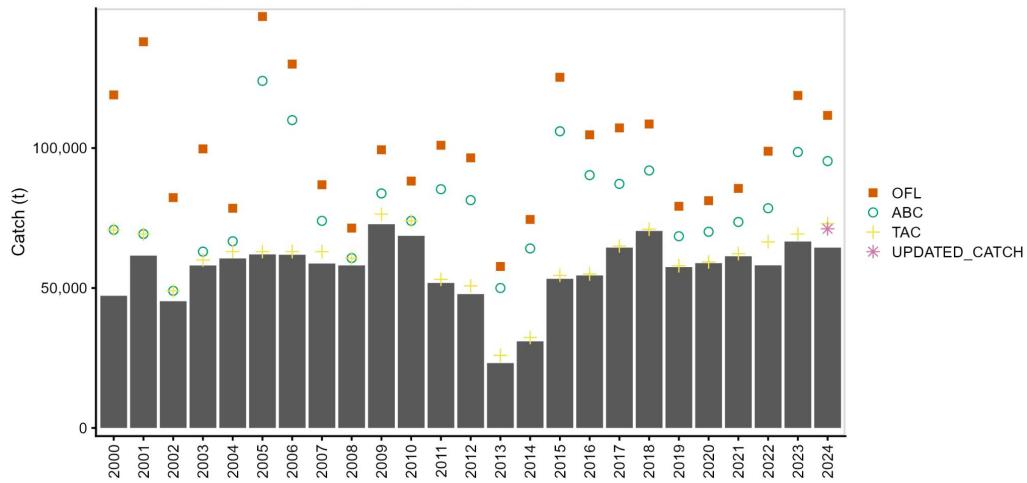
Atka mackerel BSAI Groundfish Plan Team

Jane Sullivan, Sandra Lowe, and Jim Ianelli Nov 2024

WIth contributions from Ivonne Ortiz, Russel Dame, Megsie Siple, Steve Barbeaux, and many others

Stock Overview

New: Annual to biennial assessment in even years "Update" in 2024 (Model 16.0b; no new models considered)

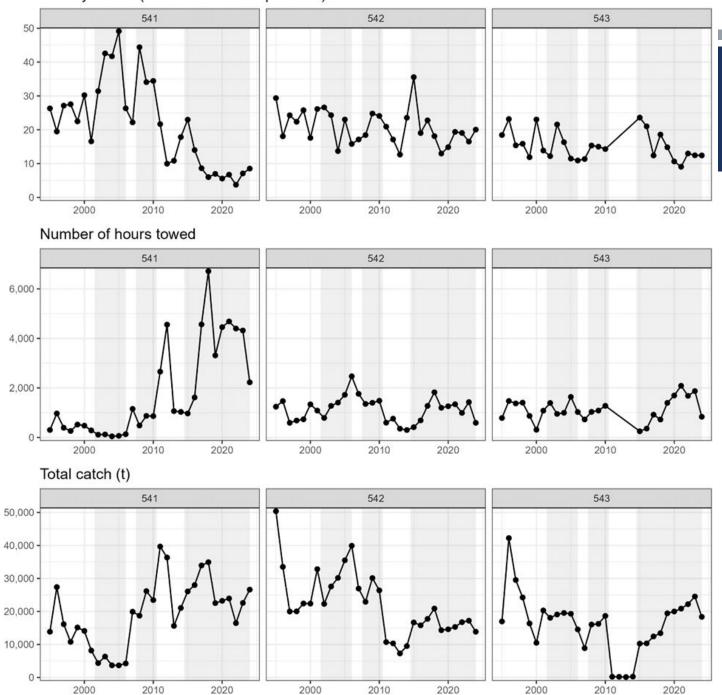

Quantity	As estim specified la		As estimated or <i>recommended this</i> year for:		
	2024	2025	2025*	2026*	
M(natural mortality rate)	0.30	0.30	0.30	0.30	
Tier	3a	3b	3a	3a	
Projected Female SSB	116,618	110,694	119,853	106,274	
B40%	112,182	112,182	105,894	105,894	
OFL (t)	111,684	99,723	122,622	107,889	
maxABC (t) (recommended)	95,358	84,676	103,247	92,361	

+8% in ABC from 2024

Catch, TAC, ABC, and OFL

Catch through 2024-10-05 (2024-11-09)

Fishery CPUE (total catch in tons per hour)



CPUE most variable in 541

- increased effort, decreased CPUE

CPUE is more stable in 542/543, though some evidence of long-term/slow declines in CPUE

Interannual changes often explained by management actions (shaded regions)

Markets (Dame, Appendix 17B)

Head & Gut product exported to Japan, S Korea, and N China, where it it undergoes secondary processing

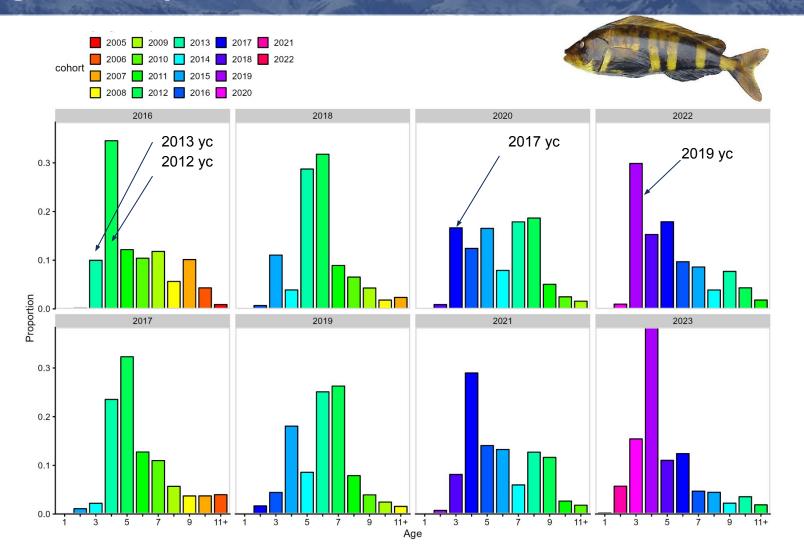
COVID...

