable biomass for tier 4 and 5 stocks or complexes in any given assessment year has been provided 
through various statistics and models, including a weighted (Echave and Shotwell, 2013) or unweighted 
(Spies et al. 2012) average of bottom trawl survey biomass, the bottom trawl survey biomass from the 
most recent year (Shotwell et al., 2013), or surplus production models (Spencer and Rooper 2012). 



Since 1987, AFSC has conducted an annual survey to assess sablefish (Anoplopoma fimbria) and other 
species using longline gear (hereafter referred to as the ‘longline survey’; Hanselman et al. 2018). While 
the sablefish assessment relies heavily on the longline survey, other applications of these data are for 
GOA Pacific cod (Barbeaux et al. 2018), and the GOA rougheye/blackspotted complex (Shotwell et al. 
2017). Both of these assessments use the longline survey data to supplement the AFSC bottom trawl 
survey. A handful of tier 5 species are also sampled by the AFSC longline survey for which population 
index data are available including flatfish, rockfish, skate, and shark species. While this population index 
data are presented in a number of Tier 5 stock assessment reports, often they are used solely for 
informational purposes (e.g., Tribuzio et al. 2017) rather than estimation of exploitable biomass and 
management quantities. The convention is that, without a population dynamics model, the area-swept 
estimates of biomass from the bottom trawl survey are representative of the stock’s exploitable biomass.   

Due to the lack of a general and consistent method for estimating exploitable biomass across the tier 4 and 
5 stock assessments, an ad-hoc working group (SAWG 2013) developed a model to account for process 
and observation errors. However, application of this approach to multiple indices has been limited. 
Consequently, we extend this random effects model to include additional index data. An important part of 
this extension is to provide biologically plausible area apportionments of management quantities, i.e., the 
Acceptable Biological Catch (ABC). This apportionment approach has also been adopted for Tiers 1-3. 

In this study a method is presented that extends the current random effects model as applied to the bottom 
trawl survey biomass index to include the longline survey population index data as auxiliary information. 
Two tier 5 stocks are used as an example of the development of this method: GOA shortspine thornyhead 
(Sebastolobus alascanus) and GOA shortraker rockfish (Sebastes borealis). 

Methods 

Model description 
To account for process and observation errors in survey biomass estimates we begin with: 
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where 𝐵𝐵�𝑦𝑦 is the estimated biomass in year-y, and 𝜀𝜀𝑑̂𝑑,𝑟𝑟,𝑦𝑦 are the estimated random effects parameters. The 
subscripts r and d denote that the random effects parameters can be estimated by region-r and depth 
strata-d, as needed. 

The process error component of the objective function (how much the random effects parameter estimates 
of biomass vary through time) is constrained by a random walk process, which here is embedded in the 
negative log-likelihood of the process error component as: 

−𝑙𝑙𝑙𝑙𝑙𝑙𝑝𝑝 = ��
1

2𝜋𝜋𝜎𝜎�𝜀𝜀,𝑟𝑟
2 ��𝜀𝜀𝑑̂𝑑,𝑟𝑟,𝑦𝑦 − 𝜀𝜀𝑑̂𝑑,𝑟𝑟,𝑦𝑦−1�

2

𝐷𝐷𝑅𝑅

𝑌𝑌

𝑦𝑦=2

 

where the subscript p denotes process error component. The random walk is constrained by the estimated 
process error variance parameter 𝜎𝜎�𝜀𝜀,𝑟𝑟

2  (also called a hyperparameter). The subscript r denotes that this 
parameter can be estimated by region (attempts to estimate include depth in process error variance terms 
were so far infeasible without imposing more structure). 



The observation error component of the objective function fits the random effects estimates of biomass to 
biomass from the bottom trawl survey with the lognormal distribution. The observation error component 
of the objective function is given by: 
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where the subscript o denotes that the negative log-likelihood is for the observation error component of 
the objective function, 𝐵𝐵𝑑𝑑,𝑟𝑟,𝑦𝑦 is the bottom trawl survey biomass in depth strata-d, region-r, and year-y, 
and 𝜎𝜎𝐵𝐵,𝑟𝑟,𝑑𝑑,𝑦𝑦

2  is the variance in the bottom trawl survey biomass. 

The objective function that is minimized in the random effects model is the sum of the process error and 
observation error negative log-likelihood functions. Within the random effects model the estimated 
biomass that results is intended to balance variability in biomass over time (process error) and the 
precision of the fit to the bottom trawl survey estimates (observation error). For example, if the variance 
in the bottom trawl survey biomass is small, then the fit of the random effects model to the bottom trawl 
survey biomass will be precise and will allow for larger process error across time in the parameter 
estimates of biomass. Alternatively, if the variance in the bottom trawl survey biomass is large, the 
random effects model will fit the bottom trawl survey biomass estimates poorly and the process error will 
be small, thus, the changes in biomass over time will decrease. 

