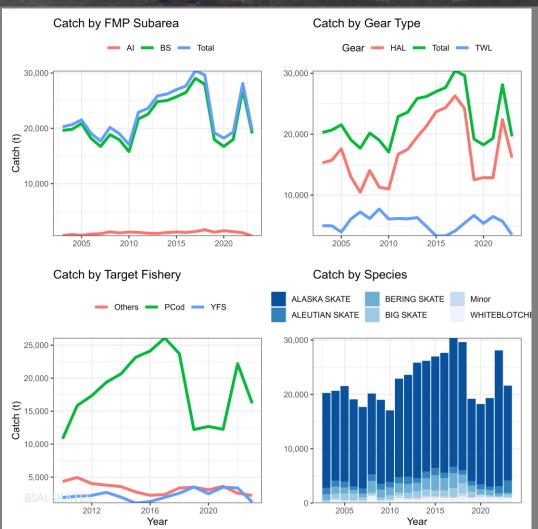

Alaska Skate Model

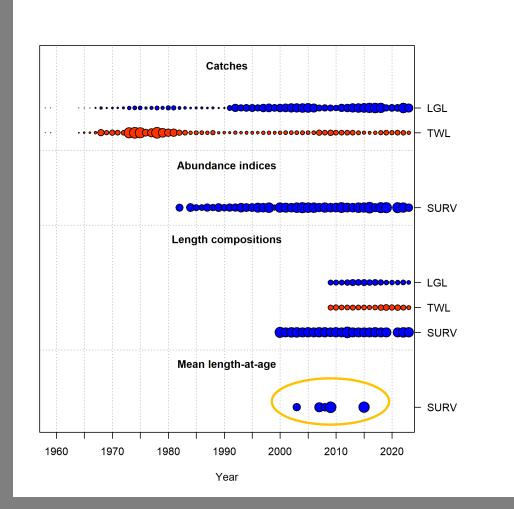
BSAI Groundfish Plan Team Presentation September 2025


Cindy Tribuzio*, Mary Elizabeth Matta, Steve Barbeaux and Pete Hulson

BSAI SKATE STOCK COMPLEX OVERVIEW

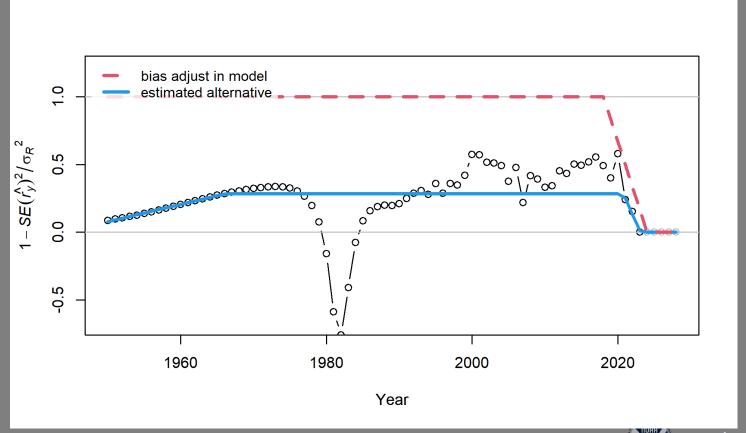
- Tier 3 AK skate (shelf)
- Tier 5 everything else
- Bering Sea catch >> Aleutian Islands catch
- Primarily in hook-and-line fisheries
- Bycatch in Pacific cod, yellowfin sole to a lesser extent
- Complex catch is dominated by Alaska skate

- 2023 operational update
- Transition year
- PT/SSC Comments
 - Explore catchability tuned to temperature
 - Expand collection of ageing structures
 - Concern over leopard skate in Al
 - Updating M
 - Alaska skate stock structure

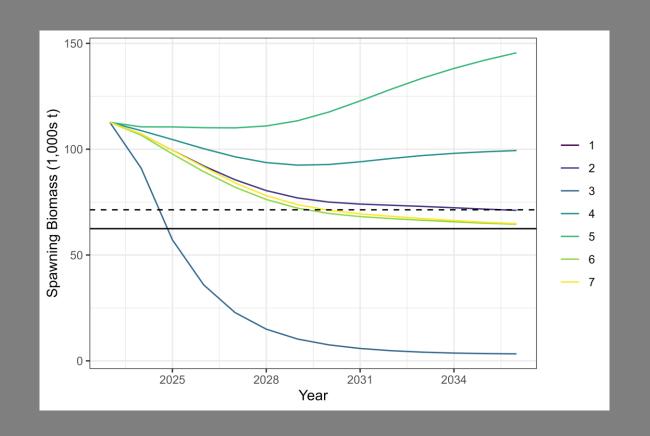


- Model 14_2d
 - 2023 accepted model
- Not converged
 - Parameters hitting bounds
 - High parameter StDevs