2023: \$90.3 million first wholesale value, a 17% increase since 2022; attributed to increase in production and price

2024: early indicators suggest decline from 2023 in export volume and value but still above the 2014-2018 average

Image source: Oiso Co., Ltd. via https://www.shimanebuyers.com/product/cat05/184/

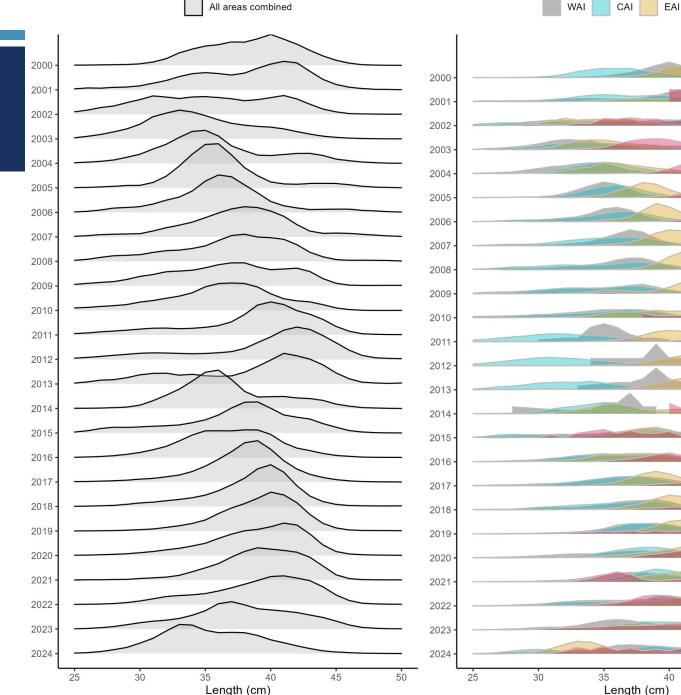
Data Summary


New data in bold

Source	Data component	Years of data
Fishery	Catch biomass	1977- 2024
	Age composition	1977-2023 (except 1989)
NMFS Aleutian Islands	Survey biomass	1991, 1994, 1997, 2000, 2002, 2004, 2006, 2010, 2012, 2014, 2016, 2018, 2022, 2024
ottom trawl survey	Survey age composition	1991, 1994, 1997, 2000, 2002, 2004, 2006, 2010, 2012, 2014, 2016, 2018, 2022

6

Fishery Age Composition

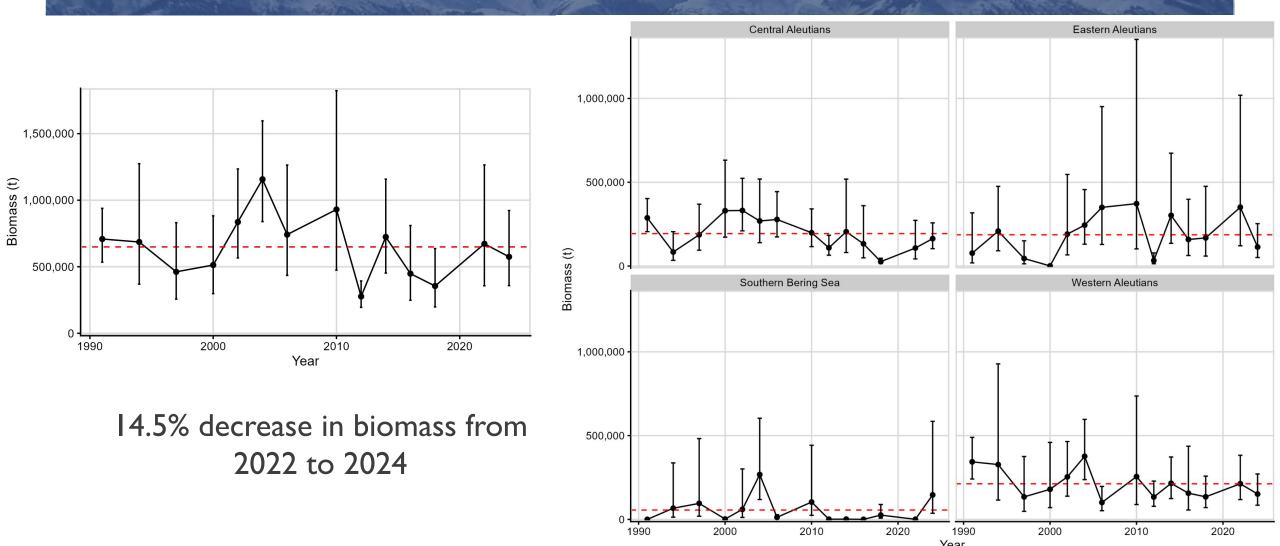


Fishery Length Compositions

General west-east gradient in size comps (small to large)

Spatial growth explained by food quality rather than food quantity or temperature (Rand et al., 2010), e.g., Atka in the EAI eating more euphausiids compared to copepods

