

GOA Pollock

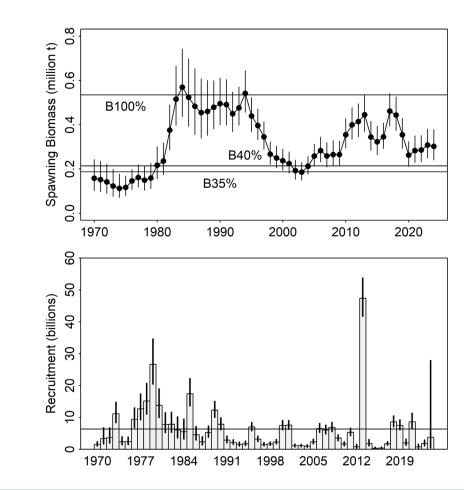
NOAA FISHERIES

Collaborators: Bridget E. Ferriss, S. Kalei Shotwell, Zack Oyafuso, Mike Levine, James T. Thorson, Lauren Rogers, Jane Sullivan, and Juliette Champagnat Cole Monnahan 2024 November Plan Team <u>cole.monnahan@noaa.gov</u>

Author's 2025 ABC = 181,022 t

- Increase of 56% from 2023
- 2026 ABC decreases to 133,075 t
- No reduction from max ABC

Changes (cumulative) to model:

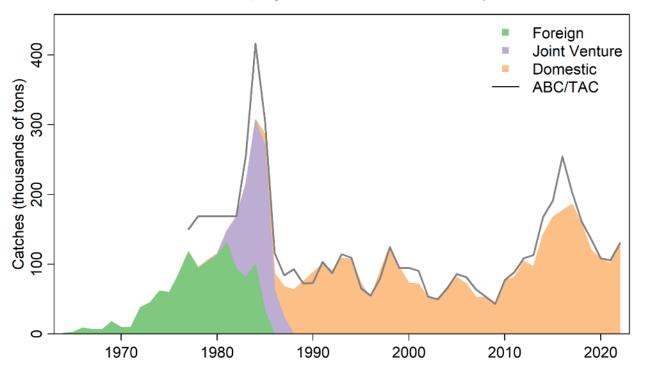

- 23a: Revamped ISS & CVs
- 23b: Environmental covariate on catchability
- 23c: Remove age 1 and 2 Shelikof indices
- 23d: Use Dirichlet-multinomial (author rec)

Concerns:

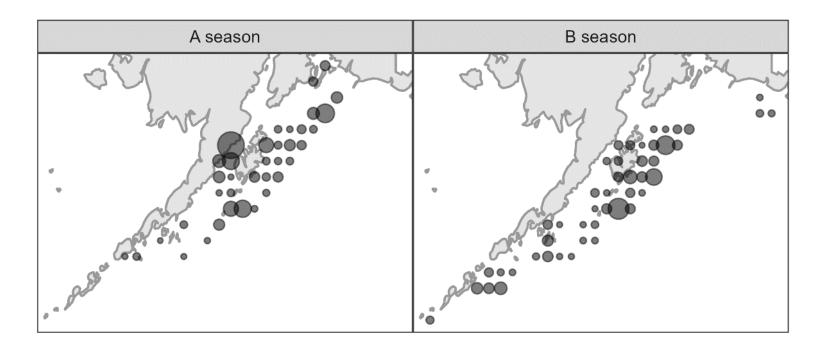
Poor fit to NMFS bottom trawl index

Positives:

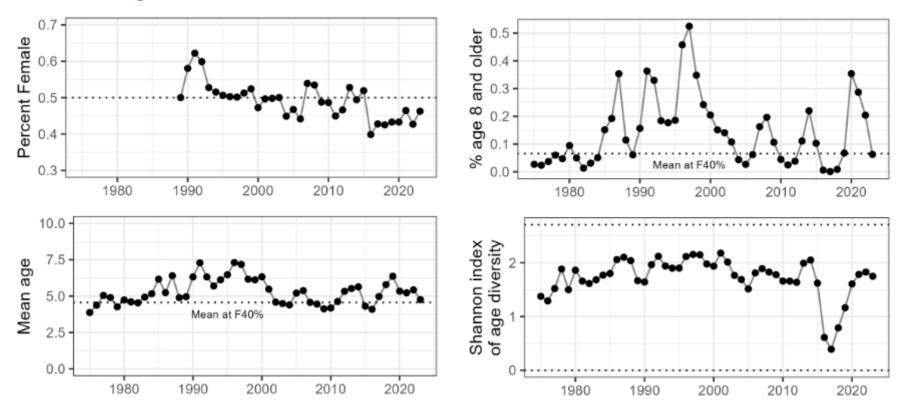
- 2017, 2018, 2020 cohorts above average
- Better retrospective pattern


Model overview

- Single-sex, single fishery, ages 1-10+
- Empirical weight at age
 - No internal length dynamics, all age-based processes
 - Length comps converted via specified matrices
- Fishery selectivity is double logistic
 - Time-varying (RW) initial slope/intercept
- Fitted to 4 surveys
 - NMFS winter (Shelikof) + summer (coast wide) acoustic
 - NMFS and ADF&G summer bottom trawl
- Time-varying catchability for Shelikof and ADF&G
- Prior on MMFS BT catchability sets scale and stabilizes model

