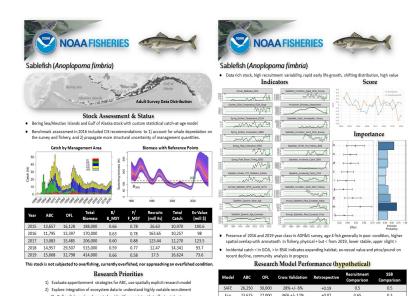
Ecosystem & Socioeconomic Profile Update & Socioeconomic Indicators

Kalei Shotwell, Russel Dame

September 2024, Presentation to the Groundfish Plan Team

ESP Definition


Process

Important ecosystem and socioeconomic indicators are identified and analyzed at the stock level

Product

Supplemental report that synthesizes the results of the indicator analysis and communicates drivers of stock dynamics

ESP Decisions

Qualitative

additional context

- Risk Tables
- Rebuilding Plans
- TAC Discussions
- Survey Planning
- Research Priorities
- Request for Proposals

Quantitative

assumptions

choices

covariates

- linkages
- Consistency with stock life history
- Biological realism

- Inform data conditioning
- Time blocks
- Parameter values consistent with existing info

General Timeline

Recommendation to conduct ESP (Oct, Dec)

ESP Report Cards (Sept, Nov)

Request for Information (Jan, Feb)

Full ESP (May, Sept)

ESP Review (Apr, May)

Update

Timeline

Changes to Request For Indicators (RFI) and delivery of ESP statistical products

Capacity

New causal maps for ecosystem-linked models, creating general ESP report cards for all stocks,

National

Coordination project, data modernization, developing socioeconomic indicators (Dame)

Request For Information (RFI)

Main elements

- Description and process timing
- List of requests representing data gaps and research priorities by stock
- Instructions for contributions, information review, roles and responsibilities

Coordination

- Work with Crab ESP team to organize crab RFI similarly, earlier timing
- Work with ESR team to identify overlap areas and streamline contributions

Request for Information (RFI): Ecosystem and Socioeconomic Profile (ESP) of the Groundfish stocks in Alaska

Groundfish ESP Teams

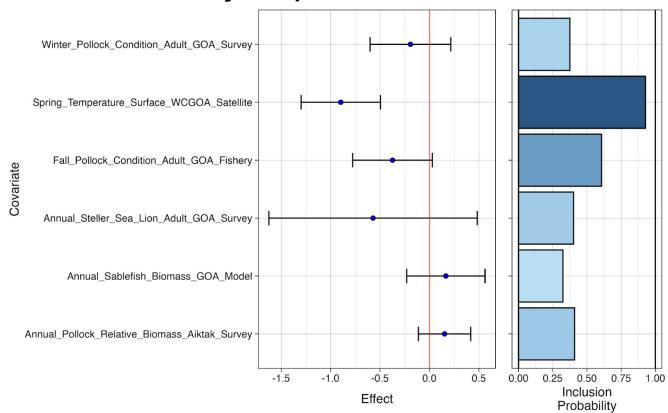
Stepwise plan and cycle for review of information submissions in response to this RFI

Request Opening	February 3, 2025	
Request Closing	February 28, 2025	
Review of Submitted Information	March 10-21, 2025	
Notification of Selected Information	March 28, 2025	

Please contact Kalei Shotwell (<u>kalei.shotwell@noaa.gov</u>) if you have any questions about this Request for Information (RFI).

Importance Methods Project - Transition Year 2024

- Evaluating statistical methods for sablefish (Oke et al., in review)
 - Bayesian adaptive sampling (BAS)
 - Boosted regression trees (BRT)
 - General additive models (GAMs)
 - O Dynamic factor analysis (DFA) + robust regression
 - Opnic Structural equation modeling (DSEM, Thorson et al., 2024)*
- Apply some of these methods on stocks with full ESPs
- Results presented at PEEC meeting for assessment authors