Evidence of new 2021/22 yc in 2024 comps



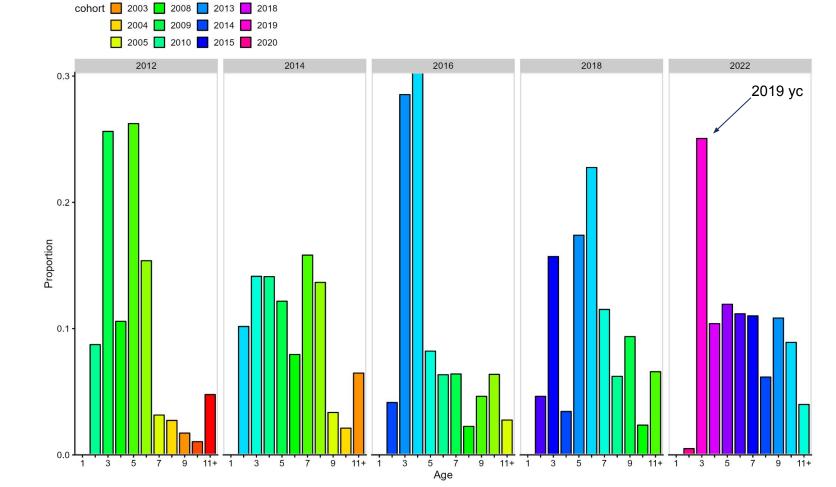
SBS

45

50

Survey - Aleutian Islands Bottom Trawl

							SE	3S						
1-100 -	47 (0.41)	66,562 (0.99)	95,671 (0.99)	1,853 (0.96)	59,682 (0.99)	124,896 (0.56)	10,284 (0.50)	98,268 (0.90)	102 (0.50)	356 (0.70)	100 (0.53)	6,668 (0.84)	479 (0.80)	26,420 (1.00)
101-200 -	3 (1.00)	30 (0.33)	9 (1.00)	187 (0.89)	103 (0.44)	142,616 (0.65)	176 (0.53)	4,914 (0.66)	822 (0.95)	1,044 (0.97)	35 (0.68)	18,847 (0.91)	104 (0.64)	119,757 (0.96)
201-300 -	11 (1.00)	3 (1.00)	0	4 (1.00)	98 (0.75)	39 (0.80)	1,842 (0.98)	327 (0.56)	85 (0.52)	42 (0.72)	50 (0.89)	82 (0.73)	81 (0.68)	67 (1.00)
301-500 -	0	8 (1.00)	0	0	0	4 (1.00)	6 (1.00)	19 (1.00)	0	0	0	49 (0.71)	52 (1.00)	0
							E	AI						
1-100 -	73,663 (0.87)	641 (0.91)	27,222 (1.00)	25 (0.65)	152,159 (0.72)	54,424 (0.81)	107,230 (0.63)	44,981 (0.87)	6,029 (0.82)	84,252 (0.62)	3,802 (0.98)	12,815 (0.86)	12,190 (0.70)	8,655 (0.88)
101-200 -	3,392 (0.69)	207,707 (0.44)	17,890 (0.80)	772 (0.87)	38,492 (0.45)	188,592 (0.35)	205,108 (0.86)	327,105 (0.83)	26,685 (0.54)	217,748 (0.54)	152,623 (0.52)	109,439 (0.76)	338,503 (0.61)	92,396 (0.50)
<u>-</u> 201-300 -	163 (0.94)	19 (0.52)	11 (1.00)	48 (0.83)	94 (0.48)	971 (0.51)	37,829 (0.61)	339 (0.61)	435 (0.90)	382 (0.35)	1,989 (0.62)	45,903 (1.00)	390 (0.46)	12,504 (0.92)
strata (m) - 005-108	0	12 (0.57)	14 (0.84)	73 (0.75)	71 (0.44)	57 (0.71)	40 (0.70)	5 (1.00)	0	0	112 (0.74)	31 (1.00)	55 (1.00)	22 (1.00)
stra	CAI													
Φ	187,194 (0.13)	50,513 (0.63)	70,458 (0.57)	38,805 (0.48)	131,770 (0.44)	198,243 (0.44)	192,832 (0.29)	102,211 (0.29)	62,238 (0.35)	86,097 (0.43)	122,628 (0.59)	19,613 (0.35)	28,023 (0.42)	50,793 (0.35)
ص 101-200 -	100,329 (0.44)	33,255 (0.74)	116,295 (0.46)	290,766 (0.38)	199,743 (0.26)	70,267 (0.42)	85,102 (0.44)	96,457 (0.49)	46,861 (0.42)	118,612 (0.81)	10,338 (0.69)	6,843 (0.52)	79,367 (0.66)	108,481 (0.31)
201-300 -	70 (0.62)	13 (0.47)	53 (0.84)	674 (0.90)	169 (0.33)	367 (0.82)	103 (0.88)	207 (0.79)	16 (0.32)	120 (0.86)	37 (0.51)	79 (0.46)	325 (0.67)	1,157 (0.61)
301-500 -	0	3 (1.00)	6 (1.00)	9 (1.00)	143 (1.00)	194 (0.82)	0	0	15 (0.46)	40 (1.00)	18 (1.00)	80 (0.76)	0	3,144 (0.70)
							W	AI						
1-100 -	168,968 (0.02)	93,847 (0.43)	90,824 (0.73)	106,168 (0.78)	50,481 (0.47)	140,669 (0.29)	64,429 (0.38)	59,449 (0.32)	62,247 (0.31)	115,359 (0.43)	16,808 (0.55)	71,728 (0.47)	38,985 (0.38)	10,822 (0.27)
101-200 -	174,182 (0.36)	231,733 (0.79)	43,478 (0.82)	65,600 (0.56)	154,820 (0.39)	229,675 (0.35)	36,331 (0.70)	195,819 (0.75)	70,983 (0.45)	99,102 (0.37)	139,608 (0.63)	62,922 (0.50)	173,207 (0.37)	140,375 (0.33)
201-300 -	276 (0.61)	1,656 (0.99)	66 (0.66)	7,912 (0.66)	48,362 (1.00)	6,033 (0.86)	318 (0.43)	134 (0.34)	350 (0.68)	172 (0.33)	17 (0.35)	116 (0.42)	475 (0.79)	164 (0.68)
301-500 -	0	6 (1.00)	0	0	8 (1.00)	36 (0.41)	20 (0.68)	17 (1.00)	8 (1.00)	602 (0.94)	0	0	27 (0.63)	12 (1.00)
	1991	1994	1997	2000	2002	2004	2006 Ye	2010 ear	2012	2014	2016	2018	2022	2024

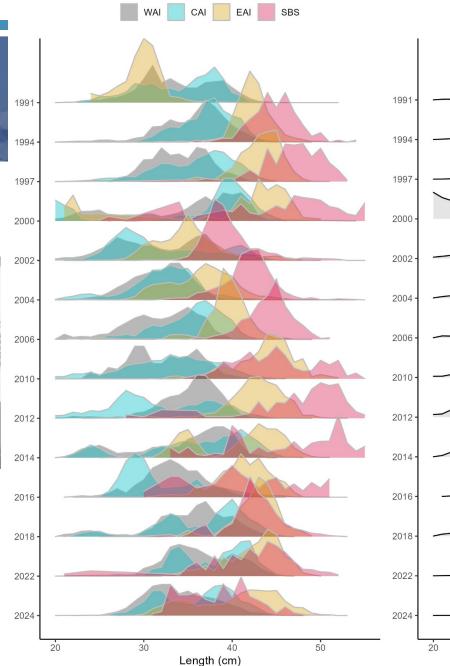

Al survey reduction in 2024

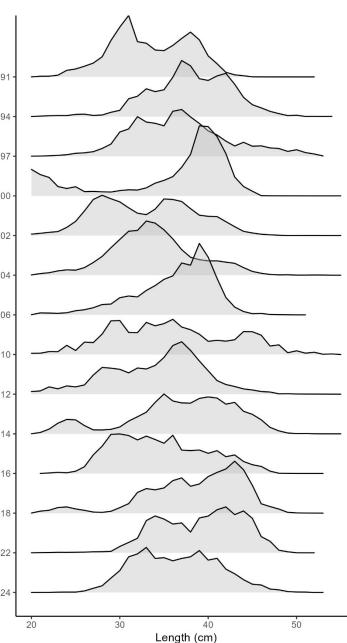
Exceptional work by the survey team following loss of >20 vessel days in 2024)