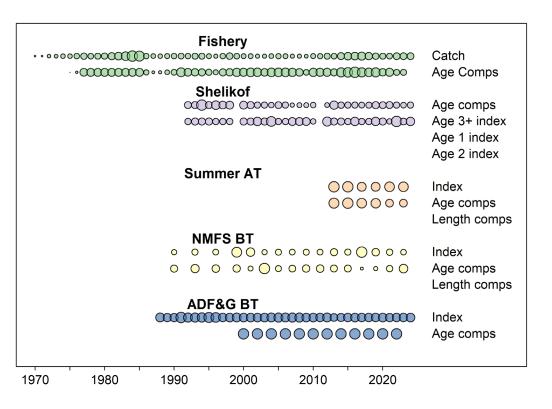

Catch history

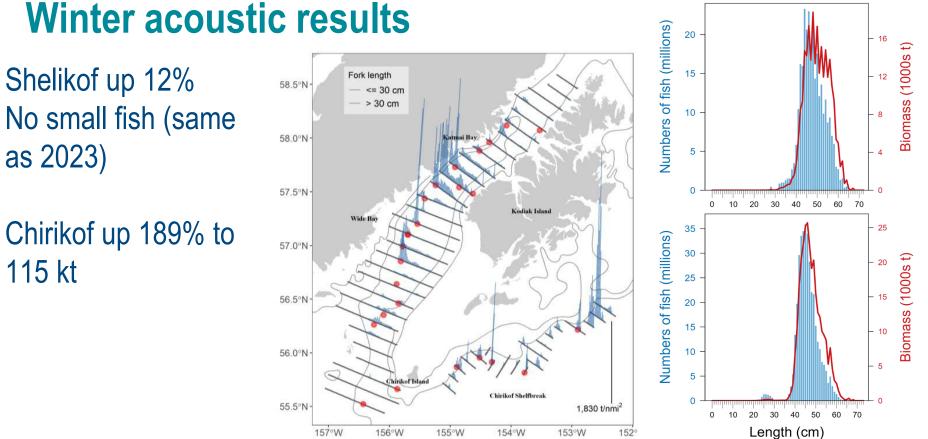
2023 projected catch = 145,215 t 2023 realized catch = 135,103 t 2024 projected catch = 131,000 t (CGOA closure in Sep-2024)



2023 fishery catch distribution

Fishery catch indicators

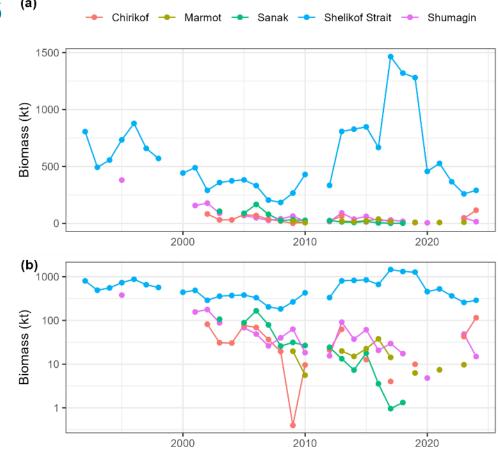



New data available in 2024

2024 was an "off" year in the GOA

- 2024 winter Shelikof acoustic survey (index and ages)
- 2023 Summer acoustic ages
- 2023 NMFS bottom trawl ages
- 2024 ADF&G bottom trawl index

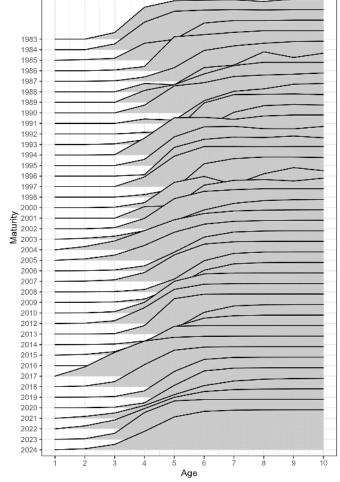
Shelikof up 12% ADF&G up 17%



Winter acoustic results (a)

Shelikof up 12% No small fish (same as 2023)

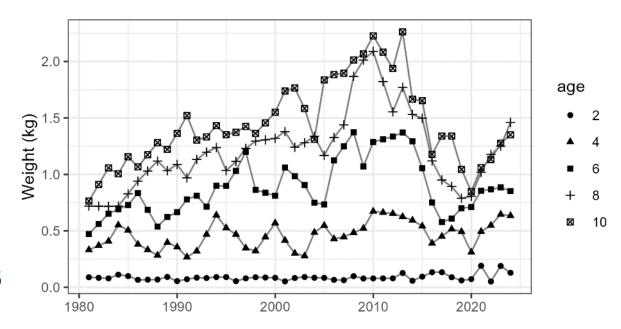
Chirikof up 189% to 115 kt



Maturity: recent estimates

Estimated from Shelikof data. Data after 2003 use local abundance weighting.