Importance Example - GOA Pollock

May Importance Result

Note: only for ecosystem indicators

November Report Card

Indicator	2019 Status	2020 Status	2021 Status	2022 Status	2023 Status
Annual Heatwave GOA Model	high	neutral	neutral	neutral	neutral
Spring Temperature Surface WCGOA Satellite	high	neutral	neutral	neutral	neutral
Summer Temperature Bottom GOA Survey	high	NA	neutral	NA	neutral
Spring Wind Direction Kodiak Buoy	neutral	neutral	neutral	neutral	neutral
Spring Chlorophylla Biomass WCGOA Satellite	low	neutral	neutral	neutral	low
Spring <u>Chlorophylla</u> Peak WCGOA Satellite	high	neutral	neutral	neutral	high
Spring Small Copepod Abundance Shelikof Survey	high	NA	neutral	NA	neutral
Spring Pollock CPUE Larvae Shelikof Survey	neutral	NA	neutral	NA	neutral
Summer Pollock CPUE YOY Shelikof Survey	neutral	NA	NA	NA	neutral
Summer Pollock Condition YOY Shelikof Survey	low	NA	NA	NA	NA
Summer Pollock CPUE YOY Nearshore Kodiak Survey	neutral	neutral	neutral	neutral	neutral
Summer Pollock Euphausiid Diet Juvenile GOA Survey	high	NA	neutral	NA	neutral
Fall Pollock Condition Adult GOA Fishery	neutral	neutral	neutral	neutral	NA
Winter Pollock Condition Adult GOA Survey	neutral	neutral	neutral	low	neutral

Update

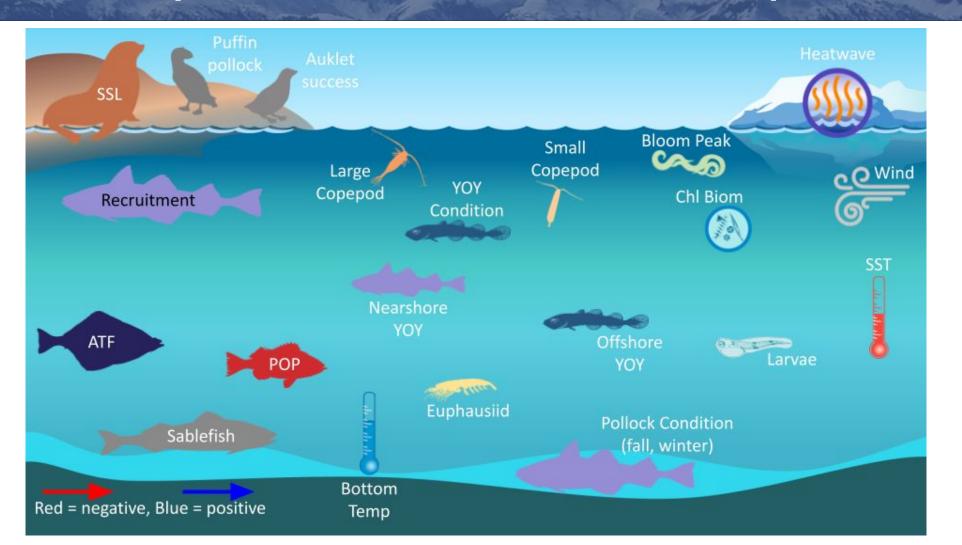
Timeline

Changes to Request For Indicators (RFI) and delivery of ESP statistical products

Capacity

New causal maps for ecosystem-linked models, creating general ESP report cards for all stocks,

National


Coordination project, data modernization, developing socioeconomic indicators (Dame)

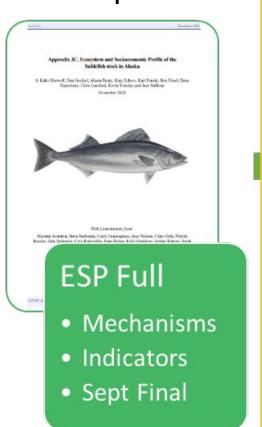
Ecosystem-linked Assessment Project

- Integrating DSEM in GOA pollock model (Champagnat et al., in prep)
 - Concerns regarding recruitment and growth in risk table
 - BAS consistently showing high importance for couple indicators
 - Start with ESP indicator suite, develop a simple causal map
 - Evaluating sign and coefficient value through dynamic structural equation modeling (DSEM) that is running within GOA pollock assessment model
- Iterative process to determine indicators in causal model
- Can use modeling framework to test mechanisms in ESP