	Year	Quantity	WAI	CAI	EAI	SBS	Total
	1991	CV	18%	17%	83%	37%	14%
	1994		57%	48%	44%	99%	32%
	1997		56%	36%	68%	99%	31%
	2000		51%	34%	74%	88%	28%
	2002		32%	24%	58%	99%	20%
	2004		24%	35%	33%	43%	17%
~	2006		35%	24%	55%	44%	28%
0	2010		58%	28%	74%	86%	35%
	2012		28%	27%	46%	77%	18%
	2014		29%	50%	43%	73%	24%
	2016		56%	54%	50%	39%	31%
	2018		34%	29%	57%	70%	30%
	2022		31%	50%	59%	55%	33%
2	2024		30%	24%	43%	81%	25%
	1991		56	91	129	55	331
	1994		69	114	133	64	380
	1997		92	116	136	52	396
	2000		113	110	138	58	419
	2002		107	114	132	61	414
	2004	Number	124	130	112	53	419
	2006	of	112	110	91	44	357
	2010	hauls	118	128	121	51	418
	2012	пашь	120	113	132	55	420
	2014		134	110	122	44	410
	2016		135	114	127	43	419
	2018		129	120	126	45	420
	2022		108	112	131	47	398
12	2024		88	80	104	35	307

Survey Age Composition - AI Bottom Trawl

2001 🔽 2006 🔽 2011 🗖 2016 📕 2021


2002 2007 2012 2017


Agreement in the data:

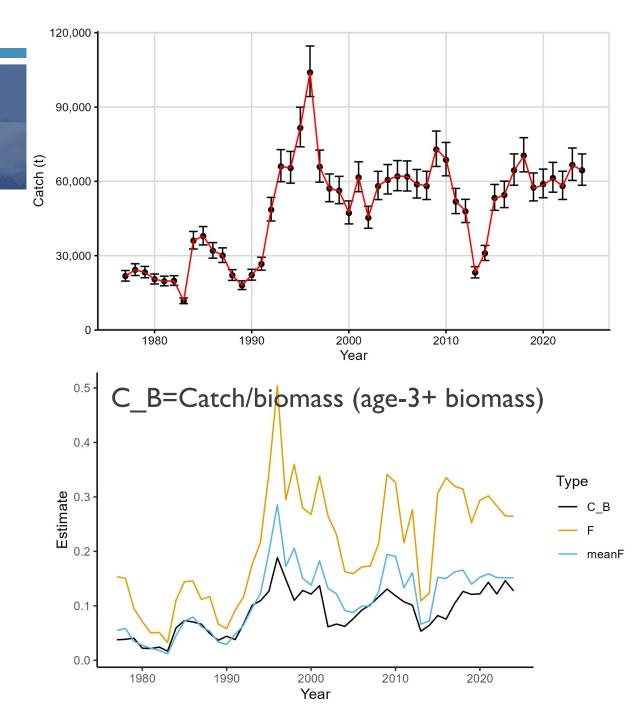
new 2022 survey, 2022 fishery, and 2023 fishery ages all show indication of an above average 2019 yc