Adding additional indices 
The longline survey provides and index of relative population weights (so-called RPW; Sigler 2000). 
Including this (or other) index to the model described above requires a scaling or catchability coefficient 
parameter. Including region-specific estimates from the longline survey data: 
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where 𝑞𝑞�𝑟𝑟 is the catchability coefficient parameter for this gear. As above, an additional observation error 
component is then added to the objective function: 
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where 𝜎𝜎𝑅𝑅𝑅𝑅𝑅𝑅,𝑟𝑟,𝑦𝑦
2  is the regional variance of the longline survey RPW index in year y, 𝑅𝑅𝑅𝑅𝑅𝑅𝑟𝑟,𝑦𝑦 is the 

observed longline survey RPW index by region and year, and 𝜆𝜆𝐿𝐿 is the weighting coefficient for the 
longline survey RPW index.. Thus, the random effects model that includes the AFSC longline survey 
simply has an added observation error term. Extending this to more indices (e.g., fishery CPUE) could 
also be done in a similar fashion. 

Case studies 
Two Tier 5 stock assessments are used as an example of application of the random effects model that 
includes longline survey population index data: GOA shortspine thornyhead (hereon called ‘shortspine’) 
and GOA shortraker rockfish (hereon called ‘shortraker’). In this study these species are used to present 
three aspects of development and application of the random effects model, which are: 

1. Including the longline survey RPW index 
2. Estimating regional catchability coefficients for the longline survey RPW index 



3. Relative weighting between the bottom trawl survey biomass and longline survey RPW index 
data 

For the shortspine case study, and the method presented here was adopted in the 2018 stock assessment 
(Echave and Hulson 2018). For consistency with the 2018 Stock Assessment and Fishery Evaluation 
(SAFE) document, the model numbering used in the stock assessment is followed. Three model scenarios 
were investigated in the 2018 shortspine stock assessment: 

• Model 2015.1 – 2015 stock assessment random effects model with data updated through 2018 
• Model 2015.1a – Model 2015.1 with bottom trawl survey biomass estimates summed for the 0-

500 m depth strata within each region 
• Model 2018.1 – Model 2015.1a with longline survey RPWs from 1992-2018 included as an 

additional population index 
The shortraker case study was recommended by the authors in the 2019 stock assessment (Echave and 
Hulson 2019). Similar to the shortspine case, the model number convention will be consistent with the 
shortraker 2019 SAFE document. Three model scenarios, with three sub-scenarios, were investigated: 

• Model 2017.1 – 2017 stock assessment random effects model with bottom trawl survey biomass 
data updated through 2019 

• Model 2019.1 – Model 2017.1 with longline survey RPWs from 1992-2018 included as an 
additional population index 

• Model 2019.2 – Model 2019.1 with catchability coefficients estimated by regions within the 
GOA 

Three sub-scenarios of model 2019.2 were investigated that decreased the relative weight of the longline 
survey RPW index (i.e., decreased 𝜆𝜆𝐿𝐿). These sub-scenarios were: 

• Model 2019.2a – Relative weight between bottom trawl survey biomass and longline survey 
RPW is the same and set at 1 (same as Model 2019.2) 

• Model 2019.2b – Weight of longline survey RPW index set at 0.5 
• Model 2019.3c – Weight of longline survey RPW index set at 0.25 

Results 
In general, model scenario 2018.1 of the shortspine random effects model fit the bottom trawl survey 
biomass poorly compared to model 2015.1 or 2015.1a, particularly for 1990 and 2003 estimates (top 
panel Fig. 1). With the longline survey RPW index added, the trends are further smoothed. In most years 
the longline survey RPW index is fit well by model scenario 2018.1 (bottom panel Fig. 1). Interestingly, 
there are some periods in which the trajectories of the trawl survey biomass index and the longline survey 
RPW index observations conflict, in particular in the period between 2000 and 2005 and the period 
between 2010 and 2015. 

For the regional apportionment model, including the additional index also dampens the variability of 
biomass estimates over time (Fig. 2). This effect trades off fitting bottom trawl survey biomass estimates 
(e.g., the CGOA 2003 estimates; middle panel, Fig. 2). The fit to the regional longline survey RPW index 
by model scenario 2018.1 was generally good (Fig. 3), with the exception of recent years in the WGOA in 
which estimated RPWs were lower than the observed index. As would be expected from the results of the 
fit to regional indices of bottom trawl survey biomass and longline survey RPW index, the regional 
apportionment of shortspine biomass from model scenario 2018.1 was more stable across time than the 
apportionment estimated by model scenario 2015.1 (Fig. 4). 