Average of all years used in projections 0.1 0.8 Proportion Mature 0.6 2020 0.4 2021 2022 0.2 2023 2024 All years 0.0 6 8 10 2 Age


U.S. Department of Commerce | National Oceanic and Atmospheric Administration | National Marine Fisheries Service | Page 10

Spawning weight at age (WAA)

WAA from Shelikof

survey

- Declined from 2012 to 2020
- Increasing again
- 5-year average used for projections

Fishery WAA

2023 modeled last year - 2024 modeled this year 1.0 • Weight (kg) 0.5 2.5 5.0 7.5 10.0 Age

2023 modeled this year

2023 data

- Did the RE model accurately predict the 2023 fishery WAA last year?
- Not really

NMFS BT updates

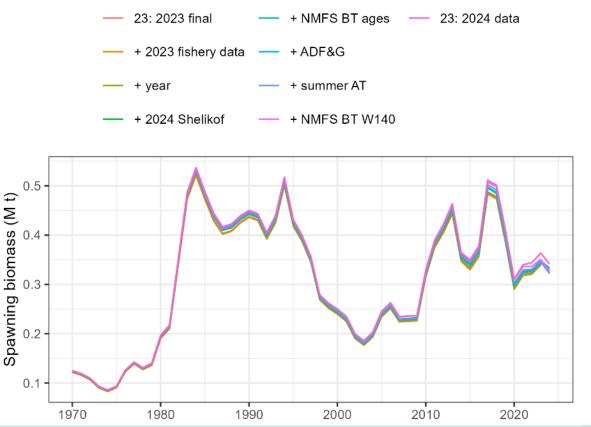
- Stock definition is W of 140W, but survey extends east
- Previously, only the index filtered stations east of 140W
- This year, Z. Oyafuso and I revised historical age compositions and weights-at-age to also filter them
- Had a minimal impact on assessment (shown later)
- But is an improvement to have survey extent consistent across data products

Key parameters estimated externally

- Natural mortality: age-specific
- Fishery WAA
 - Data used through 2023
 - A RE model used for 2024 and projections
- Spawning WAA
 - Annual data exclusively from Shelikof Strait
 5-year average for projections
- Population WAA
 - Projections use average of last 3 NMFS BT surveys
- Proportion mature at age
 - Long-term (1983-present) average used throughout

Parameters estimated internally

Population process modeled	Number of parameters	Estimation details
Mean recruitment	1	Estimated in log space
Recruitment deviations	Years 1970-2024 = 55	Estimated as log deviances from the log mean with all years constrained by random deviation process error of 1.3.
Natural mortality	Age-specific= 10	Not currently estimated in the model
Fishing mortality	Years 1970-2024 = 55	Estimated as log deviances from the log mean
Mean fishery selectivity	4	Slope parameters estimated on a log scale, intercept parameters on an arithmetic scale
Annual changes in fishery selectivity	2 * (No. years-1) = 110	Estimated as deviations from mean selectivity and constrained by random walk process error
Mean survey catchability	No. of surveys = 4	Catchabilities estimated on a log scale.
Annual changes in survey catchability	(No. years-1) = 54	Annual catchability for winter acoustic surveys and ADF&G surveys estimated as deviations from mean catchability and constrained by random walk process error
Covariate smoothing on catchability link for Shelikof survey	AR(1) process error and correlation, and effect size (3), as well as annual random effects (55)	The random effects are integrated out and not included in the total here.
Survey selectivity	8 (2 each for the Shelikof and summer acoustic surveys, and the NMFS and ADF&G BT surveys)	Slope parameters estimated on a log scale.
Overdispersion for Dirichlet-multinomial age composition	Fishery (1) and surveys (4)	Estimated in log space
Total	297 fixed effects (55 random effects)	

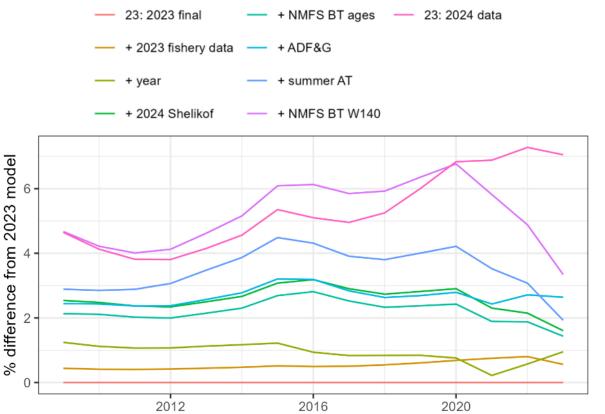


U.S. Department of Commerce | National Oceanic and Atmospheric Administration | National Marine Fisheries Service | Page 15