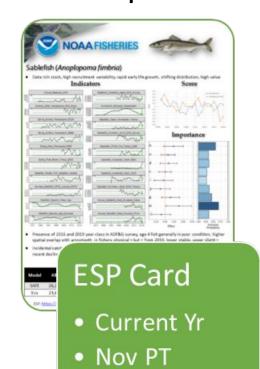
PEEC Activity - GOA Pollock Causal Map

ESP Review Process

Step 1


- Plan Team
- Dec Council
- Request ESP

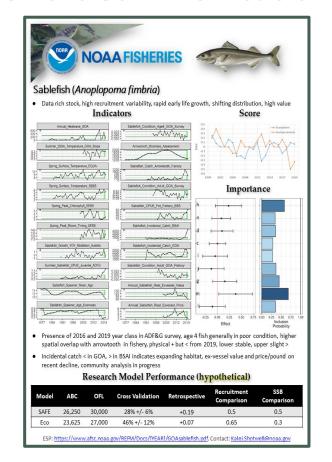
Step 2



Decision

Step 3

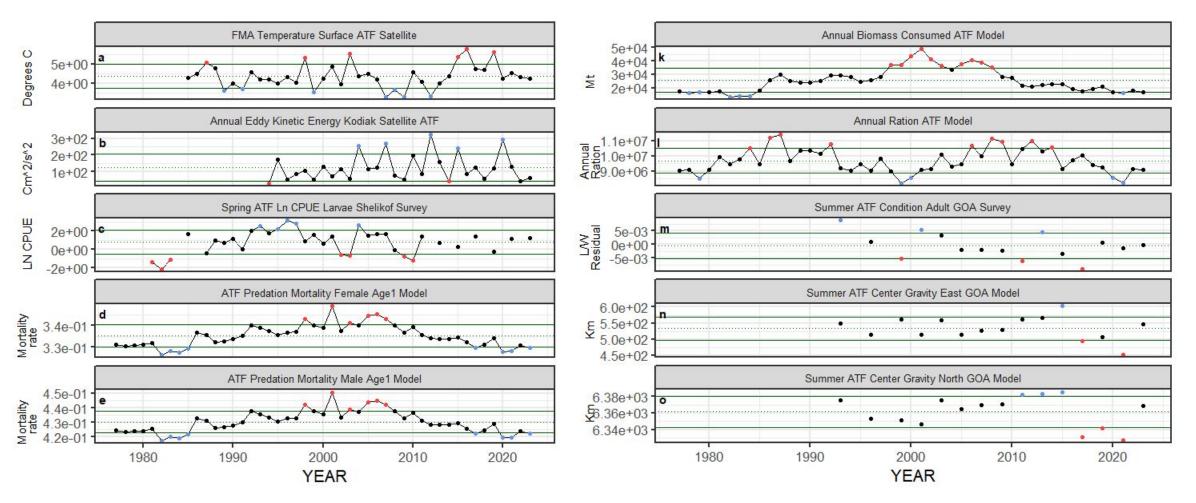
Step 4



Dec Council

Introducing ESP Mini

- Create indicator suite
 - Review ESR, EFH, any synthesis papers
 - Request stock-specific indicators in RFI
 - Create indicators from products applicable to many stocks (e.g., satellite, modeled)
- Create report card
 - Upload indicators to ESP data management, can be manual or AKFIN sourced
 - AKESP R package for standard graphics and ESP reporting templates
- Useful for risk table evaluation (<u>example</u>)

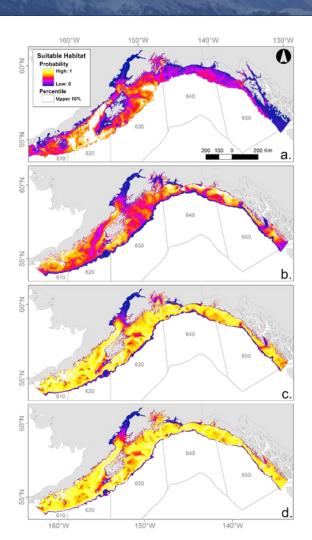

Short Communication

Example - GOA Arrowtooth Flounder (ATF)