Similar to the shortspine model scenarios, when the longline survey RPW index is introduced into the 
shortraker random effects model (model scenarios 2019.1 and 2019.2), the model fits the bottom trawl 
survey biomass poorer compared to the model scenario without the longline survey RPW index, 2017.1 
(top panel Fig. 5). Further, because the bottom trawl survey biomass has larger uncertainty for shortraker 
compared to shortspine, the estimated biomass from model cases 2019.1 and 2019.2 is less sensitive to 
the bottom trawl survey biomass index and more influenced by the longline survey RPW index. In 
general, both model scenarios, 2019.1 and 2019.2, fit the longline survey RPW index well (bottom panel 
Fig. 5). However, when including the longline survey RPW index into model scenario 2019.1, the 
regional fit to the RPW index is poor (Fig. 6). Upon estimating regional specific catchability coefficients 
in the shortraker random effects model scenario 2019.2, the fit to the longline survey regional RPW 
indices is greatly improved (Fig. 6). 

Reducing the relative weight of the longline survey RPW index in the shortraker random effects model 
resulted in an increased response to the bottom trawl survey biomass, as would be expected (Fig. 7). All 
in all, however, the difference in fit to the bottom trawl survey biomass when the relative weighting of the 
longline survey RPW index is reduced in model scenarios 2019.2a-c was minor on the regional scale (Fig. 
8). This same result held for the random effects model fit to the regional longline survey RPW index (Fig. 
9), with the exception of the EGOA, where there appears to be a slight data conflict between the bottom 
trawl survey biomass and longline survey RPW indices. For the 2019 shortraker stock assessment 
scenario 2019.2b was recommended as the preferred model because it increased the sensitivity of the 
random effects model to the bottom trawl survey biomass while still retaining influence from the longline 
survey RPW index (Echave and Hulson 2019). Also similar to the results when adding the longline 
survey RPW index to the shortspine random effects model, the apportionment of biomass among regions 
in the shortraker assessment was much more stable across time than the random effects model with the 
bottom trawl survey biomass index only (Fig. 10). 

Discussion 
We present an original method that introduces auxiliary population information into the random effects 
models used for several stock assessments at the AFSC. The method presented is a simple, flexible, and 
straight-forward approach for including additional population indices in the random effects model. The 
general result shown here was an increase in the stability of biomass estimates across time, reduced 
tendency for the random effects model to over-fit bottom trawl survey biomass values in some years, and 
more consistent regional apportionments across time. Further, using this method in the random effects 
model has the potential to expose data conflicts between the bottom trawl survey biomass index and the 
longline survey RPW index over time that can now be integrated into the estimation of management 
quantities. We also show, using the two case study stocks, how this method can be developed to address 
species-specific concerns that may arise with the implementation of the longline survey RPW index 
within the random effects model through the application of regional-specific catchability parameters and 
relative weighting between the bottom trawl and longline survey indices. 

A concern that must be addressed by assessment authors before implementing this method is the potential 
for differences in selectivity between the bottom trawl survey and longline survey. In an age-structured 
assessment, differences in age- or length-based selectivity can be accounted for and explicitly defined in 
the estimation of spawning biomass. However, in Tier 4 and 5 stock assessments that do not use age-
structured models, selectivity is not explicitly estimated. In these cases the assessment scientist must 
evaluate whether this method would be appropriate for their stock. For the two example stocks presented 
here, the assessment authors evaluated the differences in length compositions from the bottom trawl 
survey and longline survey. While there were minor differences, the authors of these assessments deemed 
that these differences were not substantial enough to cause concern using this method. We also 



demonstrate with the shortraker example, that potential differences in catchability (which is the 
combination of availability and selectivity) across space can be identified and estimated. 

The method presented in this study could easily be extended to assess other Tier 5 species that are 
sampled by longline gear as well as aid in the estimation of apportionment for Tier 3 species that include 
multiple population indices within the assessment. The Tier 3 species that use longline survey data for 
which this method could be used for apportionment include sablefish (Hanselman et al. 2018), GOA 
Pacific cod (Barbeaux et al. 2018), and the GOA rougheye and blackspotted complex (Shotwell et al. 
2017). An interesting application of this method for Tier 3 stock assessments is the potential to develop a 
prior on the catchability coefficient estimated by the random effects model using the selectivity and 
numbers-at-age estimated in the age-structured assessment for these stocks. This prior would then 
overcome the concern of differing selectivities between the bottom trawl survey and longline survey. 
GOA arrowtooth flounder (Spies and Palsson 2017) and GOA Dover sole (McGilliard and Palsson 2015) 
are additional Tier 3 flatfish stocks that are captured by the longline survey for which this method may be 
applicable. Other Tier 5 stock assessments at AFSC for which this method could be evaluated are the 
GOA shark complex (specifically for spiny dogfish, Tribuzio et al. 2015) and the GOA skate complex 
(Ormseth 2017), both of which may also have auxiliary population index data available from the 
International Pacific Halibut Commission longline survey. 