Sequential addition of data

- Track 2023

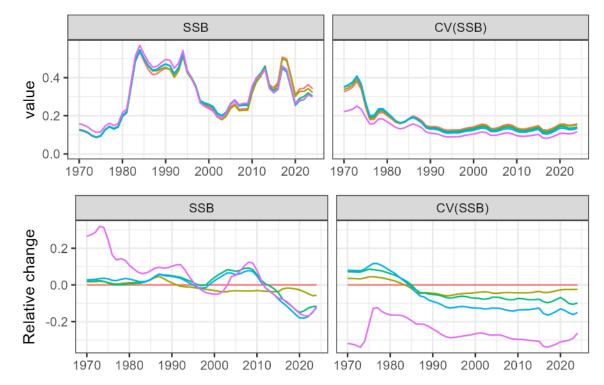
 accepted model
 (23) changes as
 new data are
 added
- Relatively stable trend and scale compared to 2023



Sequential addition of data

- Track 2023

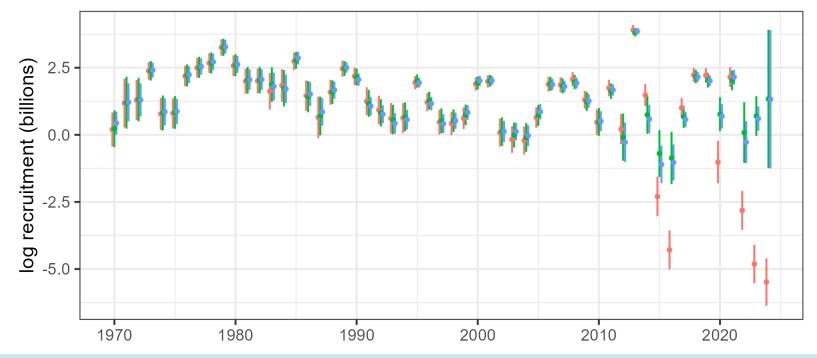
 accepted model
 (23) changes as
 new data are
 added
- Relatively stable trend and scale compared to 2023



Model alternatives

23: 2024 data - 23b: + Ecov q1 link - 23d: + Dirichlet-multi
 23a: updated ISS CVs - 23c: - Shelikof 1 & 2s

- Biggest changes were models 23b and 23d
 - Increased early SSB, decreased recent
 - Decreased uncertainty
- Otherwise fairly stable



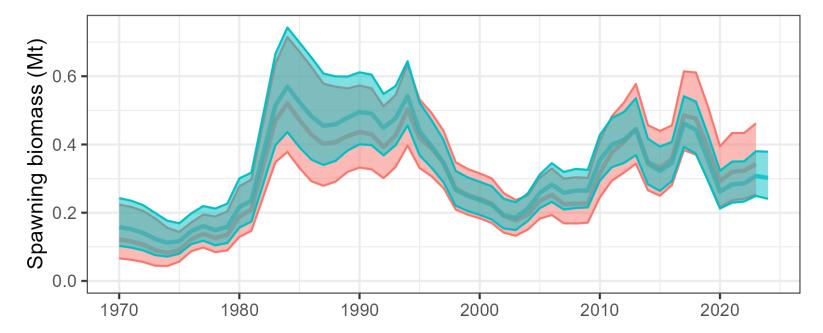
Model alternatives: Recruitment estimates

23: 2024 data

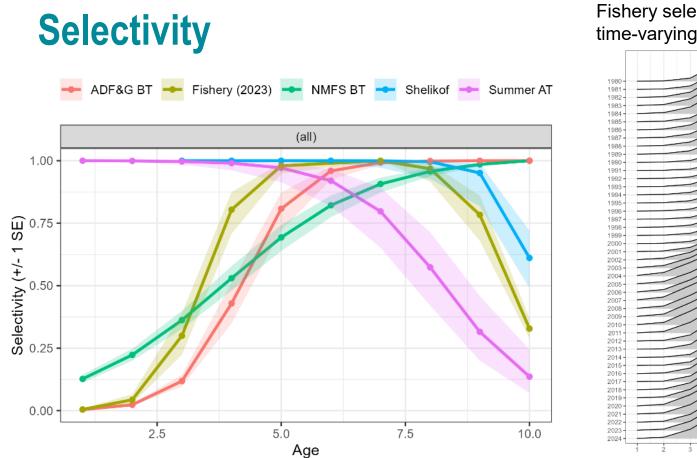
23c: - Shelikof 1 & 2s

23d: + Dirichlet-multi

U.S. Department of Commerce | National Oceanic and Atmospheric Administration | National Marine Fisheries Service | Page 19