Survey Length Composition

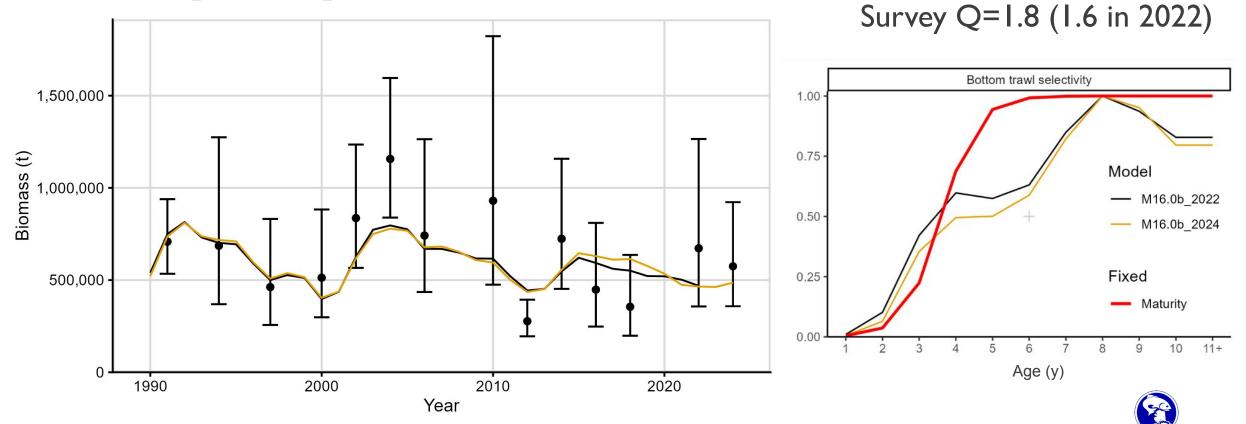
All areas combined

Model 16.0b

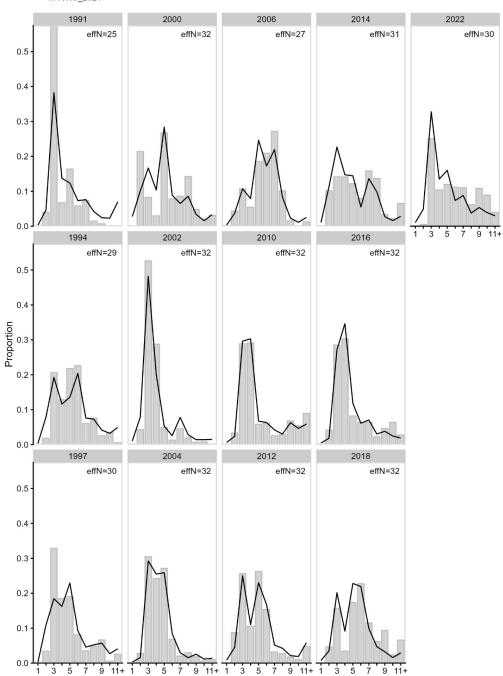
- Single sex, ages 1-11+
- M=0.35 fixed



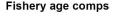
- Single fishery (Directed A80 trawl, high resolution data)
 - Age comps (multinomial, mean ISS = 100)
 - Annually-varying age-based nonparametric selectivity ($\sigma_{f_{sel}}$ tuned using Francis method) Annually-varying empirical weight-at-age
- Single index (AI bottom trawl survey)
 - Age comps (multinomial with Francis weighting)
 - Constant age-based nonparametric selectivity
 - Annually-varying empirical weight-at-age
- Catchability prior with (mean = 1.0, $\sigma^2 = 0.2^2$)
- Beverton-Holt *h*=0.8, σ_R estimated (mean = 0.6, σ^2 = 15²)


Catch & Fishing Mortality

Year	Current F	2022 F	Current Catch/Biomass	2022 Catch/Biomass
2015	0.307	0.293	0.082	0.085
2016	0.335	0.301	0.076	0.081
2017	0.32	0.3	0.104	0.114
2018	0.314	0.315	0.127	0.133
2019	0.253	0.263	0.121	0.126
2020	0.294	0.34	0.122	0.113
2021	0.302	0.386	0.143	0.123
2022	0.284	0.45	0.122	0.138
2023	0.265	-	0.146	<u></u>
2024	0.264	-	0.127	-

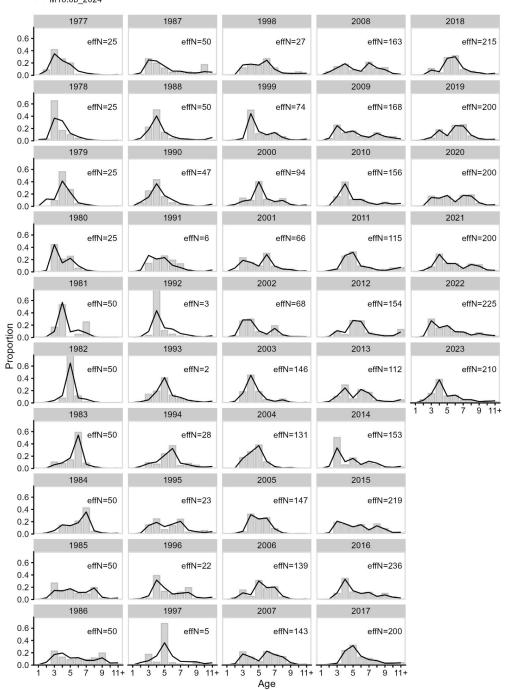


- M16.0b_2022 - M16.0b_2024



Trawl survey age comps

- M16.0b_2024


Age

- M16.0b_2024

2022

effN=30

- M16.0b_2024

0.5

0.4

0.3

0.2

0.1

0.0

0.5

0.4

Proportion 8.0

0.2

0.1

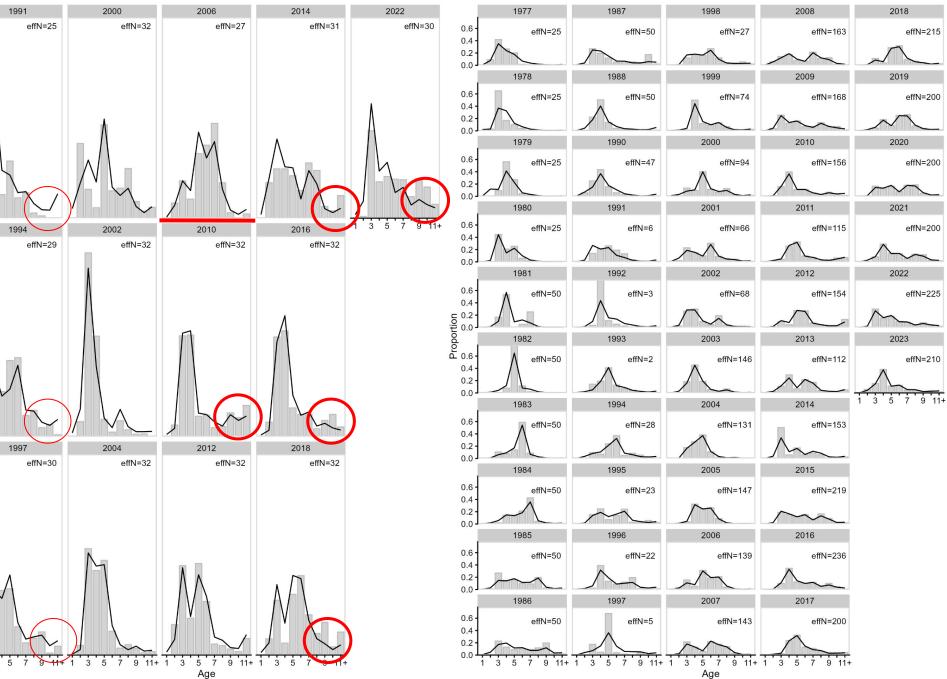
0.0 J

0.5

0.4

0.3

0.2


0.1

0.0

3

Fishery age comps - M16.0b_2024

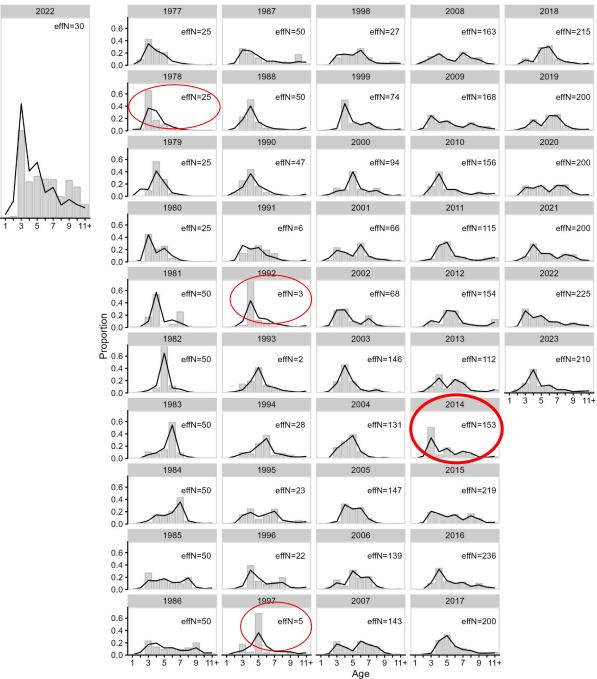
mean effN = 100

Misfit in survey comps attributed to lower overall effective N (Francis wt)

