Climate update

Dec 2024 Kirstin Holsman NOAA Alaska Fisheries Science Center kirstin.holsman@noaa.gov

Today's talk

Part 1: Climate challenges continue to grow, with uncertainty about future trajectories Part 2: Climate-informed tools are available to support future sustainable fisheries (ACLIM) Part 3: CEFI accelerates the capacity to deliver climate-informed tools and advice

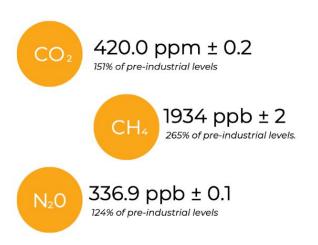
1 Climate challenges continue to grow, with uncertainty about future trajectories

Credit: Kirstin Holsman

1.5	NOAAGIoba GISTEMP ((1850-202 alTemp v6 (1880-2024 arth (1850-	1850-2024 .09)	.09)						
1.0 —	JRA-3Q (19	047-2024.09 0-2024.09	9)							
0.5										
0.0										
	1860	1880	1900	1920	1940 Year	1960	1980	2000	2020	

Figure 1: Annual global mean temperature anomalies (relative to 1850–1900) from 1850 to 2024 from six datasets. The 2024 average is based on data from January-September.

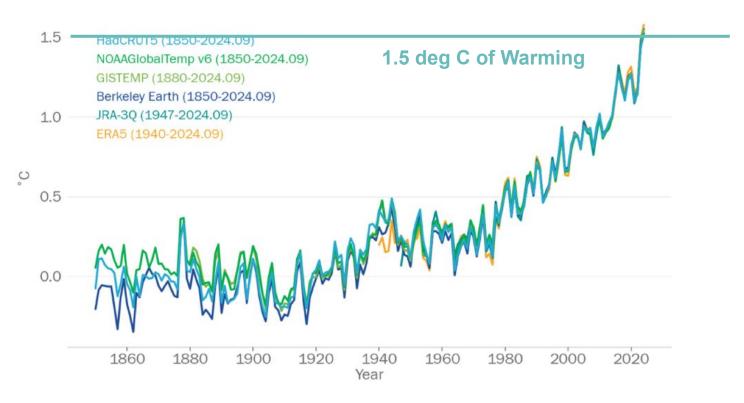
January-September 2024 was 1.54±0.13°C above the pre-industrial average.

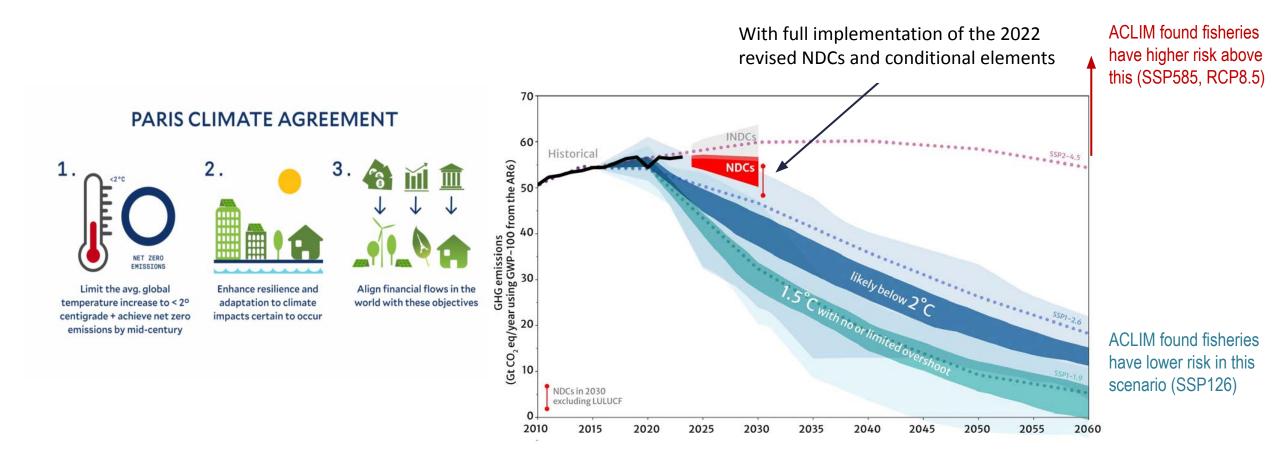

https://wmo.int/publication-series/state-of-climate-2024-update-cop29

State of the Climate | Atmospheric Indicators

Greenhouse gases reached record observed levels in 2023.

Real time data indicate that they continued to rise in 2024.



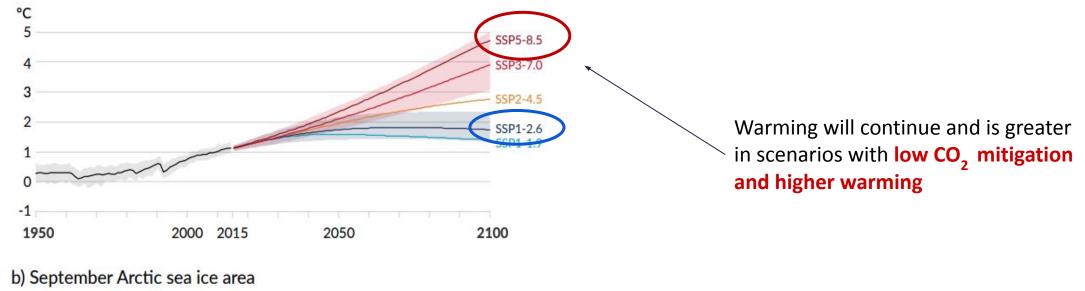

Figure 1: Annual global mean temperature anomalies (relative to 1850–1900) from 1850 to 2024 from six datasets. The 2024 average is based on data from January-September.

