C2 BSAI CRAB STOCKS

KATIE PALOF & MIKE LITZOW (CPT CO-CHAIRS) JUNE 2024 NPFMC MEETING | KODIAK, AK CPT MEETING MINUTES – MAY 14TH – 16TH | ANCHORAGE, AK

BSAI CRAB STOCKS MANAGEMENT TIMING

MAY 2024 AGENDA

✓ AIGKC final assessment, OFL and ABC

- ✓ Proposed model runs:
 - ✓ Snow crab
 - ✓ Tanner crab
 - ✓ BBRKC
 - ✓ SMBKC
- ✓ BSFRF research updates
- ✓ Council topic updates
- $\checkmark\,$ ESP updates and planning
- ✓ Survey updates
- ✓ Crab observer program updates
- ✓ GMACS updates

ALEUTIAN ISLAND GOLDEN KING CRAB (AIGKC)

FINAL SAFE, OFL / ABC 2024

AIGKC EXPLORATIONS

- First final models under new authorship (Tyler Jackson)
- Data streamlining and recreating historic data from database performed in Jan 2024
- CPUE standardization
 - Detailed in appendix A; updated reviewed in Jan 2024
 - Changes from Jan to May:
 - Explore Tweedie distributions
 - Remove s(Lon, Lat) as covariate overfitting concerns
 - Correct fish ticket data pull (included many 0 data entries that were errors)
- Model options:
 - 23.0a (base model 2023)

23.1b (23.a + two selectivity periods in pre-rationalization CPUE)

MODEL FIT

FINAL RECOMMENDATIONS

- Model 23.1 for both areas
- 25% ABC buffer consistent with 2023 assessment
 - Level of uncertainty similar
 - Improvements in data processing and CPUE standardization
 - Poor model fit to index and poor retrospective patterns still prevalent

	Table 14: Co	omparison of biol	logical re	eference point	s for EA	G mode	els.
Model	MMB(t)	$B_{35\%}$ (t)	$\frac{MMB}{B_{35\%}}$	$\bar{R}_{1987-2017}$	$\mathrm{F}_{35\%}$	F_{OFL}	OFL(t)
23.0a	7,834	7,138	1.10	2,822	0.55	0.55	3,035
23.1	7,551	6,905	1.09	2,781	0.55	0.55	2,825
23.1b	7,112	6,906	1.03	2,795	0.59	0.59	2,699
Model	MMB (mil lb)	$B_{35\%}$ (mil lb)	$\frac{MMB}{B_{35\%}}$	$\bar{R}_{1987-2017}$	$F_{35\%}$	F_{OFL}	OFL (mil lb)
23.0a	17.27	15.74	1.10	2,822	0.55	0.55	6.69
23.1	16.65	15.22	1.09	2,781	0.55	0.55	6.23
23.1b	15.68	15.23	1.03	2,795	0.59	0.59	5.95

Table 15:	Comparison	of biological	reference	points for	WAG models.	
		1 () (

Μ	lodel	MMB(t)	$B_{35\%}$ (t)	$\frac{MMB}{B_{35\%}}$	$\bar{\mathrm{R}}_{1987-2017}$	$F_{35\%}$	$\mathrm{F}_{\mathrm{OFL}}$	OFL(t)
23	3.0a	$3,\!904$	$4,\!698$	0.83	$1,\!869$	0.54	0.44	945
23	8.1	$3,\!837$	$4,\!638$	0.83	$1,\!866$	0.54	0.44	900
23	3.1b	$3,\!944$	4,716	0.84	$1,\!914$	0.57	0.46	951
Μ	lodel	MMB (mil lb)	$B_{35\%}$ (mil lb)	$\frac{MMB}{B_{35\%}}$	$\bar{R}_{1987-2017}$	$F_{35\%}$	$\mathrm{F}_{\mathrm{OFL}}$	OFL (mil lb)
$\frac{M}{23}$	lodel 3.0a	MMB (mil lb) 8.61	$\frac{B_{35\%} \text{ (mil lb)}}{10.36}$	$\frac{\underline{MMB}}{B_{35\%}}$ 0.83	$\frac{\bar{\mathbf{R}}_{1987-2017}}{1,869}$	$F_{35\%}$ 0.54	F _{OFL} 0.44	OFL (mil lb) 2.08
M 23 23	lodel 3.0a 3.1	MMB (mil lb) 8.61 8.46	$\begin{array}{c} B_{35\%} \ (mil \ lb) \\ 10.36 \\ 10.23 \end{array}$	$\frac{MMB}{B_{35\%}}$ 0.83 0.83	$\frac{\bar{\mathrm{R}}_{1987-2017}}{1,869}$ 1,866	$F_{35\%}$ 0.54 0.54	F _{OFL} 0.44 0.44	OFL (mil lb) 2.08 1.98