Parameter	Value Pha	ise	Min	Max	Init Sta	atus Parm StDev Gradient	Pr type Afterbound
L_at_Amin_Fem_GP_1	14.9777000		-10.00		14.0250000 OK	_	
L_at_Amax_Fem_GP_1	102.0920000	1	70.00	150.00	101.9420000 OK		
VonBert K Fem GP 1	0.3668030	4	0.05	0.50	0.3793320 OK		
Richards Fem GP 1	-1.0000000	1	-1.00	2.00	-1.0000000 LO		
CV_young_Fem_GP_1	0.3243550	3	0.05	0.35	0.3500000 OK	0.0344138 -7.91137e-0	7 No_prior OK
CV_old_Fem_GP_1	0.0500000	3	0.05	0.25	0.0500000 LO	0.0000034 8.40732e-0	8 No_prior CHECK
SR_LN(R0)	10.0913000	1	5.00	15.00	10.1403000 OK	0.0368806 -4.28718e-0	05 No_prior OK
Size_DblN_peak_LGL(1)	92.3235000	2	7.60	126.20	86.4860000 OK	4.5193700 -7.53747e-(08 No_prior OK
Size_DblN_top_logit_LGL(1)	-1.1962200	3	-6.00	4.00	-0.6813640 OK	0.6782590 5.7798e-07	No_prior OK
Size_DblN_ascend_se_LGL(1)	7.0483000	3	-1.00	9.00	6.7560700 OK	0.1768070 7.51258e-0	7 No_prior OK
Size_DbIN_descend_se_LGL(1)	0.1812690	3	-1.00	9.00	-0.1543420 OK	12.7812000 7.00645e-0	9 No_prior OK
Size_DblN_start_logit_LGL(1)	-4.9976900	2	-5.00	9.00	-4.9981500 LO	0.0762034 1.82167e-0	7 No_prior OK
Size_DbIN_end_logit_LGL(1)	1.5078800	2	-5.00	9.00	1.5264700 OK	1.0632000 1.20787e-0	6 No_prior OK
Size_DblN_peak_TWL(2)	73.0934000	2	7.60	126.20	58.1364000 OK	10.7844000 7.04145e-0	6 No_prior OK
Size_DblN_top_logit_TWL(2)	-0.1701920	3	-6.00	4.00	-0.0409058 OK	0.5241100 -7.93022e-0	08 No_prior OK
Size_DbIN_ascend_se_TWL(2)	7.2154800	3	-1.00	9.00	6.2107300 OK	0.5614790 -8.16028e-0	06 No_prior OK
Size_DbIN_descend_se_TWL(2)	0.0749331	3	-1.00	9.00	4.0661000 OK	10.0401000 9.74676e-0	8 No_prior OK
Size_DblN_start_logit_TWL(2)	-4.9973200	2	-5.00	9.00	-4.9965900 LO	0.0876296 -1.3558e-07	7 No_prior OK
Size_DbIN_end_logit_TWL(2)	0.7227370	2	-5.00	9.00	0.3858410 OK	0.5218510 -3.43403e-0	07 No_prior OK
Size_DblN_peak_SURV(3)	60.0115000	2	7.60	126.20	57.2079000 OK	2.3561400 -9.59233e-(06 No_prior OK
Size_DbIN_top_logit_SURV(3)	-1.1805100	3	-6.00	4.00	-1.2029700 OK	0.6668040 -3.18775e-0	07 No_prior OK
Size_DblN_ascend_se_SURV(3)	6.3781000	3	-1.00	9.00	6.1427100 OK	0.1653610 1.2587e-05	No_prior OK
Size_DbIN_descend_se_SURV(3)	0.0754045	3	-1.00	9.00	2.8096500 OK	16.1174000 1.75015e-0	9 No_prior OK
Size_DbIN_start_logit_SURV(3)	-4.9994600	2	-5.00	9.00	-4.9996200 LO	0.0202051 -1.37385e-(07 No_prior CHECK
Size_DblN_end_logit_SURV(3)	3.2981300	2	-5.00	9.00	1.8822000 OK	1.7042900 -1.53685e-0	06 No_prior OK