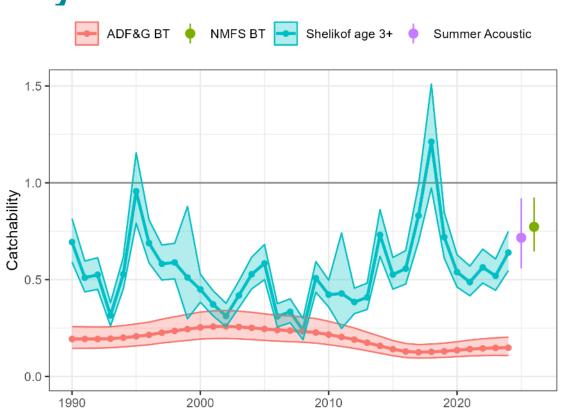

Model alternatives: management advice

Model Version	2025 SSB (t)	B100	FOFL	FABC	OFL	ABC
23: 2024 data	259,437	534,000	0.308	0.261	186,778	161,183
23a: updated ISS CVs	245,952	529,000	0.309	0.262	180,218	155,540
23b: + Ecov q1 link	231,139	528,000	0.314	0.266	174,504	150,545
23c: - Shelikof 1 & 2s	238,824	529,000	0.316	0.267	205,536	177,035
23d: 2024 final	243,078	535,000	0.321	0.271	210,111	181,022


Final model compared to last year

U.S. Department of Commerce | National Oceanic and Atmospheric Administration | National Marine Fisheries Service | Page 21

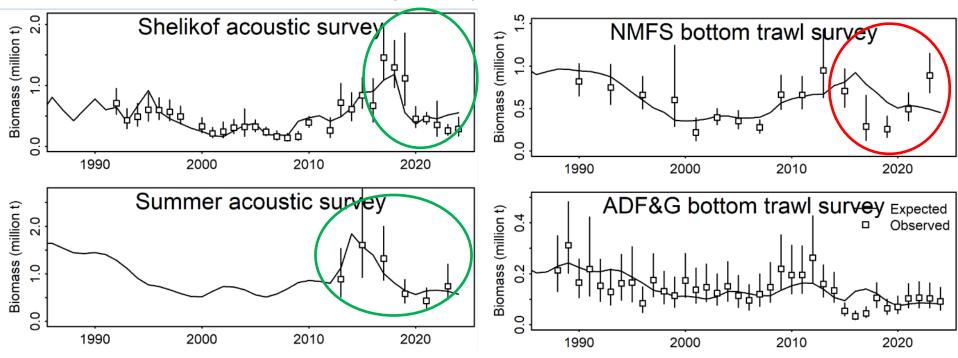
NOAA FISHERIES


Fishery selectivity: double logistic with time-varying ascending limb

Age

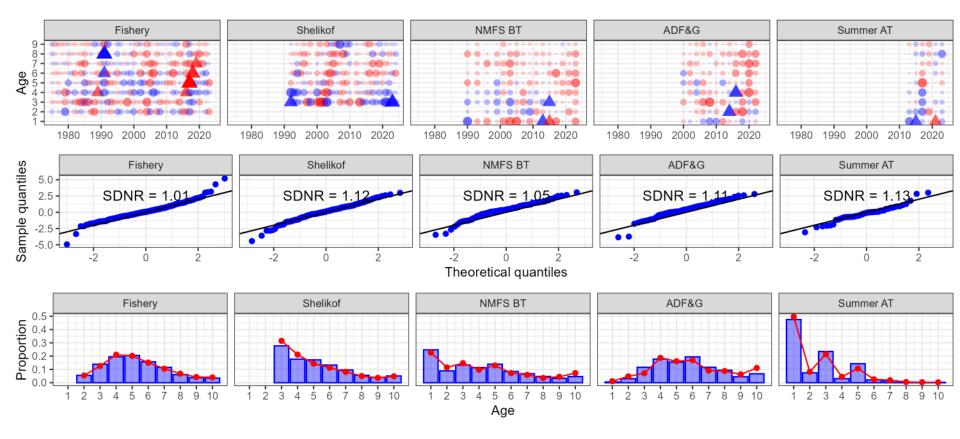
10

Estimates of catchability


- Shelikof driven by timing covariate (Rogers et al. 2024)
- Smoothed w/ AR(1) internally