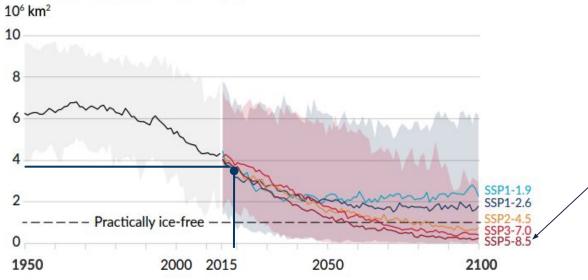
January-September 2024 was 1.54±0.13°C above the pre-industrial average.

https://wmo.int/publication-series/state-of-climate-2024-update-cop29

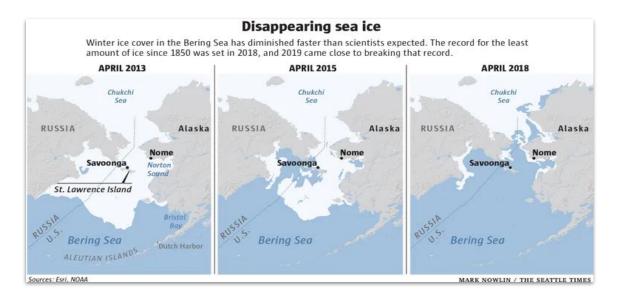
2.0 C of Warming : Critical Tipping point


UNFCCC 2022 Nationally Determined Contributions (NDCs) Synthesis report




Emissions figure: https://unfccc.int/process-and-meetings/the-paris-agreement/nationally-determined-contributions-ndcs Paris Agreement Figure: https://sustainability.yale.edu/explainers/yale-experts-explain-paris-climate-agreement

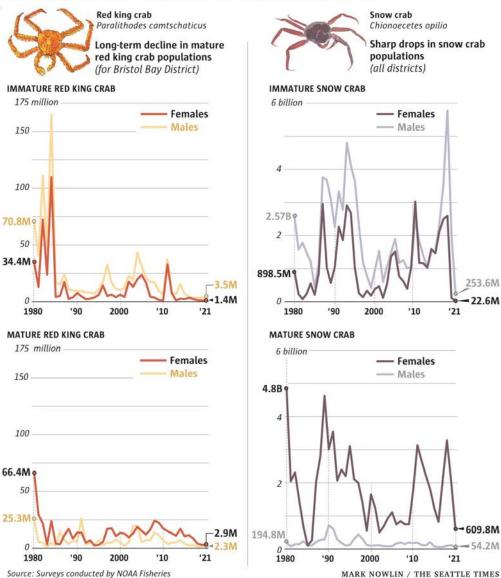
Climate change is expected to continue to impact AK Ecosystems & Fisheries



Sea Ice will continue to decline, more so under scenarios with high global warming and low CO₂ mitigation

Figures from the IPCC AR6 WGI Summary for Policymakers: https://www.ipcc.ch/report/ar6/wg1/downloads/report/IPCC_ AR6_WGI_SPM.pdf

Sea ice loss impacts fisheries

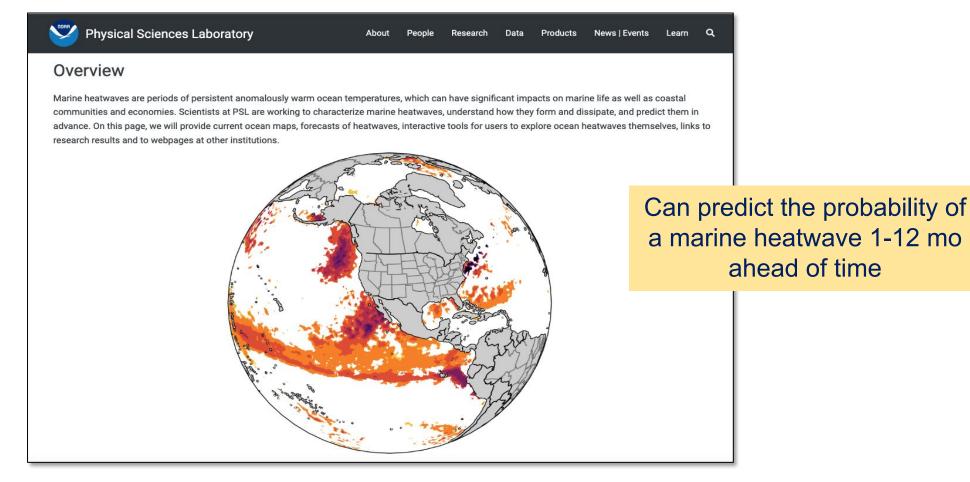


Alaska Snow Crab

Plummeting Bering Sea crab populations

Snow crab and king crab have long been mainstays of commercial harvests.

www.noaa.gov/stories/unprecedented-2018-bering-sea-ice-loss-repeated-in-2019


www.seattletimes.com/seattle-news/as-bering-sea-ice-melts-nature-is-changing-on-a-massive-scale-and-alaska-crab-pots-are-pulling-up-cod/ www.seattletimes.com/seattle-news/valuable-crab-populations-crash-in-a-warming-bering-sea/

2 Climate-informed tools are available to support future sustainable fisheries

majore A

New predictive tools can help fisheries prepare & plan

psl.noaa.gov/marine-heatwaves

Jacox et al. 2022. www.nature.com/articles/s41586-022-04573-9

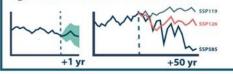
Climate information "on ramps" for EBFM

Climate informed annual* stock and ecosystem assessments & EBFM advice

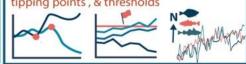
Climate information in near-term ecosystem based management targets

Climate-ready Ecosystem Based Fisheries Management planning, information & design

KEY: Matching climate information & projections to the scale of decision making & advice

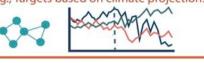

-ramp

-ramp


Tactical Near-term Advice (<2 yr)