- Model 14_2d
 - 2023 accepted model
- Not converged
 - Parameters hitting bounds
 - High parameter StDevs
- Relying on limited age data



- Model 14_2d
 - 2023 accepted model
- Not converged
 - Parameters hitting bounds
 - High parameter StDevs
- Relying on limited age data
- Procedural errors
 - Recruitment ramp

- Model 14_2d
 - 2023 accepted model
- Not converged
 - Parameters hitting bounds
 - High parameter StDevs
- Relying on limited age data
- Procedural errors
 - Recruitment ramp
 - Projections (fixed for Nov)

Model 14_2d

- Statistical Catch at Age
- **SS3**
- Single sex

Model 14_2d

- Statistical Catch at Age
- **SS3**
- Single sex
- Two fleets
- One survey

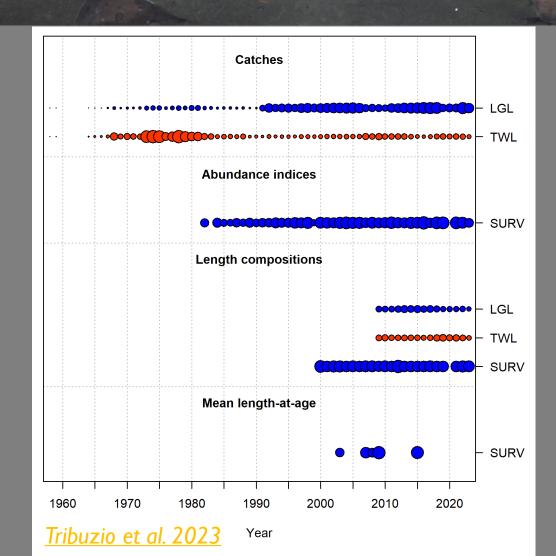


Figure 18.3

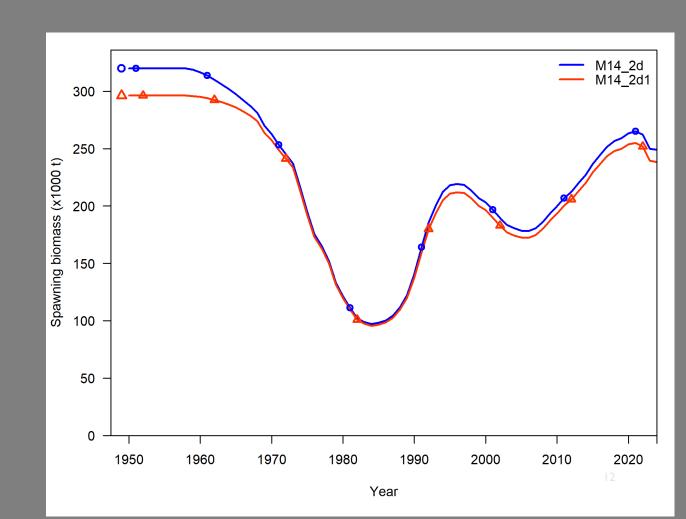
Model 14_2d

- Statistical Catch at Age
- **SS3**
- Single sex
- Two fleets
- One survey
- Parameters fixed
 - See Table 18.6 for estimated parameters

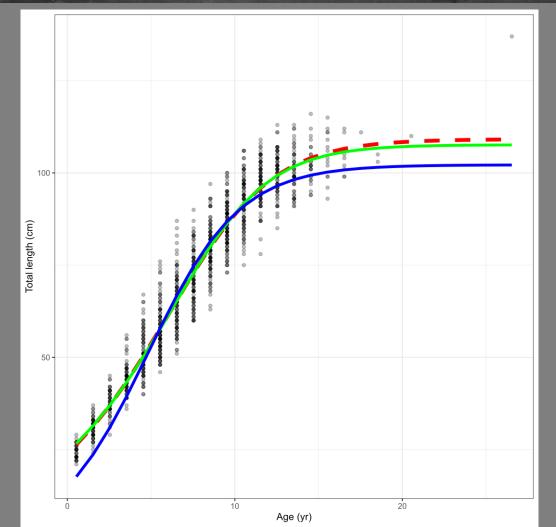
Parameter	Value
rarameter	
natural mortality (M)	0.13
coefficient (a)	9.00×10^{-6}
exponent (b)	2.962
length at 50% maturity (a)	93.28
slope (b)	-0.548
Steepness	I
σ_{R}	0.4
In catchability (q)	0
Initial longline fishery F	0
Initial trawl fishery F	0