The results we present provide strong rationale for incorporating additional population index data, such as 
longline survey RPW data, into the random effects model currently being used to assess stocks at the 
AFSC. We recommend that the methods presented in this study be considered by those assessment 
scientists whose stocks are candidates. This is a simple and flexible way to incorporate the best scientific 
information available, which is a mandate of the Magnuson-Stevens Fisheries Conservation and 
Management Act. Other promising methods that combine bottom trawl data with longline survey data, 
such as spatio-temporal models (Thorson et al. 2015), are also in development. However, we recommend 
that, until spatio-temporal methods are fully developed, the method presented in this study should be 
considered by assessment scientists at AFSC. 
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Figures 

 

Figure 1. -- Fit of GOA Shortspine thornyhead random effects model scenarios to AFSC bottom trawl 
survey biomass (top panel) and longline survey RPW (bottom panel) population indices. The whiskers 
surrounding the bottom trawl survey biomass and longline survey RPW represent the 95% confidence 
intervals for the indices, and the shaded region (light gray) represents the 95% confidence interval in the 
biomass estimates from model scenario 2018.1. Open circles in the plots of bottom trawl survey biomass 
represent years in which certain regions or depth strata (or both) were not sampled. 



 

Figure 2. -- Fit of GOA Shortspine thoryhead random effects model scenarios to the AFSC bottom trawl 
survey biomass by region (denoted in the upper left hand corner of each panel). The whiskers surrounding 
the bottom trawl survey biomass index represent the 95% confidence intervals, and the shaded region 
(light gray) represents the 95% confidence interval in the biomass estimates from model scenario 2018.1. 
Open circles in the plots of bottom trawl survey biomass represent years in which certain regions or depth 
strata (or both) were not sampled. 

  



 

Figure 3. -- Fit of GOA Shortspine thoryhead random effects model scenarios to the AFSC longline 
survey RPW index by region (denoted in the upper left hand corner of each panel). The whiskers 
surrounding the longline survey RPW index represent the 95% confidence intervals, and the shaded 
region (light gray) represents the 95% confidence interval in the RPW estimates from model scenario 
2018.1. 

  



 

Figure 4. -- Apportionment between regions in the GOA as estimated by different scenarios of the GOA 
shortspine thornyhead random effects model. Model results for scenario 2015.1 are shown in black; 
results for scenario 2018.1 are in red. Regional apportionment areas are: W – WGOA, C – CGOA, and E 
– EGOA. 

  



 

Figure 5. -- Fit of GOA Shortraker rockfish random effects model scenarios 2017.1, 2019.1, and 2019.2 
to AFSC bottom trawl survey biomass (top panel) and longline survey RPW (bottom panel) population 
indices. The whiskers surrounding the bottom trawl survey biomass and longline survey RPW represent 
the 95% confidence intervals for the indices. Open circles in the plots of bottom trawl survey biomass 
represent years in which certain regions or depth strata (or both) were not sampled. 

  



 

Figure 6. -- Fit to regional AFSC longline survey RPW indices with GOA Shortraker rockfish random 
effects model scenarios 2019.1 and 2019.2. The whiskers surrounding the longline survey RPW represent 
the 95% confidence intervals for the index. 

  



 

Figure 7. -- Fit of GOA Shortraker rockfish random effects model scenarios 2017.1 and 2019.2a-c to 
AFSC bottom trawl survey biomass (top panel) and longline survey RPW (bottom panel) population 
indices. The whiskers surrounding the bottom trawl survey biomass and longline survey RPW represent 
the 95% confidence intervals for the indices. Open circles in the plots of bottom trawl survey biomass 
represent years in which certain regions or depth strata (or both) were not sampled. 
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Figure 8. -- Fit of GOA Shortraker rockfish random effects model scenarios 2017.1 and 2019.2a-c to 
AFSC bottom trawl survey biomass (top panel) and longline survey RPW (bottom panel) population 
indices. The whiskers surrounding the bottom trawl survey biomass and longline survey RPW represent 
the 95% confidence intervals for the indices. Open circles in the plots of bottom trawl survey biomass 
represent years in which certain regions or depth strata (or both) were not sampled. 

  



 

Figure 9. -- Fit to regional AFSC longline survey RPW indices with GOA Shortraker rockfish random 
effects model scenarios 2019.2a-c. The whiskers surrounding the longline survey RPW represent the 95% 
confidence intervals for the index. 

  



 

Figure 10. -- Apportionment between regions in the GOA as estimated by the GOA Shortraker rockfish 
random effects model scenarios 2017.1 and 2019.2b. 
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