Change in availability of older fish in the survey (after 2010?)

effN=27

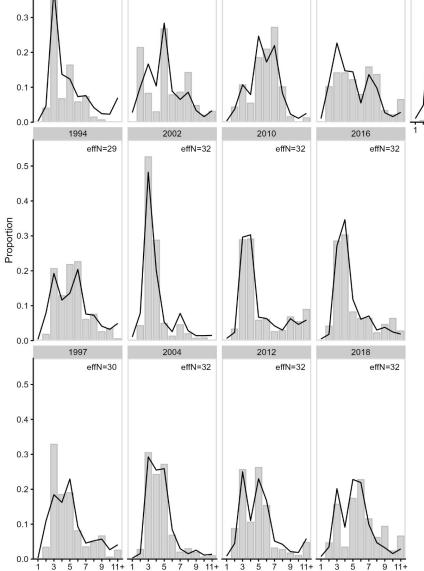
2014


effN=31

2022

2006

Fishery age comps - M16.0b_2024


mean effN = 100

Misfit in fishery comps attributed to low effective N in early years.

Notable exception is age-3 in 2014 (2011 yc that never materialized)

- M16.0b_2024

0.5

0.4

1991

effN=25

2000

effN=32

Age

Fishery selectivity

Dome to logistic

2021 effN=200 2022 effN=225 2023

2018

2019

2020

effN=215

effN=200

effN=200

1998

1999

effN=27

effN=74

effN=94

effN=66

effN=68

effN=146

effN=131

effN=147

effN=139

effN=143

Age

2008

2009

2010

2011

2012

2013

2014

2015

2016

2017

effN=163

effN=168

effN=156

effN=115

effN=154