Table 18.6

Model 14_2d

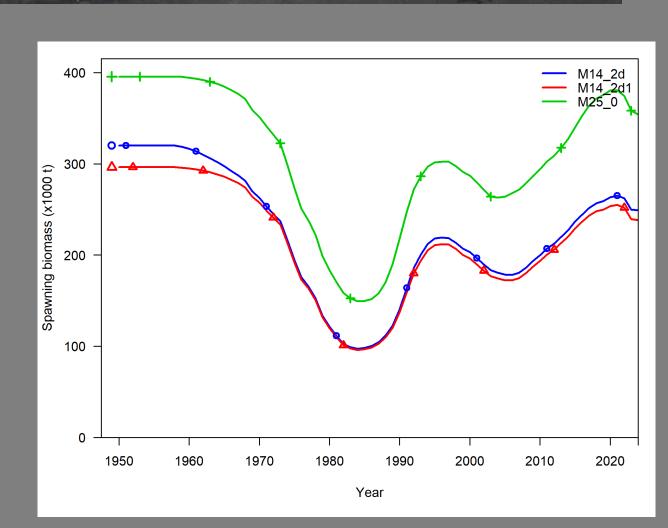

- Statistical Catch at Age
- SS3
- Single sex
- Two fleets
- One survey
- Parameters fixed
 - See Table 18.6 for estimated parameters

Parameter	Value		
Parameter	Value		
natural mortality (M)	0.13		
coefficient (a)	9.00×10^{-6}		
exponent (b)	2.962		
length at 50% maturity (a)	93.28		
slope (b)	-0.548		
Steepness	I		
σ_{R}	0.4		
In catchability (q)	0		
Initial longline fishery F	0		
Initial trawl fishery F	0		

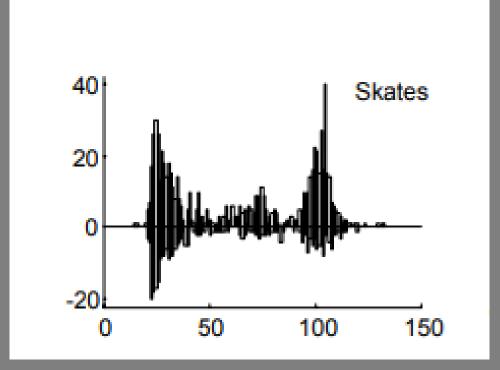

Table 18.6

MODEL 14_2DI

- Updated SS3 version to v3.30.23.2
- Conducted recruitment ramp adjustments
- Minor changes:
 - Jitter at 10%
 - Maximum lambda = 1



- Estimate growth outside of the model
- Included all available survey ages
 - Adjusted ages to represent mid-year age, not ages at Jan I
 - One 26 year old individual
- $A_1 = 0$, age-0 animals are encountered
- $A_2 = 15$, based on the mean age at which L_{inf} is reached
- Used StDev at A₁ and A₂ instead of CV


- Estimate growth outside of the model
- Included all available survey ages
 - Adjusted ages to represent mid-year age, not ages at Jan I
 - One 26 year old individual
- $A_1 = 0$, age-0 animals are encountered
- $A_2 = 15$, based on the mean age at which L_{inf} is reached
- Used StDev at A₁ and A₂ instead of CV

Still not converged

Catchability

- Data on survey catchability demonstrated skates escape the nets <u>Kotwicki and Weinberg 2005</u>
 - Estimated q = 0.836

Snipped from Kotwicki and Weinberg 2005. Bars above the horizontal axis are caught skates, those below are escaped skates.

Catchability

- Data on survey catchability demonstrated skates escape the nets <u>Kotwicki and Weinberg 2005</u>
 - Estimated q = 0.836
- First accepted model (2008) fixed q = I and used selectivity to mimic the size distributions from Kotwicki and Weinberg 2005.