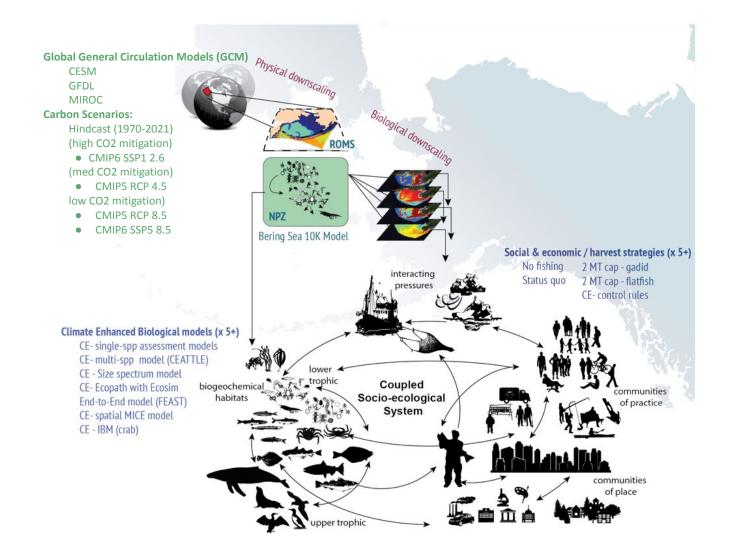
Climate change information incorperated into stock assessment models, stockspecific indicators (ESPs), stock-specific risk tables (as appropriate).

E.g., ABC based on climate forecasts



Strategic & Long-term Advice (>2 yr)

Climate - informed long-term strategic decision making & planning informed by IK, LK, and climate & management scenario evaluations, risk assessments, & adaptation efficacy & feasibility evaluations.


E.g., Targets based on climate projections

Existing tools or process Help ID climate change gaps New tools or process

https://www.npfmc.org/climatechangetaskforce/

The Alaska Climate Integrated Modeling Project

Goal: To address climate information needs with best available science & tools

What to expect?

- Project physical and ecological conditions under levels of climate change (levels of global carbon mitigation)
- Characterize uncertainty

What can be done?

 Evaluate effectiveness of adaptation actions including those supported by fisheries management

Scenarios form the basis for comparative simulations & Management Strategy Evaluations

Hollowed et al. 2020. https://doi.org/10.3389/fmars.2019.00775

www.fisheries.noaa.gov/alaska/ecosystems/alaska-climate-integrated-modeling-project

ACLIM3 Team

Supporting climate resilience through climate-informed Ecosystem Based Management advice Kirstin Holsman, Sarah Wise, Andre Punt, Albert Hermann, Cheryl Barnes, Cody Szuwalski, Kerim Aydin, Kelly Kearney, Anne Hollowed, Alberto Rovellini, Andrea Havron, Andy Whitehouse, Anna Amalka Sulc, Carey McGilliard, Catherine Moncrieff, Darren Pilcher, Diana Stram, Ed Farley, Elizabeth McHuron, Elizabeth Siddon, Ellen Yasumiishi, Grant Adams, Ingrid Spies, Ivonne Ortiz, James Ianelli, James Thorson, Jean Lee, Jennifer Bigman, Jeremy Sterling, Jodi Pirtle, Jonathan Reum, Kalei Shotwell, Kate Haapala, Kelly Kearney, Lorenzo Ciannelli, Mabel Baldwin-Schaeffer, Maggie Mooney-Seus, Martin Dorn, Maurice Goodman, Meaghan Bryan, Melissa Haltuch, Melissa Parks, Michael Litzow, Mike Dalton, Molly Graham, Patricia Pinto da Silva, Paul Spencer, Sarah Stone, Serena Fitka, Steve Barbeaux, Trond Kristiansen, Wei Cheng, William Stockhausen, Lia Domke, Anne Beaudreau, Justin Hansen, Angela Abolhassani, Matt Callahan, Brett Holycross

www.fisheries.noaa.gov/alaska/ecosystems/alaska-climate-integrated-modeling-project

frontiers in Marine Science

ORIGINAL RESEARCH published: 14 January 2020 doi: 10.3389/imans.2019.00775

(C)

Integrated Modeling to Evaluate Climate Change Impacts on Coupled Social-Ecological Systems in Alaska

Anne Babcock Hollowed^{1*}, Kirstin Kari Holsman¹, Alan C. Haynie¹, Albert J. Hermann^{2,9}, Andre E. Punt¹, Kerim Aydin¹, James N. Ianelli¹, Stephen Kasperski¹, Wei Cheng^{2,3}, Amanda Faig^{2,4}, Kelly A. Kearney^{1,2}, Jonathan C. P. Reum^{1,5}, Paul Spencer¹, Ingrid Spies¹, William Stockhausen¹, Cody S. Szuwalski¹, George A. Whitehouse^{2,4} and Thomas K. Wilderbuer¹

OPEN ACCESS

Edited by: Jamie C. Tam, Badford Institute of Oceanography (BO), Canada **Reviewed by:** Nancy Shaokal, Badford Institute of Anaros (BO), Canada Daniel Howal, Norwegian Institute of Marine Filesearch (MR), Norwey "Correspondence:

Anne Baboock Hollowed Anne.Hollowed@noaa.gov

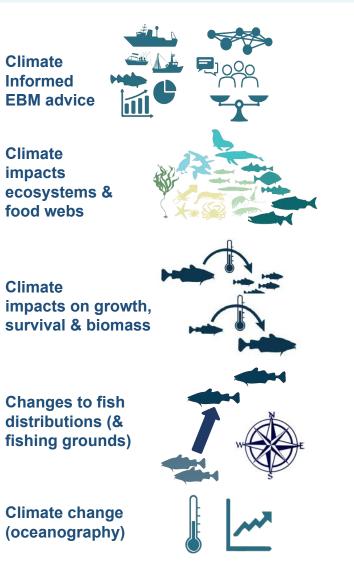
Specialty section: This article was submitted to Global Change and the Future Ocean, a section of the journal Frontiars in Marine Science