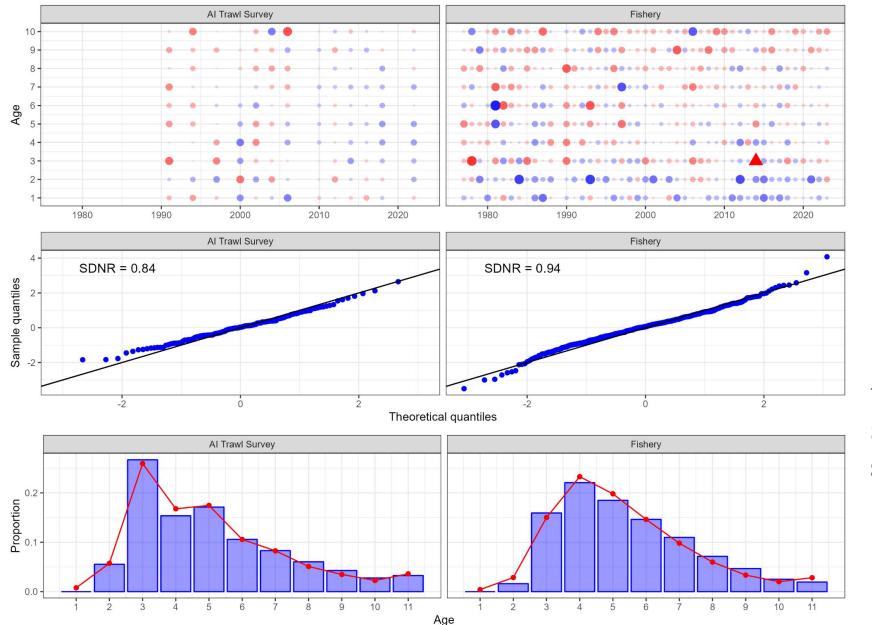
effN=112

effN=153

effN=219

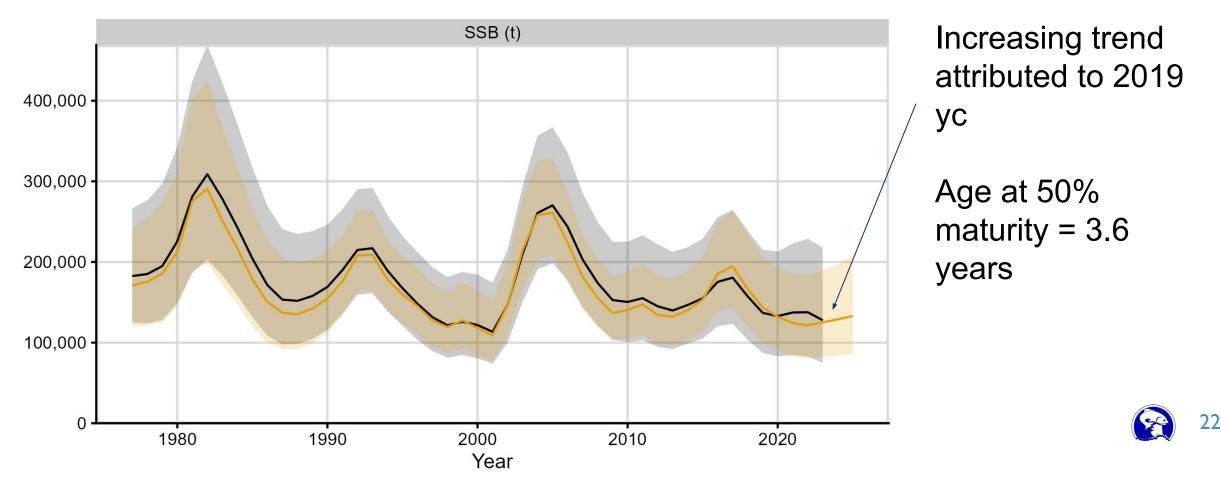
effN=236

effN=200

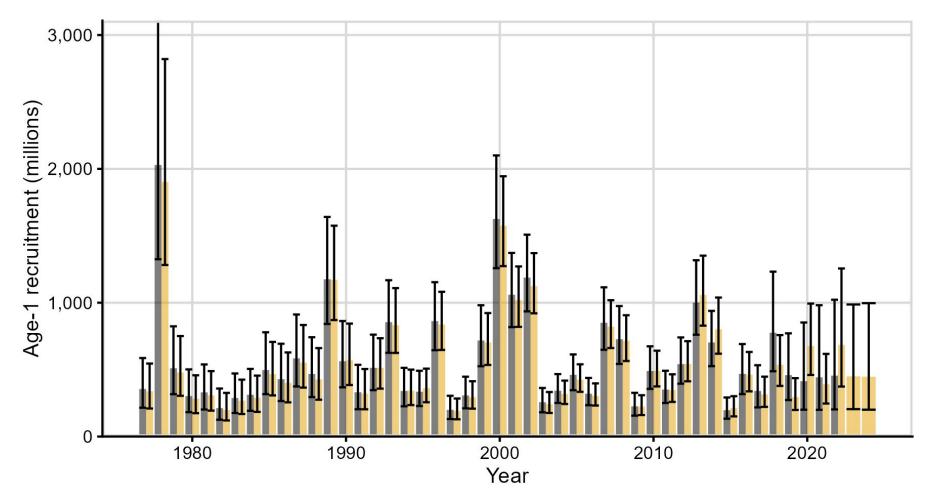

effN=210

1 3 5 7 9 11+

20

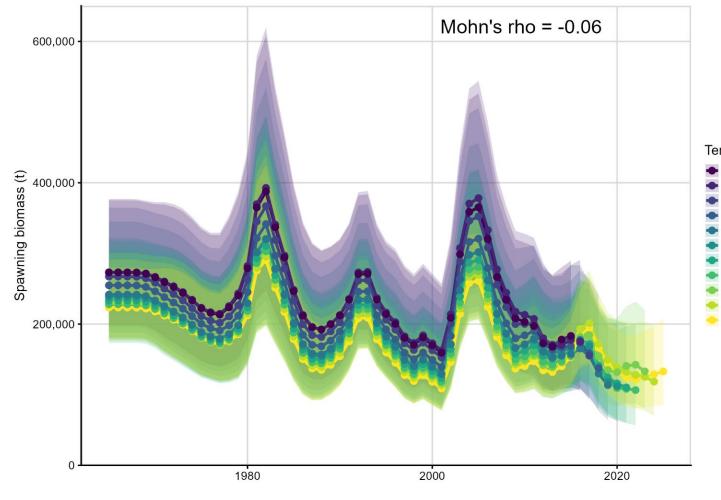


Deviation from standard normal likely indicates model misspecification (e.g., time-varying survey selectivity that is not accounted for)


Time Series - Spawning Stock Biomass

— M16.0b_2022 — M16.0b_2024

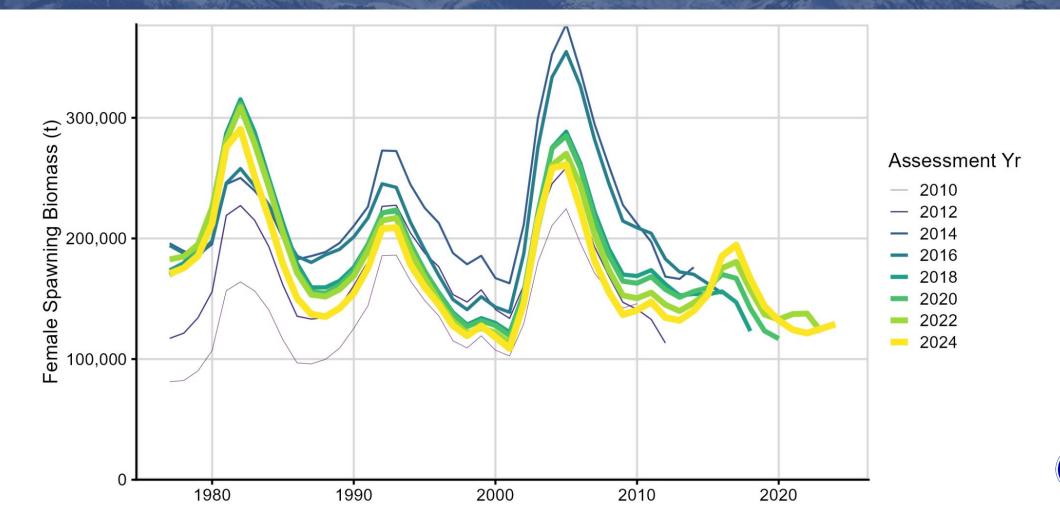
Time Series – Age 1 Recruitment


M16.0b_2022 📒 M16.0b_2024

- Magnitude of the 2017 and 2018 year classes decreased 31% and 36%, respectively
- 2019 year class increased 64% and is now estimated to be 20% above average
- sigR estimate increased from 0.47 to 0.48