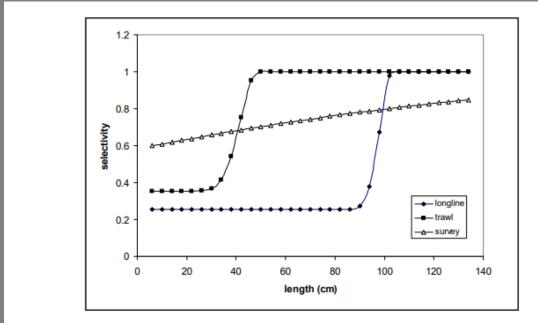
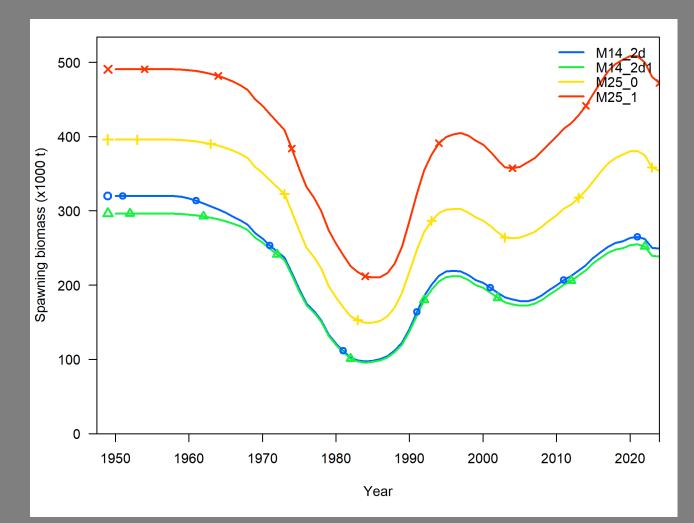



Figure 29. Length selectivities of the longline fishery, trawl fishery, and EBS shelf trawl survey.

Catchability

- Data on survey catchability demonstrated skates escape the nets <u>Kotwicki and Weinberg 2005</u>
 - Estimated q = 0.836
- First accepted model (2008) fixed q = I and used selectivity to mimic the size distributions from Kotwicki and Weinberg 2005.
- Fixed q = 0.836

Selectivities

2008 Parameterized selectivity to mimic the size distributions from Kotwicki and Weinberg 2005.

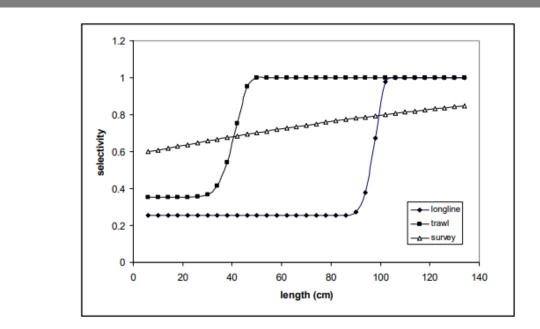
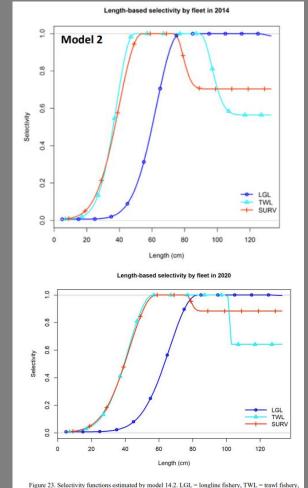



Figure 29. Length selectivities of the longline fishery, trawl fishery, and EBS shelf trawl survey.

Selectivities

- 2008 Parameterized selectivity to mimic the size distributions from Kotwicki and Weinberg 2005.
- 2014 changed parameterizations
 - Start of model non-convergence

Ormseth 2014, Figure 18

Ormseth 2020

Selectivities

- 2008 Parameterized selectivity to mimic the size distributions from Kotwicki and Weinberg 2005.
- 2014 changed parameterizations
 - Start of model non-convergence
- 2023 version change changed the shape again