> Received: 20 August 2019 Accepted: 02 December 2019 Published: 14 January 2020

Citation: Hollowed AB, Holeman IX, Haynio AC, Harman AJ, Punt AE, Aydin K, Ianali JM, Kasporski S, Chang W, Faig A, Kasamey KA, Haum JCP, Spancar P, Spias I, Stockhausen W, Szuwalski CS, Whitehouse CA and Wildorbuar TK (2020) Integrated Modeling for Evaluate Climate Ofunge Impacts on Coupled Social-Ecological Systems in Alaska. Front. Mar. Sci. 6:775. doi: 10.3280/mars.2019.00775 *Alaska Fisharies Science Canter, National Marine Fisharias Sanice, National Oceanic and Atmospharic Administration, Seattle, WA, United States, * Joint Institute for the Study of the Atmosphare and Oceani, University of Washington, Seattle, WA, United States, * Pacific Marine Environmental Laboratory, Oceans and Atmospharic Research of Neural Oceanic and Atmospheric Administration, Seattle, WA, United States, * School of Apastic and Fishary Science, College of the Environment, University of Washington, Seattle, WA, United States, * Centre for Marine Socioecology, Institute for Marine and Antarchic Studies, College of Sciences and Engineering, University of Texmania, Hobart, TAS, Australia

The Alaska Climate Integrated Modeling (ACLIM) project represents a comprehensive, multi-year, interdisciplinary effort to characterize and project climate-driven changes to the eastern Bering Sea (EBS) ecosystem, from physics to fishing communities. Results from the ACLIM project are being used to understand how different regional fisheries management approaches can help promote adaptation to climate-driven changes to sustain fish and shellfish populations and to inform managers and fishery dependent communities of the risks associated with different future climate scenarios. The project relies on iterative communications and outreaches with managers and fishery-dependent communities that have informed the selection of fishing scenarios. This iterative approach ensures that the research tearn focuses on policy relevant scenarios that explore realistic adaptation options for managers and communities. Within each iterative cycle, the interdisciplinary research team continues to improve: methods for downscaling climate models, climate-enhanced biological models, socio-economic modeling, and management strategy evaluation (MSE) within a common analytical framework. The evolving nature of the ACLIM framework ensures improved understanding of system responses and feedbacks are considered within the projections and that the fishing scenarios continue to reflect the management objectives of the regional fisheries management bodies. The multi-model approach used for projection of biological responses, facilitates the quantification of the relative contributions of climate forcing scenario, fishing scenario, parameter, and structural uncertainty with and between models. Ensemble means and variance within and between models inform risk assessments under different future scenarios. The first phase of projections of climate conditions to the end of the 21st century is complete,

1

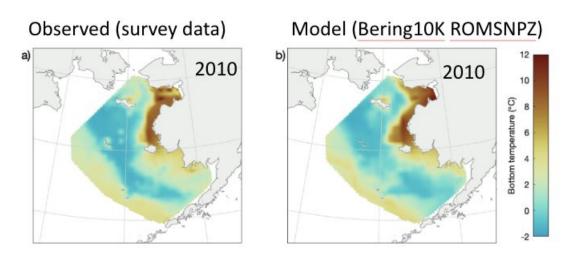

Hollowed et al. 2020

ACLIM overview paper

		0,293 ws and downloads	68 citations ??	SOCIAL BUZZ	DEMOGRA	PHICS
Vie	WS	Downloa	ads			
7,99 Fron	9 <mark>5</mark> o tiers	14 Research Gate	e		89	%
					Viev	
Sin	ce the	beginning			This article has more all Frontier	e views than 89% of
Since th	e beginning •				This article has more	e views than 89% of
					This article has more	views than 89% of 's articles.
Since th					This article has more	views than 89% of 's articles.
Since th					This article has more	views than 89% of 's articles.
Since th 10k 8k 6k					This article has more	views than 89% of 's articles.
Since th 10k 8k 6k					This article has more	views than 89% of 's articles.
Since th 10k 8k 6k					This article has more	views than 89% of rs articles.

Also see list of 20+ publications at end of ppt

Key Takeaways from ACLIM to date

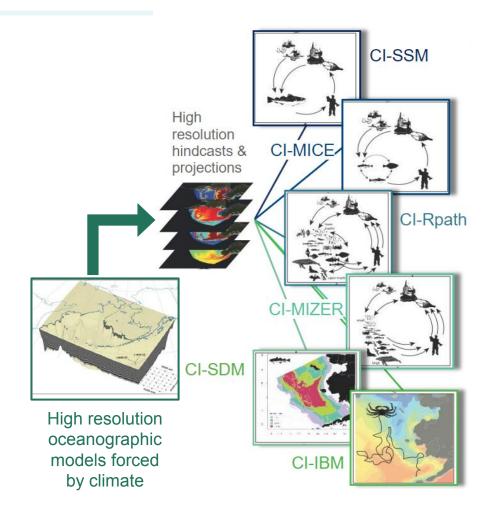


- 1. Need to account for ecosystem-wide productivity changes
- 2. Manage predator-prey Interactions using new approaches
- 3. Need to (and can) adapt to climate-driven species range shifts
- 4. Expand Ecosystem-Based Fisheries Management through coordination and collaboration
- 5. Address uncertainty with ensembles and participatory scenario planning
- 6. Incorporate socio-economic resilience into planning and response
- 7. Strengthen research and monitoring infrastructure

- 1. Provided baseline engineering capacity for ocean and ecosystems predictions and forecasts
- 2. Identified key couplings, and gaps and needs in linked climate- oceanographic- biological- social- economic models
- Evaluated trajectories under future scenarios, alternative management strategies, alternative harvest control rules → emergent understanding of common pitfalls and best practices
- 4. Sustained community of practice for climate-informed advice, including support for partnership building around adaptation planning

Supporting Publications

High-res model reproduces the Bering Sea environment

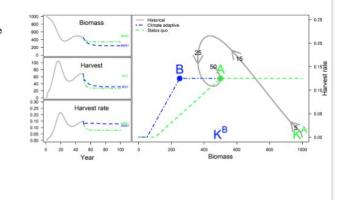

Kearney K (2021). U.S. Dep. Commer., NOAA Tech. Memo. NMFS-AFSC-415, 40 p. <u>link</u>.