- 1. SAFE Recommendation: investigate low recruitment with ESP
- Request and Review: 2 synthesis papers, maps of EFH 5-yr review, GOA ESR, GOA ESPs, and inseason management report, identified 19 indicators and requested them directly from contributors
- 3. **ESP Data Management**: uploaded individual contributions from GOA ESR, GOA ESPs, and inseason, some can be automated
- 4. **ESP Report**: connect to webservice and use ESP report card template to get set of standardized tables and figures

Indicator Time Series

Informed Indicators

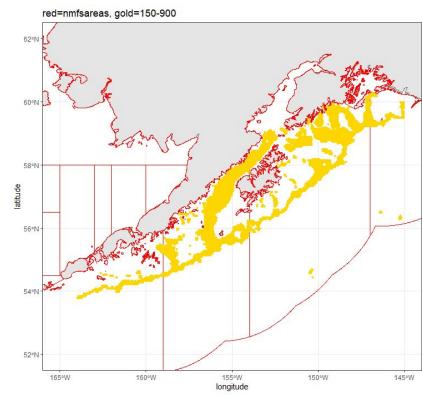

Shotwell et al., 2022

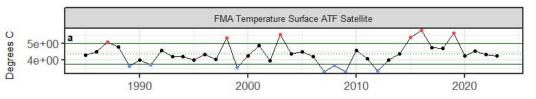
Larval

Early Juvenile

Late Juvenile

Adult




ATF Larval filters

Depth: 150-900m

Area: 620,630

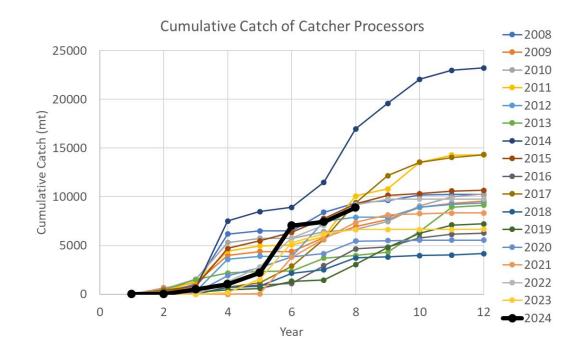
Season: Feb-April

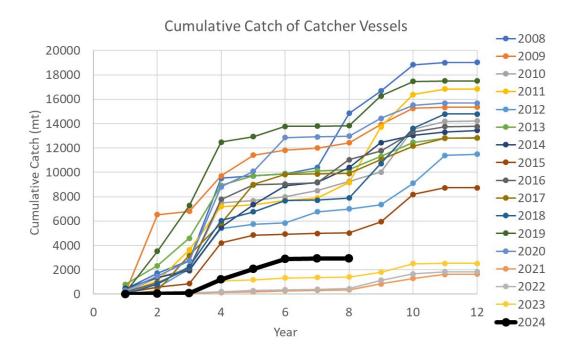


Traffic Light Table

Indicator category	Indicator	2019 Status	2020 Status	2021 Status	2022 Status	2023 Status
	FMA Temperature Surface ATF Satellite	high	neutral	neutral	neutral	neutral
Larval	Annual Eddy Kinetic Energy Kodiak Satellite ATF	neutral	high	neutral	neutral	neutral
	Spring ATF Ln CPUE Larvae Shelikof Survey	neutral	NA	neutral	NA	neutral
	ATF Predation Mortality Female Age1 Model	neutral	low	low	neutral	low
	ATF Predation Mortality Male Age1 Model	neutral	low	low	neutral	low
Juvenile	ATF Predation Mortality Female Age2 Model	neutral	low	low	neutral	low
-	ATF Predation Mortality Male Age2 Model	neutral	low	low	neutral	low
	Summer ATF Size Small ADFG Survey	neutral	neutral	neutral	neutral	neutral
Adult -	Summer ATF CPUE ADFG Survey	neutral	neutral	neutral	neutral	neutral
	Summer Temperature Bottom GOA Survey ATF	high	NA	neutral	NA	neutral
	Annual Biomass Consumed ATF Model	neutral	neutral	low	neutral	neutral
	Annual Ration ATF Model	neutral	low	low	neutral	neutral
	Summer ATF Condition Adult GOA Survey	neutral	NA	neutral	NA	neutral
	Summer ATF Center Gravity East GOA Model	neutral	NA	low	NA	neutral
	Summer ATF Center Gravity North GOA Model	low	NA	low	NA	neutral
	Summer ATF Area Occupied GOA Model	neutral	NA	neutral	NA	neutral