SNOW CRAB: PROPOSED MODEL RUNS 2024

Outline

- Proposed models
 - Tier 3
 - Tier 4 fallback option
- Narrative description of modeling approach (in report)
- Currency of management
 - MMB time series for different currencies
 - "Arbitrary" selection of vulnerable size as currency
 - Possible next steps building on Clark (1991) yield curve analysis

Population projections under continued sea ice decline

PROPOSED MODELS

Tier 3

- Last year's accepted model (23.3a)
 - Probability of maturity defined outside model
 - BSFRF data as prior on NMFS survey selectivity
- Effort put into modeling narrative, currency of management decision
- CPT endorses continued use of this model

Tier 4 "fallback"

- Based on survey estimate of male biomass ≥ 95 mm carapace width
- SSC provided input on technical details smooting survey estimates and use of natural mortality in the estimate
- Two versions will be brought forward in October

CURRENCY OF MANAGEMENT: IMPLICATIONS FOR STATUS & OFL

Estimated mature male biomass from model 23.3a using different currencies of management

CURRENCY OF MANAGEMENT

Possible ways forward

- Set currency = vulnerable biomass (95mm CW)
 - Concerns: arbitrary definition, not based on MSY calculation
 - Vulnerable to changes in fishing practices (e.g., exploitation of legal-size crab < 101 mm CW)
 - CPT does not recommend
- Expand Clark (1991) approach
 - Evaluate robustness of F_{MSY} proxy to different assumptions concerning density-dependence to evaluate choice of currency for management
 - CPT endorses moving forward with this approach

DECADAL-SCALE POPULATION PROJECTIONS

- Three recent papers have confirmed the importance of marginal ice habitat for snow crab (Szuwalski et al. 2023, Mullowney et al. 2024, Litzow et al. in press)
- Density dependence and environmental covariates explain variability in *mortality*, *recruitment* and *maturity* better than no covariates.
- Impacts of changes in ice are strong for mortality and recruitment
- Density dependence in *mortality* allows for a short window for rebound, after which the population declines

Projection under declining sea ice

TANNER CRAB PROPOSED MODEL WORK

- Author provided feedback to SSC / CPT comments
 - Focus of model development was GMACS transition
- Updated BSFRF data into model (updates from 2013-2017 and new 2018 data)
- Proposed models include: TCSAM02 and GMACS models
- Good progress on GMACS models
- CPT recommended models for September final specifications
 - Base model 22.03d: 22.03b 2023 accepted model with BSFRF data input data updates
 - Tier 4 option from 2023 (REMA model on NMFS survey data) will be brought forward in Sept.

BBRKC PROPOSED MODEL WORK

- Stable model in GMACS since 2018
- Directed fishery was open in 2023/24 after being closed for 2 seasons (2021/22, 2022/23) due to low mature female abundance
- Model explorations around a few themes:
 - GMACS updates
 - Selectivity estimation using BSFRF data as a prior for NMFS survey
 - Molting probability time blocks
- CPT recommended models for September final specifications
 - Base model 23.0a (with corrections in .p7 version, estimated male M)
 - Model 24.0c model 23.0a with reduced time block for molt probability

Tier 4 option from 2023 (REMA model on mature males in NMFS survey data) will be brought forward in Sept.

SMBKC PROPOSED MODEL WORK

- New primary author Caitlin Stern (ADF&G Juneau)
- GMACS stable model since 2016; bi-annual assessment (last assessment 2022)
- Declared overfished in 2018 and under a rebuilding plan since 2020 (No directed fishery since 2015/2016)
- New data:
 - 2022 ADF&G pot survey (slight increase from 2018 pot survey)
 - 2023 NOAA survey and groundfish bycatch
- Model explorations around natural mortality SSC suggested RKC stocks use similar methods to BBRKC
- CPT recommended models for September final specifications
 - <u>Base model 16.1</u> (16.0 with corrections to historic pot survey data, updated data, and season timing change for MMB in GMACS). Change in model numbering to be consistent with CPT policies
 - Model 24.1: 16.1 as base but with a fixed value of M from BBRKC assessment in 2023 (M = 0.23)
 - Model runs without the NMFS survey corner stations to match the 2024 survey

BALANCE OF CPT REPORT

17

BERING SEA FISHERIES RESEARCH FOUNDATION

RESEARCH UPDATE

CPS2

- 646 pot lifts, 128 Nephrops trawl sets
- ~7,000 RKC captured
- Pot: 76% male / 24% female
- Trawl: 44% male / 56% female
- Other BBRKC work
 - Camsled / larval collectors
 - Sat tags

BERING SEA FISHERIES RESEARCH FOUNDATION RESEARCH UPDATE

- Slope:shelf gear comparison to 400m for survey modernization (August 2024)
- Opilio collaborative sampling tentatively planned alongside NMFS, using pots & Nephrops trawl

QUESTIONS?

- Thanks to all CPT members and crab assessment authors.
- Thanks to Sarah Rheinsmith-Gardiner for ALL of her work as our plan team coordinator!