23

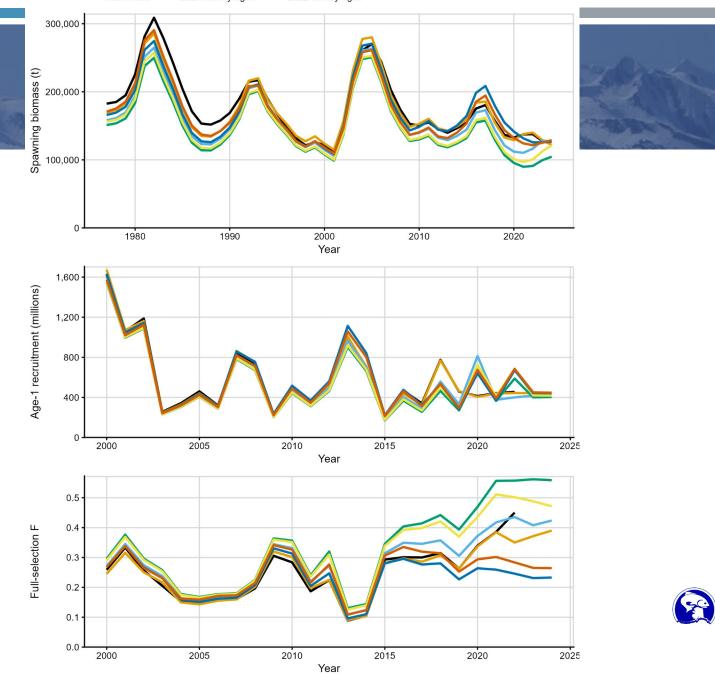
Retrospective



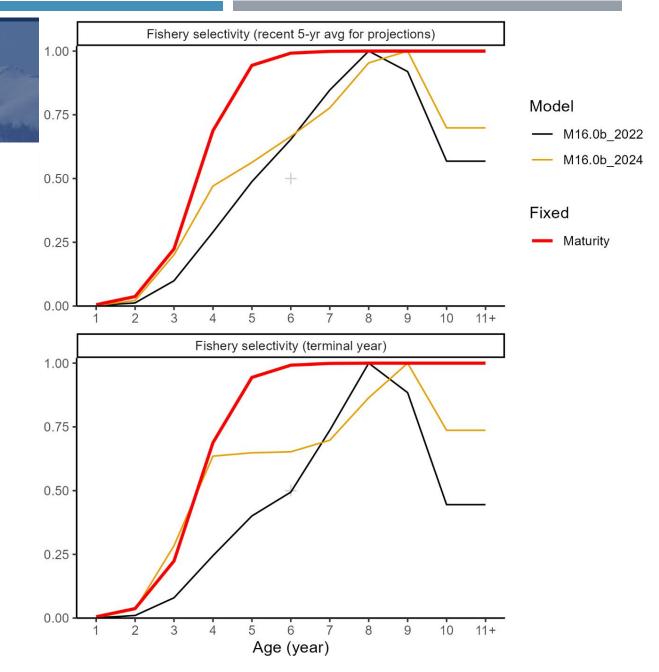
Recent 12 peels are reasonable

Terminal year

 2012-2014 start to see
moderate to strong
positive bias (lack of
old fish in survey
results in more
dome-shaped survey
selectivity, smaller Q,
larger population (Section Scales)


Assessment retrospective

- 2022 final - +2022 fishery ages - +2024 survey biomass - +Francis tuning


- +catch/waa - +2023 fishery ages - +2022 survey ages

Impact of new data

Survey selectivity and projection assumptions

- The recent estimated 5-yr average fishery selectivity (2019-2023) used for projections
- Population weight-at-age set equal to the average of the most recent three surveys with age data (2016, 2018, 2022)
- We assume projected 2025 and 2026 catch is 85% of maxABC (SSL regulations)

Harvest
Recommendations

- Level 2 for Environmental & Ecosystem Considerations of Risk Table
- Level 1 for all other considerations

	Quantity	As estin specified la	nated or 1st year for:	As estimated or recommended this year for:		
		2024	2025	2025*	2026*	
	M(natural mortality rate)	0.30	0.30	0.30	0.30	
	Tier	3a	3b	3a	3a	
	Projected total (age 1+) biomass (t)	625,578	631,261	627,115	605,644	
	Projected Female spawning biomass	116,618	110,694	119,853	106,274	
	B100%	280,456	280,456	264,734	264,734	
	B40%	112,182	112,182	105,894	105,894	
	B3596	98,160	98,160	92,657	92,657	
	F _{OFL}	0.76	0.75	0.64	0.64	
	maxF _{ABC}	0.61	0.60	0.53	0.53	
	F _{ABC}	0.61	0.60	0.53	0.53	
	OFL (t)	111,684	99,723	122,622	107,889	
	maxABC (t)	95,358	84,676	103,247	92,361	
	ABC (t)	95,358	84,676	103,247	92,361	
	Status	As determined	this year for:	As determined	this year for:	
	Status	2022	2023	2024	2025	
	Overfishing	No	n/a	No	n/a	
	Overfished	n/a	No	n/a	No	
	Approaching overfished	n/a	No	n/a	No	

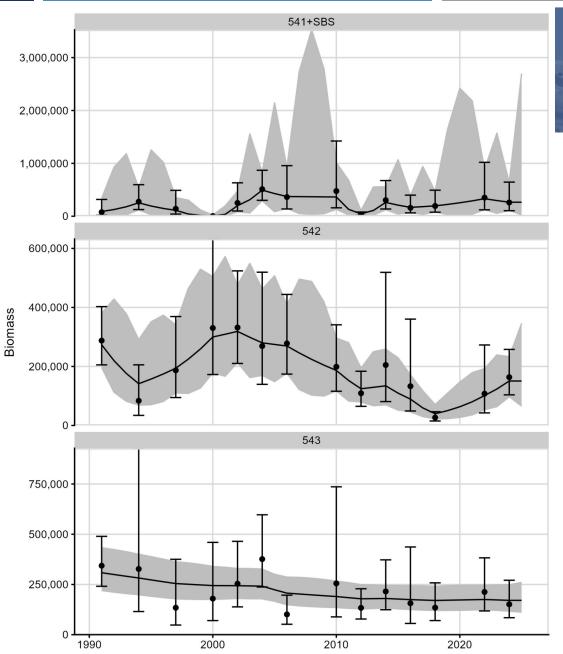
+8% in ABC from 2024

Risk Table - Environmental/ecosystem considerations

Sustained Level 2

Atka mackerel

- Warm winter conditions
- Smaller species in copepod communities
- Deeper mixed layer: potential impact on availability of prey in water column
- Lower than average fish condition across the entire chain
- Increased competition for prey (high rockfish abundance)



Apportionment

Apportionment Method	Area	Proportion	2025 ABC	2026 ABC
Random effects model	541+SBS	0.452	46,650	41,731
(recommended)	542	0.257	26,511	23,716
	543	0.291	30,087	26,914
	BSAI Total		103,247	92,361
Four-survey weighted	541+SBS	0.477	49,253	44,060
average	542	0.213	21,986	19,668
	543	0.310	32,008	28,633
	BSAI Total		103,247	92,361

Recommend using random effects model instead of current weighted average approach.

Apportionment

Next steps

- 2026 CIE
- Selectivity and scale
- Diagnostics (profiles, jitter, MASE, etc.)
- afscISS, sampler (with spatial growth considerations)
- ESP development
- Convert platforms (RTMB

Thank you Sandra and Jim!

QUESTIONS?

CONTACTS:

jane.sullivan@noaa.gov sandra.lowe@noaa.gov