Indicator Analysis - Traffic Light Score


- Larval
- Juvenile
- Adult
- Overall Ecosystem


- Fishery Performance
- Overall Socioeconomic

Socioeconomic Indicators

Indicator category	Indicator	2019 Status	2020 Status	2021 Status	2022 Status	2023 Status
	Annual ATF Catch CV GOA Fishery	neutral	neutral	low	low	low
Fishery Performance	Annual ATF Catch CP GOA Fishery	neutral	neutral	neutral	neutral	neutral
	Annual ATF Incidental Catch GOA Fishery	low	low	low	low	low

Update

Timeline

Changes to Request For Indicators (RFI) and delivery of ESP statistical products

Capacity

New causal maps for ecosystem-linked models, creating general ESP report cards for all stocks,

National

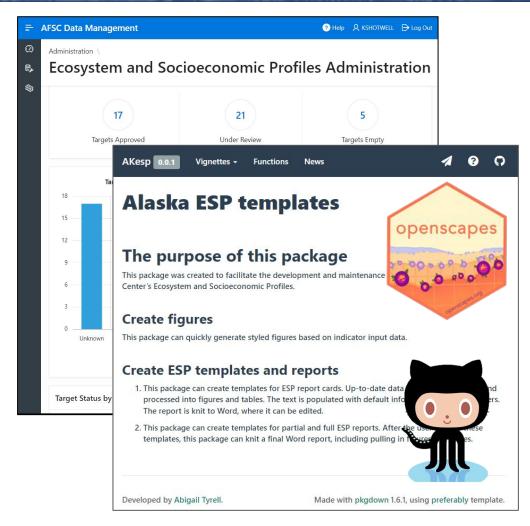
Coordination project, data modernization, developing socioeconomic indicators (Dame)

National ESP History

Alaska ESPs (17 stocks requested, 7 complete)

National ESP Coordination Project

Team


- 12 representatives from NMFS science centers and regional offices
- 6 representatives from NMFS Office of Science and Technology and Office of Sustainable Fisheries

Purpose and Activities

- Improve communication, share across science centers, create efficiencies
- National ESP webpage, step-by-step guide, coordinated <u>share workshops</u>,
 co-creating activities, tracking, and reporting

IRA/FIS Data Modernization Project

- Expanding AKFIN data management and AK-ESP R package
 - Build out automated datasets to EEZ, create web services
 - Code cleanup, develop report templates for multiple area uses
- Case study Northeast
 - Coordinated with NE ERDDAP
 - Planning session with data managers and AKFIN in July 2024
 - Planning session with data managers and code developers in 2025

Feedback on Socioeconomics in ESPs

- Alaska SSC Minutes (2022, 2023) and NPFMC Motion
 - SSC has consistently provided feedback on socioeconomics in ESPs particularly to coordinating multiple products, suggested workshop
 - "The Council recommends NOAA and Council staff review available data and recommend species-level socio-economic indicators appropriate for the Ecosystem and Socioeconomic Profiles (ESPs)..."
- National ESP share workshops
 - Less emphasis on socioeconomics in ESPs (little "s"), low engagement
 - Uncertainty in how to choose or use socioeconomic indicators to best support fisheries management decisions