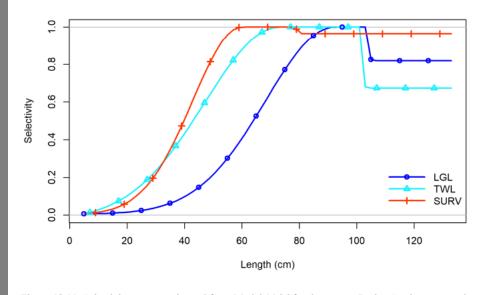
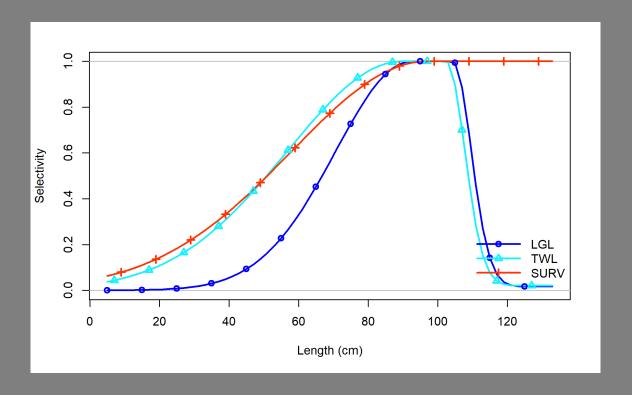
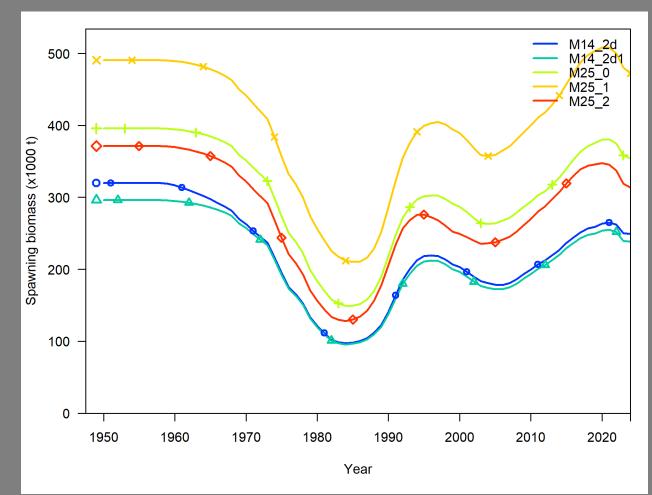
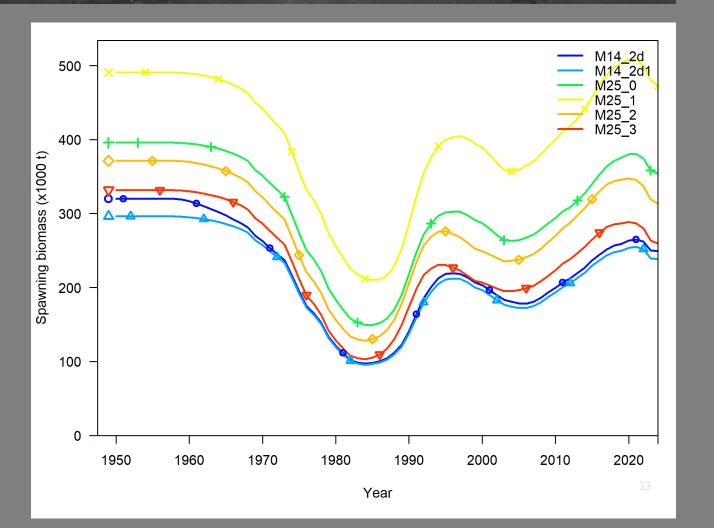



Figure 18.11. Selectivity curves estimated from Model 14.2d for the eastern Bering Sea bottom trawl survey (SURV), longline (LGL) and trawl (TWL) fisheries.

Tribuzio et al. 2023

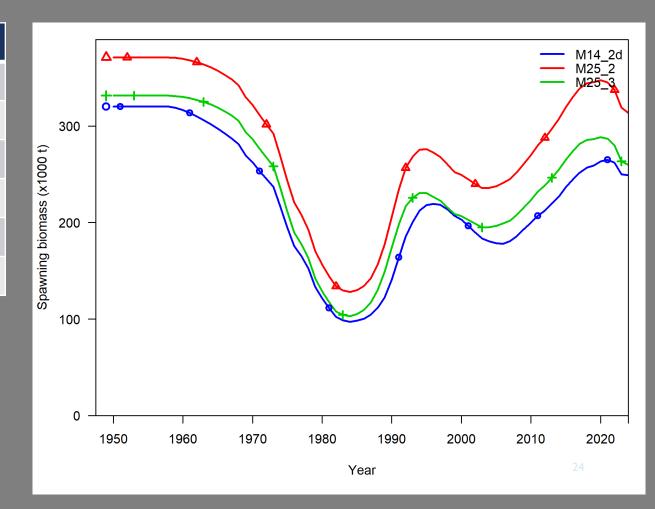


- Fixed survey selectivity to be logistic
- Fixed the starting values at 1 for all fleets
- Fixed the top width and descending limb width for all fleets



- Fixed survey selectivity to be logistic
- Fixed the starting values at 1 for all fleets
- Fixed the top width and descending limb width for all fleets
- CONVERGENCE!!!!