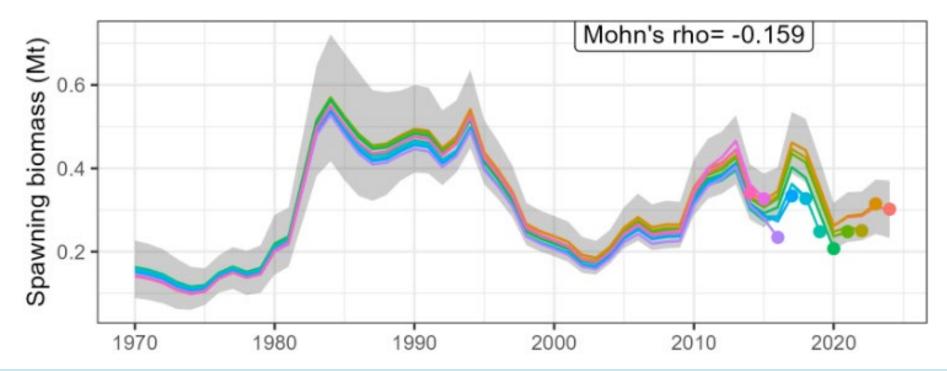
Index fits

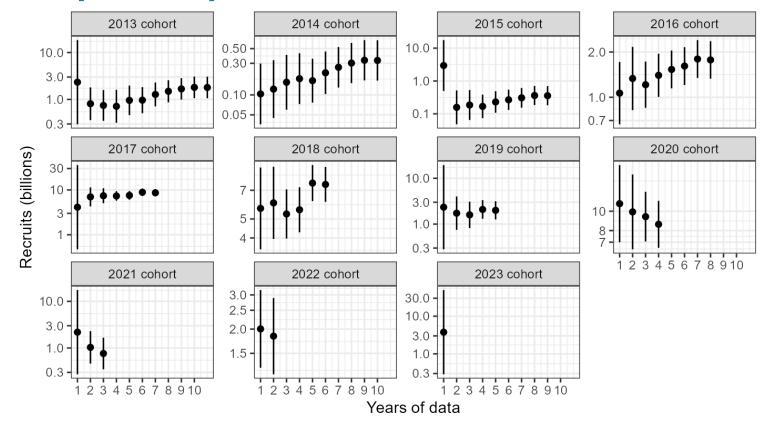
Improved Shelikof fits (q-link); poor NMFS BT



Index fits

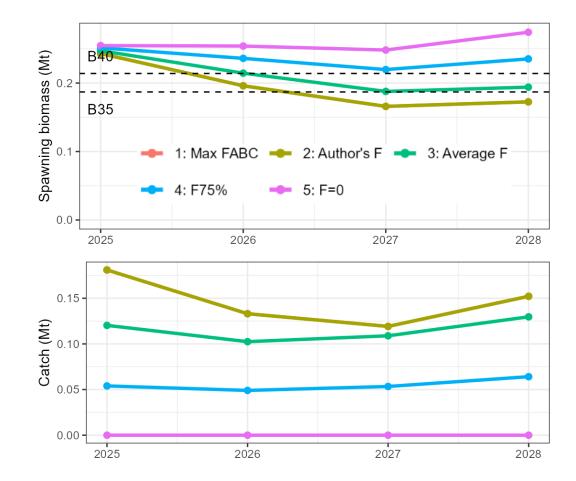
 Age 1 and 2 indices from Shelikof are no longer fit (model 23c)



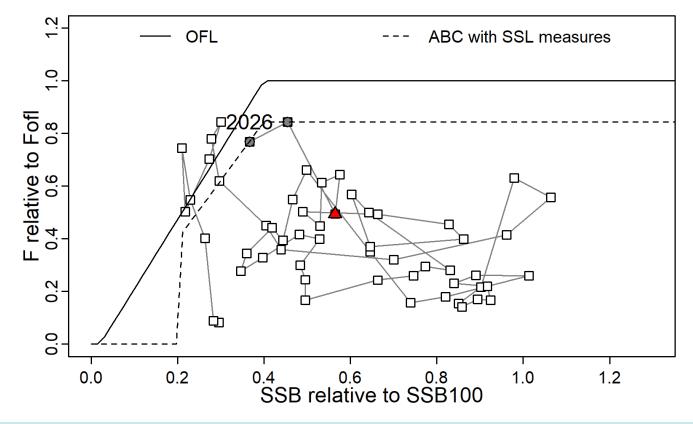

Retrospective patterns

• Rho not significant (null range -0.2 to 0.3)

Retrospective patterns


Projections: an aside

- In 2023 there was an issue in the projections
- 2023 SSB was 14% lower in "proj" than the assessment due to differences in spawning WAA (annual vs 5-year average)
- Starting in 2024 "proj" was configured to start in 2025, bypassing this issue (Thanks to J. Ianelli)


Projections in 2024

- GOA pollock has substantial timevarying quantities (WAA, maturity)
- What to use for SPR?... Ongoing challenge

Status trends

U.S. Department of Commerce | National Oceanic and Atmospheric Administration | National Marine Fisheries Service | Page 31

Risk table: overview

Summary and ABC recommendation

Assessment-related considerations	Population dynamics considerations	Ecosystem considerations	Fishery Performance considerations related to the health of the stock
Level 1: Normal	Level 1: Normal	Level 1: Normal	Level 1: Normal

- Assessment concerns: poor fit to NMFS BT index
- No reduction from maxABC is recommended

	As estimated o	or specified last	As estimated or recommended this		
	year	for:	year for:		
Quantity/Status	2024	2025	2025*	2026*	
M (natural mortality)	0.300	0.300	0.300	0.300	
Tier	3a	3a	3a	3a	
Projected total (age 3+) biomass (t)	1,154,403	1,430,029	1,269,931	1,005,310	
Projected female spawning biomass (t)	274,141	227,091	243,078	196,028	
B100%	505,000	505,000	535,000	535,000	
B40%	202,000	202,000	214,000	214,000	
B35%	177,000	177,000	187,000	187,000	
FOFL	0.307	0.307	0.321	0.321	
maxF _{ABC}	0.260	0.260	0.271	0.271	
F _{ABC}	0.260	0.260	0.271	0.271	
OFL (t)	269,916	182,891	210,111	153,971	
maxABC (t)	232,543	157,687	181,022	133,075	
ABC (t)	232,543	157,687	181,022	133,075	
	As determined <i>last</i> year for:		As determined this year for:		
Status	2023	2024	2024	2025	
Overfishing	No	n/a	No	n/a	
Overfished	n/a	No	n/a	No	
Approaching overfished	n/a	No	n/a	No	