2024 Progress

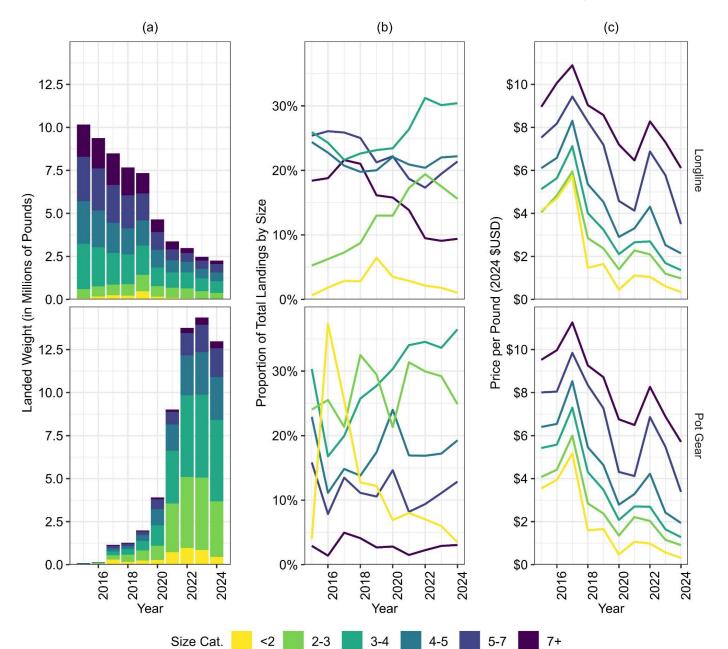
Alaska

- Several meetings with Council staff to discuss AFSC staff capacity to produce socioeconomic indicators for ESPs
- Plan to add a few new socioeconomic indicators for the sablefish ESP (next talk by Rusty), incorporate PT/SSC/Council feedback

National ESP Project

- Review existing socioeconomic indicators in ESP/ESR and propose existing and/or develop new stock- or ecosystem-level indicators for ESP/ESR
- Discussion session at ESP Share Workshop on resolution, temporal scale, and type of socioeconomic indicators and initiate guidance document

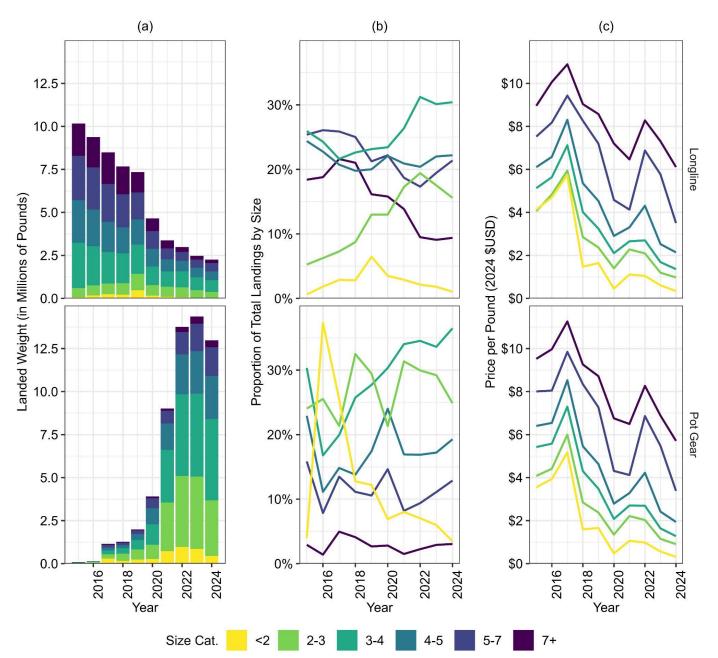
Proposed Socioeconomic Indicators for Sablefish


- In response to the SSC's request for additional socioeconomic information in the Alaska sablefish ESP
 - Improves coordination of socioeconoimc information in Council decision-information sources
- Provides socioeconomic information that meets BSIA threshold at time of TAC setting
- We developed four new socioeconomic indicators for the sablefish fishery
 - 1. Historical and inseason sablefish prices and landings by size
 - 2. Total Allowable Catch (TAC) utilization by region
 - 3. Total sablefish revenue share of active vessels
 - 4. Regional quotients by value and landings

- Reports the total landings (in pounds), the proportion of total landings by size category, and the annual size-specific average price per pound.
- Data Sources
 - Alaska Regional Office inseason eLandings data
 - Catcher-processor fleet does not size sablefish
 - Considers fish tickets for the fixed gear fleet
 - Limited size information is available for the trawl fleet
 - Trends in price between inseason eLandings, COAR, and CFEC display very similar trends
 - COAR and CFEC consider post-season adjustments
 - Do not differentiate by size category

Methods

- Size categories are very similar between processing facilities but quality grades are not
 - ~97% of all reports that listed size categories could be binned
 - Quality ranged between letters ("a" to "f"), symbols (+,-), and numbers (#1 to #3)
- Price per-pound is based on the average among all quality grades
- Consider historical data between January 1 and September 30
 - Compared full- and partial-year historical data
 - Less than a 5% absolute difference



Interpretation: Comparison of total landings, proportion of total landings by size, and price per pound by size for the fixed gear fishery differentiated by gear-type