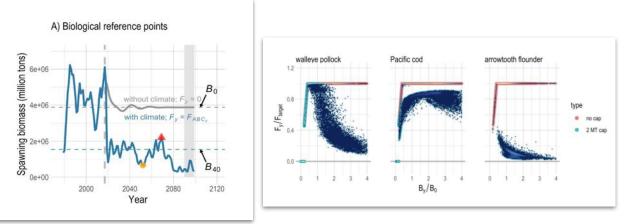
Szuwalski et al. (2022, 2023), Pilcher et al. (2022), Reum et al. (2020), Whitehouse et al. (2021), Cheng et al. (2021,2023), Hermann et al. (2021,2023), Hollowed et al. (2022), Thorson et al. (2021)

- 1. Provided baseline engineering capacity for ocean and ecosystems predictions and forecasts
- 2. Identified key couplings, and gaps and needs in linked climate- oceanographic- biological- social- economic models
- Evaluated trajectories under future scenarios, alternative management strategies, alternative harvest control rules → emergent understanding of common pitfalls and best practices
- 4. Sustained community of practice for climate-informed advice, including support for partnership building around adaptation planning

Supporting Publications

Goodman et al. (2024), Punt et al. (2023), Szuwalski et al. (2023), Olmos et al. (2023), McHuron et al. (2024), Barnes et al. (2022), Thorson et al. (2021), Whitehouse et al. (2021), Kearney et al (2020), Pilcher et al. (2022), Hollowed et al. (2020).

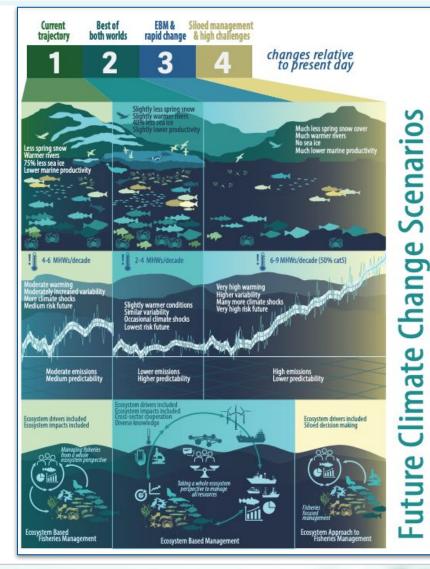

- 1. Provided baseline engineering capacity for ocean and ecosystems predictions and forecasts
- 2. Identified key couplings, and gaps and needs in linked climate- oceanographic- biological- social- economic models
- Evaluated trajectories under future scenarios, alternative management strategies, alternative harvest control rules → emergent understanding of common pitfalls and best practices

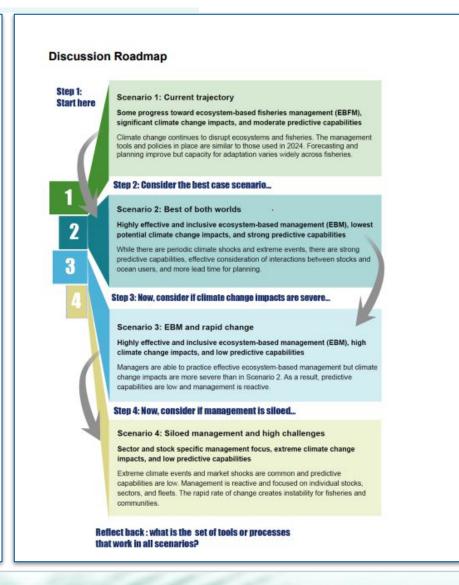

SSB targets under Climate Change; HCRs; 2 mt cap effects

Adapting reference points to reflect changes in productivity

- MSA directs reference points to reflect current and probable future environmental conditions
- Changing reference points for stocks undergoing climate-related productivity shifts can result in counter-intuitive management actions:
 - Declining stocks could be fished harder
 - Flourishing stocks could be fished more conservatively

Szuwalski et al. 2023


Holsman et al. 2020. https://www.nature.com/articles/s41467-020-18300-3


Supporting Publications

Szuwalski et al. (2022, 2023), Pilcher et al. (2022), Reum et al. (2020), Whitehouse et al. (2021), Holsman et al. (2020), Hollowed et al. (2024), Barnes et al., (2022), Hermann et al. (2021,2023), Cheng et al. (2021,2023), Punt et al. (2023), Goodman et al. (2024), McHuron et al. (2024), Punt et al. (2023)

June 2024 NPFMC Climate Scenarios Workshop

Based on ACLIM scenarios, updated by CCTF and refined by CSW planning group

- 1. Provided baseline engineering capacity for ocean and ecosystems predictions and forecasts
- 2. Identified key couplings, and gaps and needs in linked climate- oceanographic- biological- social- economic models
- Evaluated trajectories under future scenarios, alternative management strategies, alternative harvest control rules → emergent understanding of common pitfalls and best practices
- 4. Sustained community of practice for climate-informed advice, including support for partnership building around adaptation planning

Salmon & Communities

Identify candidate ROMS/NPZ indicators for Yukon River Chinook salmon survival based on scientific and traditional knowledge.