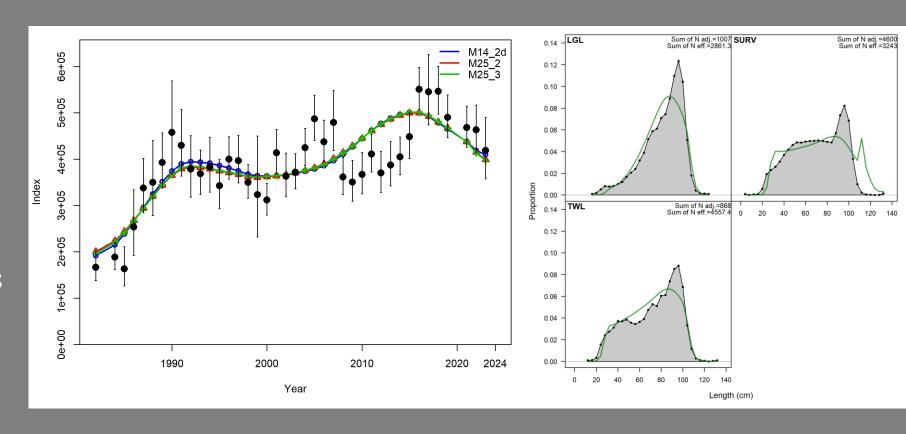
Same as Model 25_2 but with q = I



RESULTS

Model		Outcome
14_2d	2023 accepted	Not Converged
14_2d1	Updated version	Not Converged
25_0	Fixed growth	Not Converged
25_I	25_0 + catchability = 0.836	Not Converged
25_2	25_I + selectivity	Converged
25_3	25_2 + catchability = I	Converged

Author Recommends 25_2


- Converges
- Data informed catchability

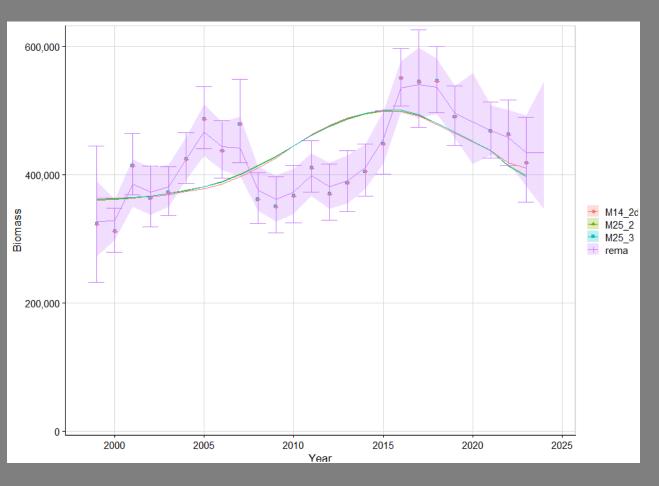
RESULTS

Concerns with 25_2 and 25_3

- Poor fit to survey index
- Poor fit to length comps

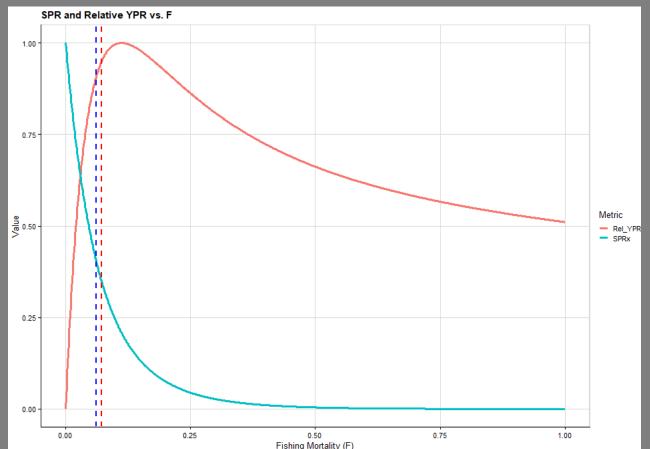
Questions on Tier 3 Alaska Skates

Up next: Other Options

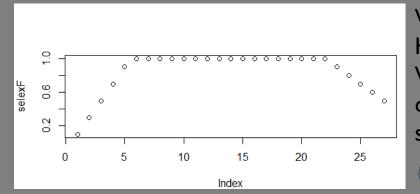

Alaska Skate Situation

- Limited age data
 - Fishery samples being collected (2025 onwards)
 - No capacity to age them
 - Age structured model with little age data, spanning a variety of ecosystem situations
- High volume of length data for all three fleets

Other Options


- Tier 4 could be brought forward this year
- Tier 5 could be brought forward this year
- Other length based approaches for future explorations

Tier 4 or Tier 5


- Species is well sampled by the shelf survey
- Rema already done for it
- Data supported life history parameters
 - M
 - Age-at-Maturity
- Data supported selectivity assumptions

Figures for demonstration, parameters not fully reviewed. Tier 4 code credit to Jane Sullivan and Kristen Omori!