Decrease in the proportion of sablefish <2 lbs and >7 lbs size categories

Increase in the proportion of sablefish in the 2 to 3 lb and 3 to lb size categories

Price declines are similar between the 5-7 lb and >7 lb and between all other size categories

SSC/Council Use: Provides information on fishery performance and market conditions for the fixed gear fishery

Indicator #2: Percentage of Total Allowable Catch Harvested by Active Vessels

- Reports the cumulative TAC utilization (as a percent) for the BSAI and GOA
- Data Sources
 - Catch Accounting System (CAS)
- Methods
 - Report weekly TAC utilization through September (full-year for historical TAC utilizations)
 - Divide the cumulative sum of weekly sablefish landings by region-specific TAC levels
 - More detailed sector-level TAC utilization presented by the AKR in December

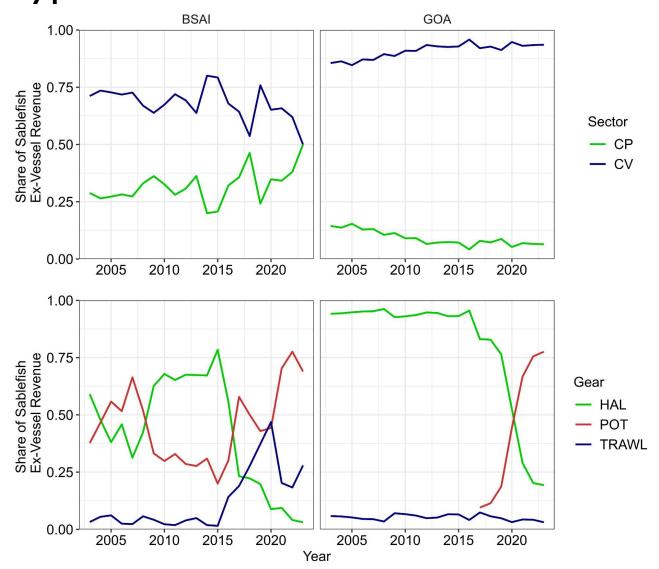
Indicator #2: Percentage of Total Allowable Catch Harvested by Active Vessels

2015 2017 2019 2021 2023

→ 2016 → 2018 → 2020 → 2022 → 2024

Interpretation: The historical and inseason percentage of TAC utilization by week for the BSAI and GOA

SSC/Council Use: Determine which region may be most sensitive to changes in TAC regulations

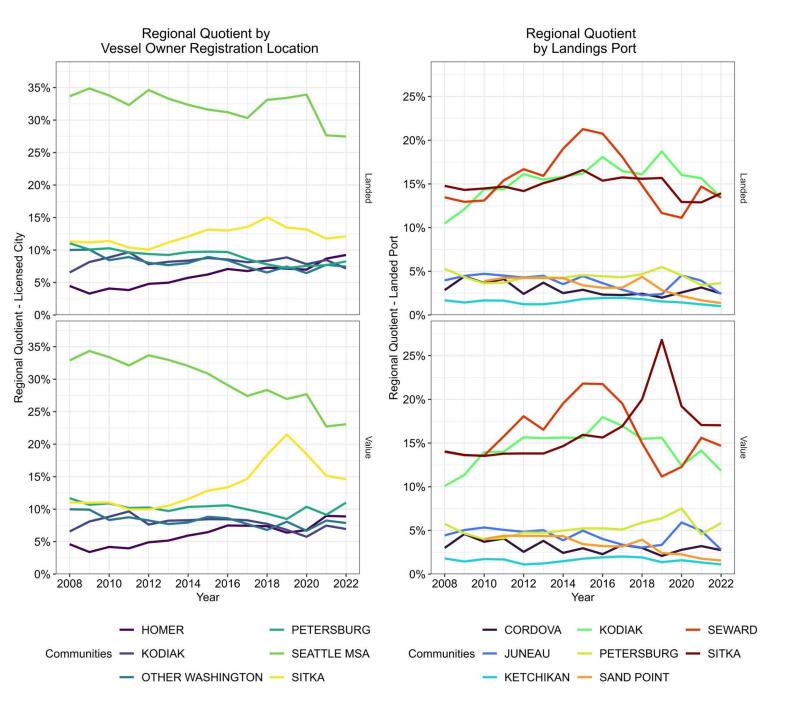

Note: Data on landings used for TAC utilization includes catch and discards

Indicator #3:Total Revenue Share by Sector and Gear Type

- Reports the historical (2010-2023) proportion of total region-specific sablefish revenue by catcher vessels and catch processors and gear-type
- Data
 - Commercial Operator's Annual Report (COAR)
 - Catch Accounting System (CAS)
- Methods
 - Divide the sector- and gear-specific sablefish revenue by the total sablefish revenue associated with each region