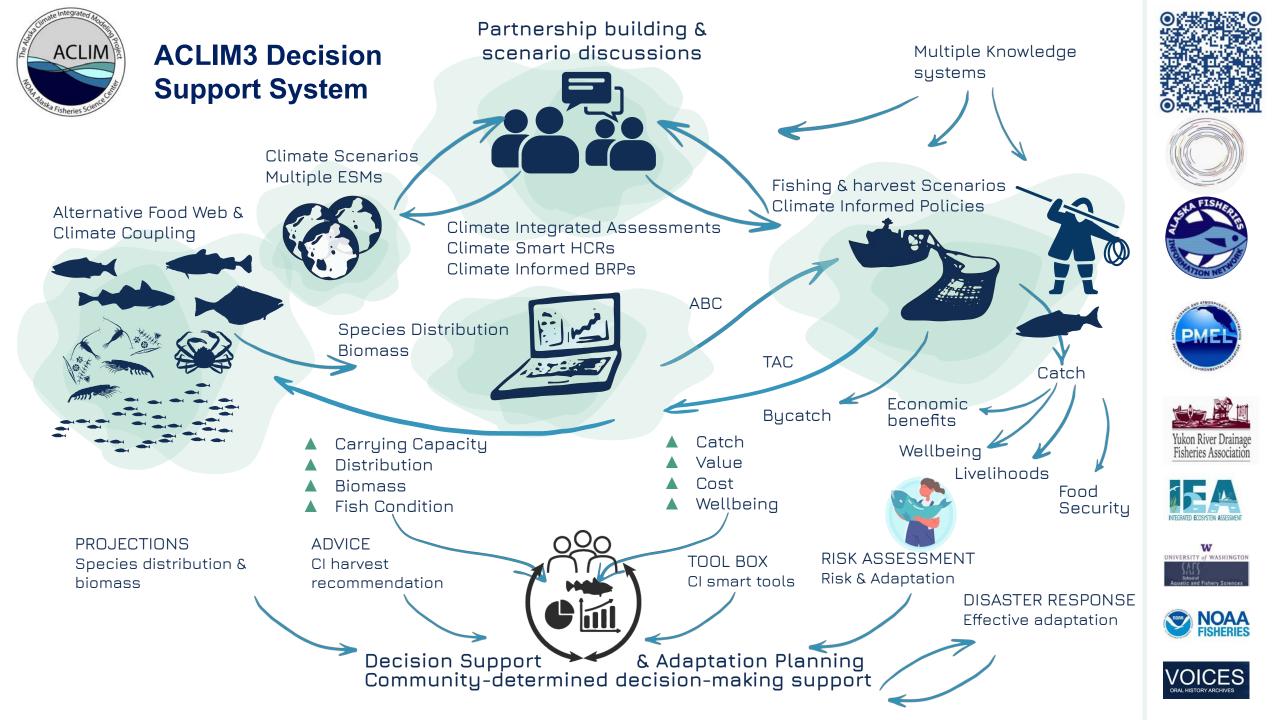
H1: Ocean temperatures during the 1st and 2nd vear at sea impacts growth & survival.

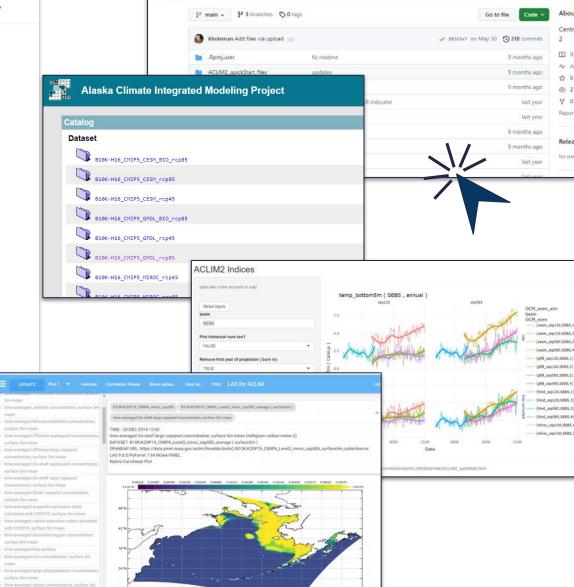
Spring 2023 trip to Lower Yukon LTK: Good for salmon returns: Strong north winds, high river water, ice break up but not thaw, & yellow butterflies. (wish list indicators)

Produce recruitment projections under different climate & emission scenarios at various lags

> Slide Courtesy of S. Wise, E. Yasumiishi, J. Reynolds (AFSC-NOAA) Draft results, please do not copy or distribute without permission of the author

- Conducted preliminary community meetings in lower Yukon to inform household survey. Planned final phase fieldwork for 2025.
- Coordinated Multiple Knowledge systems on Yukon River Chinook marine survival. Continue to coordinate with upriver findings.
- Explored food security as driver in management decision-making





Open Science: interactive tools

roms-bering-sea	Posts	About	Literature	Q		
	The Bering10K dataset © 3 minute read					
The Bering10K ROMS configuration The Bering10K ROMS configuration, including associated biological modules (research conducted through the University of Washington CICOES)	Numerous Bering 10K ROMS model simulations have been run to date, including hindcasts of the past few decades, long-term forecasts under CMIP5 and CMIP6 emissions scenarios, and seasonal retrospective forecasts. Data and metadata related to these simulations are held in a number of locations. This page serves as a centralized hub for this data and metadata.)			Catalog Dataset	ka Climate I 0K-H16_CHIP5_CESH 0K-H16_CHIP5_CESH
O GitHub	The model					ØK-H16_CMIP5_CESM_ ØK-H16 CMIP5 GFDL
	Model source code is available on GitHub: <u>beringnpz/roms-</u> <u>bering-sea</u>					0K-H16_CMIP5_GFDL 0K-H16_CMIP5_GFDL 0K-H16_CMIP5_MIR0
	The documentation					OK-HIG CHIDS MIDO
	A few guides for working with the Bering10K output dataset can be found • <u>The Bering10K Dataset documentation</u> : A pdf describing the					
	dataset, including:				Plot 1 - Animate	Correlation Viewer Sho
INTEGRATED ECOSYSTEM ASSESSMENT	1. A description of the various simulations (base model versions, parent model forcing datasets, and biological modules) and the output naming scheme for each			mean time averaged M surface for rear error averaged O occertain averaged O concentration, su time averaged on unface for mean surface for mean time averaged on time averaged on	fahore exphausilid concentration. Ishore large copepod race Smmean -shelf exphausilid concentration, -shelf ager copepod race Smmean uil copepod concentration,	BIORCIDITS, CARPL, Juny Time-sensage On-shaft far TIME: 28.06C-2014 20 DATABET: 81.0K-C2014 20 OPANDAP ULIL: 81.0K-C2014 DATABET: 81.0K