Status Summary for Gulf of Alaska Pollock in W/C/WYK Areas

W/C/WYK area apportionment

Year	Area	Season A	Season B					
1 041	1 H Cu	ABC (t)	ABC (t)		Changes f	rom 2024	apportion	ment
2025	610 620	5,589 63,267	31,755 18,998		AB			cent
	630	16,751	34,854	Area	Season A	Season B	Season A	Season B
	640	5,2	· · · · · · · · · · · · · · · · · · ·	610	-1,022	-9,038	0.00	0.00
2026	610	4,109	23,344	620	-23,194	-5,407	-0.02	0.00
	620	46,510	13,967	630	-150	-9,920	0.02	0.00
	630	12,314	25,622	640	-1,:	503	0.	00
	640	3,8	883					

Results for GOA pollock in SE (Tier 5)

Status Summary for Gulf of Alaska Pollock in the Southeast Outside Area

	As estimated or s	pecified last year	As estimated or <i>recommended this</i> year		
	for:		for:		
Quantity/Status	2024	2025	2025	2026	
M (natural mortality)	0.30	0.30	0.30	0.30	
Tier	5	5	5	5	
Biomass (t)	43,328	43,328	43,328	43,328	
Fofl	0.30	0.30	0.30	0.30	
maxF _{ABC}	0.23	0.23	0.23	0.23	
F _{ABC}	0.23	0.23	0.23	0.23	
OFL (t)	12,998	12,998	12,998	12,998	
maxABC (t)	9,749	9,749	9,749	9,749	
ABC (t)	9,749	9,749	9,749	9,749	
	As determined <i>last</i> year for:		As determined <i>this</i> year for:		
Status	2023	2024	2024	2025	
Overfishing	No	n/a	No	n/a	

Questions?

• Thanks!

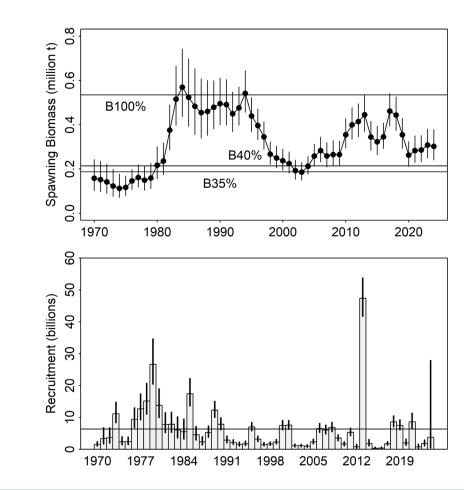
Collaborators:

 Bridget E. Ferriss, S. Kalei Shotwell, Zack Oyafuso, Mike Levine, James T. Thorson, Lauren Rogers, Jane Sullivan, and Juliette Champagnat

Author's 2025 ABC = 181,022 t

- Increase of 56% from 2023
- 2026 ABC decreases to 133,075 t
- No reduction from max ABC

Changes (cumulative) to model:


- 23a: Revamped ISS & CVs
- 23b: Environmental covariate on catchability
- 23c: Remove age 1 and 2 Shelikof indices
- 23d: Use Dirichlet-multinomial (author rec)

Concerns:

Poor fit to NMFS bottom trawl index

Positives:

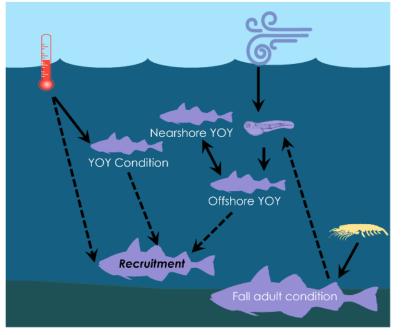
- 2017, 2018, 2020 cohorts above average
- Better retrospective pattern

Appendix 1E: Using causal relationships among ESP indicators to explain variation in recruitment

Coauthors: <u>Juliette Champagnat</u>, James T. Thorson, Jane Sullivan, Lauren Rogers, S. Kalei Shotwell

Beyond regressions: causal modeling

- Stock assessments have a "regression paradigm" to incorporate climate/environmental linkages
- Limitations: collinearity among variables => must pick one and regress
- <u>Causal models</u> try to extend the regression paradigm (Pearl 2009)
 - "a conceptual model that describes the causal mechanisms of a system"
 - Written A -> B (A causes B)
 - An association (correlation) between A and B can be b/c A -> B or B -> A, or some third variable causes them both B <- C -> A
- E.g., Rainfall & umbrella usage are correlated, which causes which?