Tier 4 or Tier 5

- Species is well sampled by the shelf survey
- Data supported life history parameters
 - M
 - Age-at-Maturity
 - Data supported selectivity assumptions

We now have the Kotwicki and Weinberg 2005 data to inform selectivity

Alaska Skates EBS Shelf Only

Model	2024 FOFL	2024 FABC	2024 OFL	2024 ABC
14_2d	0.093	0.080	32,429	27,950
Tier 4	0.072	0.062	31,259	26,918
Tier 5	0.13	0.75	43,416	32,562

Tier 4 or Tier 5

- Species is well sampled by the shelf survey
- Data supported life history parameters
 - M
 - Age-at-Maturity
- Data supported selectivity assumptions

Length Based Modelling (for future work)

- Need to investigate and test for AK skates
- Examples
 - State Space (thorny skates, <u>Cadigan et al. 2025</u>)
 - Length-based Integrated Mixed Effects (LIME, <u>Rudd</u> and <u>Thorson 2018</u>)
 - Length-based Spawning Potential Ratio (LBSPR, Hordyk et al. 2015)
 - Length-based Risk Analysis (LBRA, <u>Ault et al. 2019</u>)
 - Stock Synthesis Catch/Length (SS-CL, Rudd et al. 2021)
 - Length-based model comparisons (<u>Chong et al. 2020</u>)

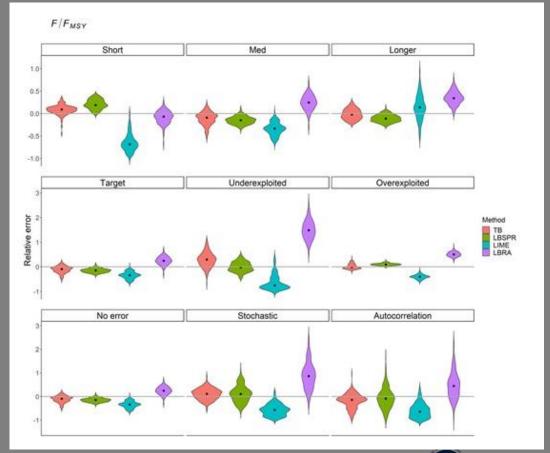
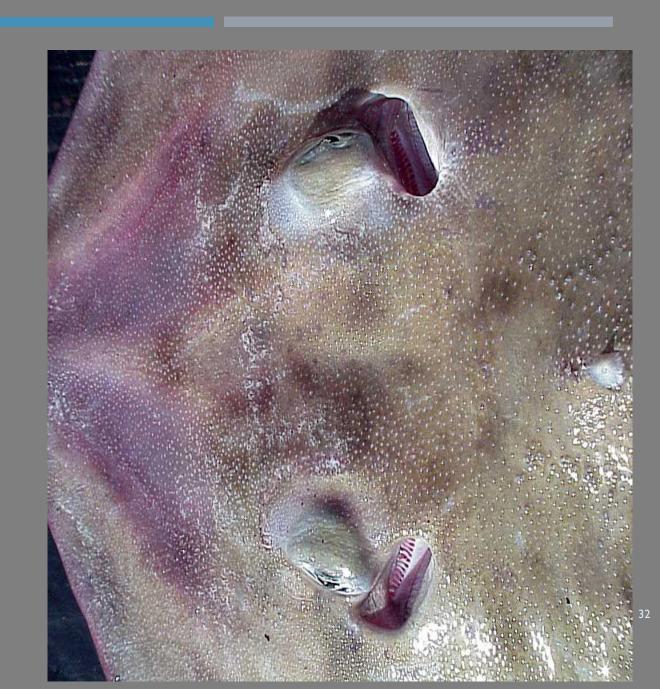


Figure 5. Chong et al. 2020



Questions, comments or feedback

Contact: cindy.tribuzio@noaa.gov

With special thanks to:

- Matt Cheng, Dan Goethel, Jane Sullivan and Kristen Omori
- MESA program support system