Product - Solutions - Open Source - Pricing

<> Code 💿 Issues 2 🏥 Pull requests 💿 Actions 🖽 Projects 🕕 Security 🗠 Insights

Abo Cen

2 00

10

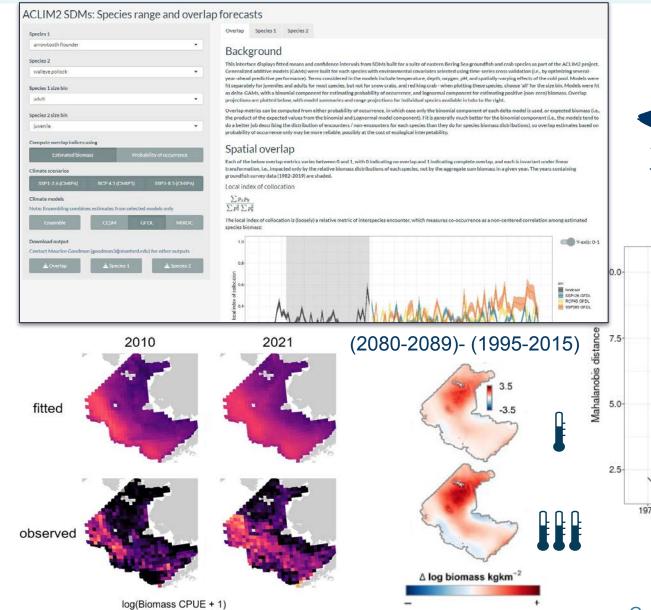
☆

0

Ŷ

Rep

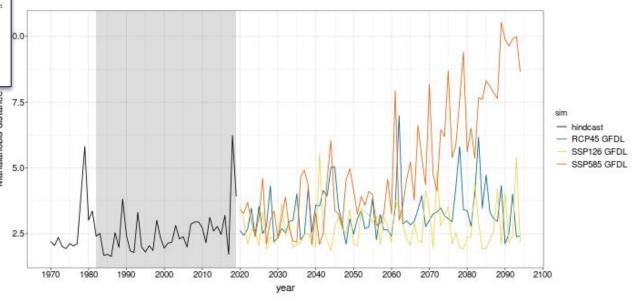
Rele


am eten126.5285

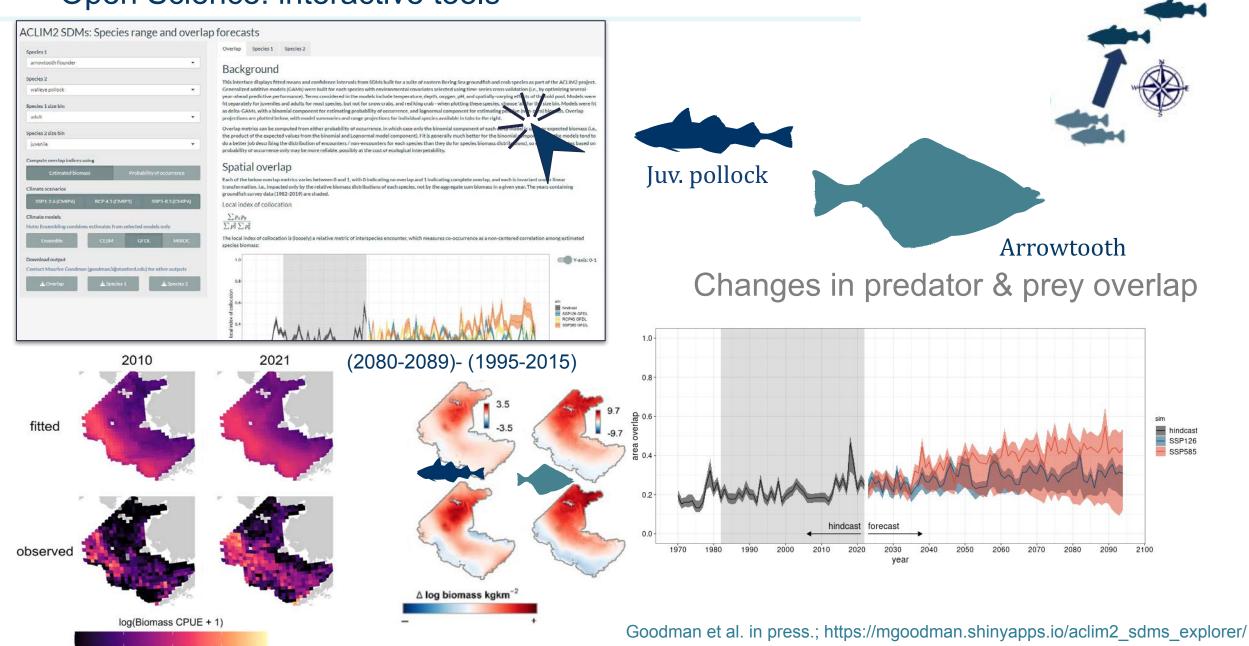
Akholsman / ACLIM2 Public

https://beringnpz.github.io/roms-berin g-sea/B10K-dataset-docs

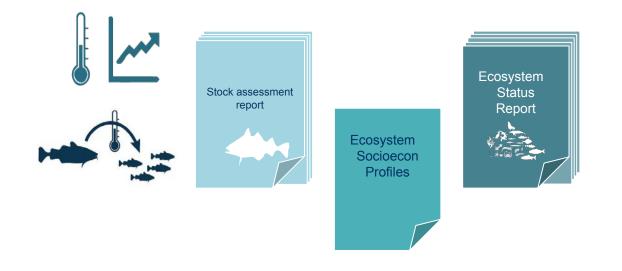
Open Science: interactive tools



9

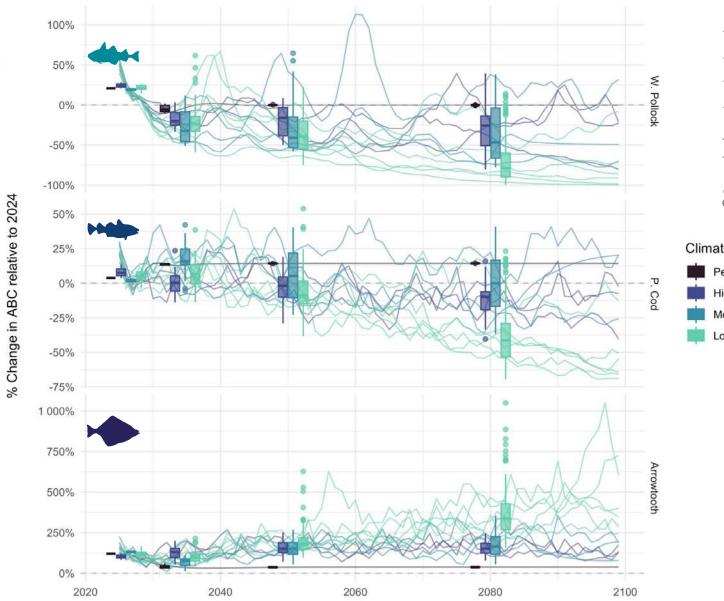

Juv. pollock

Shifting distributions: Habitat novelty