Indicator #3: Total Sablefish Revenue Share by Sector and Gear Type

Interpretation: The temporal change in the proportion of total sablefish revenue within each sector/gear-type by region


SSC/Council Use: Provide insight in setting TAC in consideration of economic and social factors

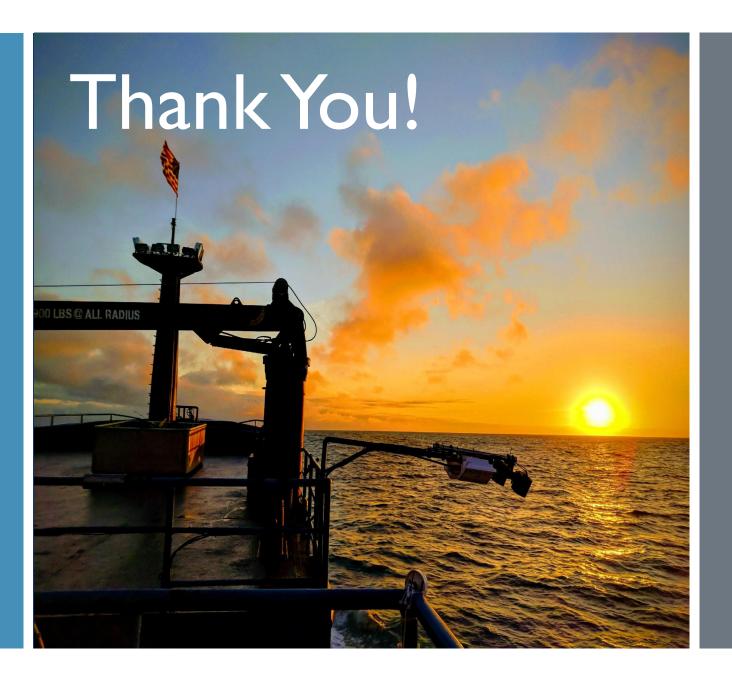
Note: Data pre-2017 for slinky pots in GOA is excluded due to confidentiality

Indicator #4: Regional Quotient

- Reports the historical (2008-2023) involvement of communities (based on vessel owner registration residence and landings port) based on landings and value
- Data
 - Commercial Operator's Annual Report (COAR)
 - Catch Accounting System (CAS)
- Methods
 - Divide the community-specific sablefish landings (value) by total landings (value) among all communities

Interpretation:

Community-specific landings (revenue) as a proportion of total landings (revenue)


SSC/Council Use: Determine potential community impacts from changes in TAC/other regulations and the importance of sablefish for communities

Discussion

- 1) Do the new schedules for Request For Information (RFI) and statistical importance products seem reasonable?
- 2) Does the ESP Mini seem useful for initiating recommended ESPs? Any feedback on this format?
- 3) Are there any thoughts or concerns on the proposed sablefish socioeconomic indicators? Additional ideas?

Contact:

Kalei Shotwell, AFSC Russel Dame, AFSC

kalei.shotwell@noaa.gov russel.a.dame@noaa.gov

ESP Summary

Stock	Year initiated	Full ESP	Partial update	Report card*
Sablefish	2017	2017 - <u>2019</u>	2020	<u>2021, 2022, 2023</u>
Gulf of Alaska Pollock	2019	2019	2020	<u>2021, 2022, 2023</u>
EBS Pacific Cod	2020	2021		<u>2021, 2022, 2023</u>
GOA Pacific Cod	2020	2021		<u>2021, 2022, 2023</u>
St Matthew Blue King Crab	2019	2019	2020	2022
Bristol Bay Red King Crab	2020	2020		<u>2021, 2022, 2023</u>
Bering Sea Snow Crab	2021	2022		2023