Beyond regressions: causal modeling

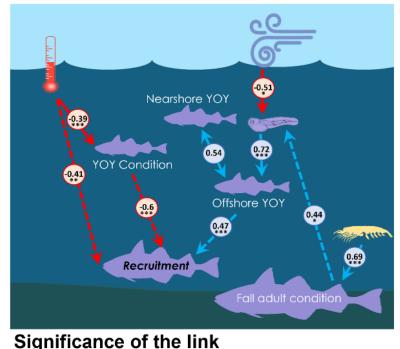
- McElreath (2018) popularized it: "Science before statistics"
- Causal relationships are not informed by the data, they are assumed on expert knowledge and tested with interventions
- Hypothesis: A causal framework would allow us to better utilize ecosystem/environmental data and expert knowledge, to build next-generation climate-linked AFSC assessments
- We tested this hypothesis on recruitment for GOA pollock

Science before statistics: causal modeling

Input: Hypothesis of causal map

OAA FISHERIES

The science

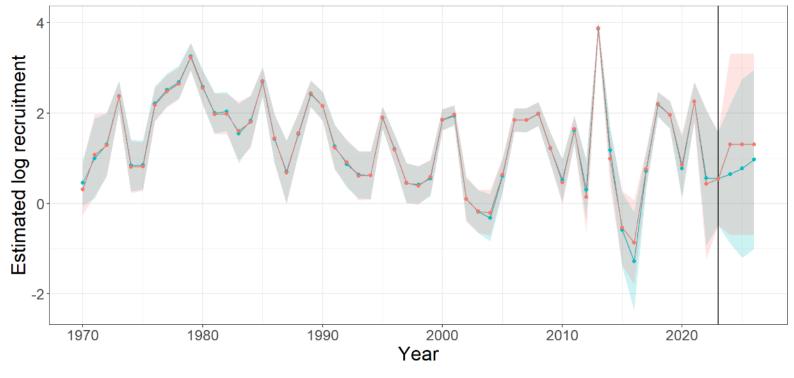

- Worked with experts to develop hypotheses about causal relationships ("maps")
- Expert knowledge, process research
- This map is an assumption
- But we can try to test and validate it

Science before statistics: causal modeling

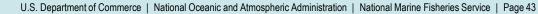
The statistics

- Use dynamic structural equation models (DSEM; Thorson et al. 2024)
- Assume linear relationships among (transformed) variables
- Smooth variables w/ AR(1) time-series to deal with missing data & do projections
- Embed into stock assessment (TMB required)
- Estimate effect sizes for each link (betas)
- This is not a regression

Output: Value of the link



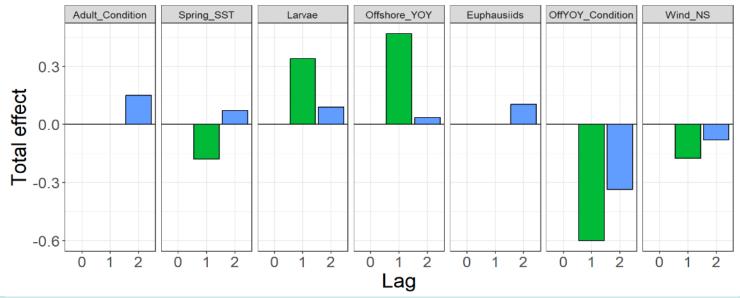
* (pvalue <0.05),** (pvalue <0.03),*** (pvalue <0.01)



Results for GOA pollock recruitment

OAA FISHERIES

Model version R_Dsem R_iid


Results: clear statistical support for DSEM model

- Fast and stable optimization (~ 2 mins)
 - Adds 29 fixed effects (10 variances, 10 correlations, 9 betas)
 - 627 random effects (latent variable states)
- 71% reduction in unexplained recruitment variance (σ_R reduced from 1.0 to 0.54)
- 18 AIC units lower (better)
- Improved short-term recruitment predictions (skill testing)

What did we learn about GOA pollock?

- Relative weights of "total effects" on recruitment depends on lag
- Short-term projections of recruitment are improved

Where do we go from here?

- DSEM presents a flexible statistical framework for next-generatio,n climate-linked assessments
- Could be applied to other population processes (growth, mortality, etc.)
- We already have extensive system knowledge and curated data sets ready to go (ESP, ESR)
- Build DSEM into CEATTLE and explore more case studies?
- Champagnat et al. (in prep) explores alternative causal maps, statistical behavior (self-testing etc.), and more model validation

References

McElreath, R. 2018. Statistical rethinking: A Bayesian course with examples in R and Stan. Chapman and Hall/CRC. Rogers, L. A., C. C. Monnahan, K. Williams, D. T. Jones, and M. W. Dorn. 2024. Climate-driven changes in the timing of spawning and the availability of walleye pollock (Gadus chalcogrammus) to assessment surveys in the Gulf of Alaska. ICES Journal of Marine Science. 10.1093/icesjms/fsae005. Thorson, J. T., A. G. Andrews III, T. E. Essington, and S. I. Large. 2024. Dynamic structural equation models synthesize ecosystem dynamics constrained by ecological mechanisms. Methods in Ecology and Evolution 15:744-755. Pearl, Judea. "Causal inference in statistics: An overview." (2009): 96-146.