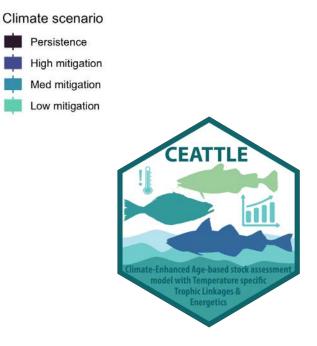


Goodman et al. in press.; https://mgoodman.shinyapps.io/aclim2_sdms_explorer/

Open Science: interactive tools



Climate information on-ramps in 2024



ESPs, ESRs, Stock assessments

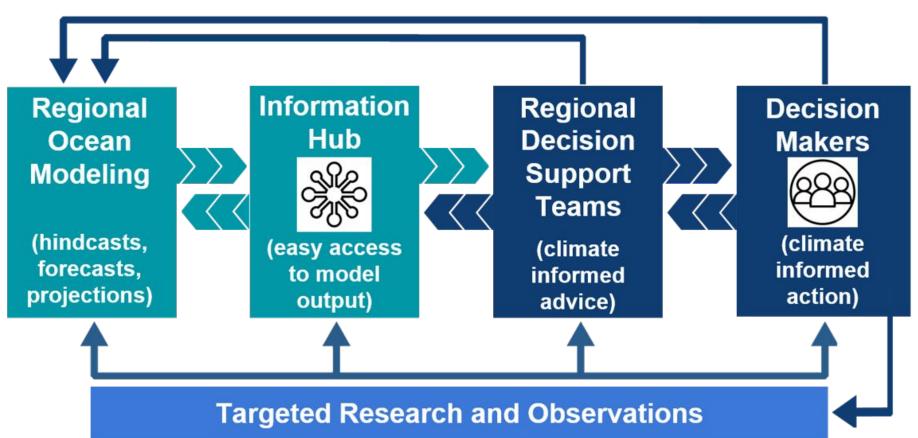
New this year In the multispecies assessment

Link to 2024 Climate-enhanced multispecies assessment (EBS)

Community of practice is needed. In particular, need capacity to: co-develop, deliver, & refine

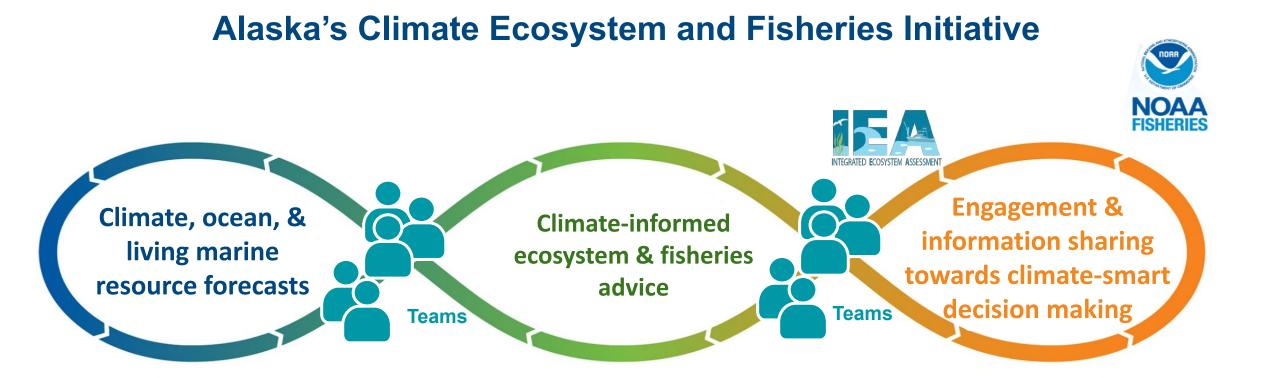
3 CEFI accelerates the capacity to deliver climate-informed tools and advice

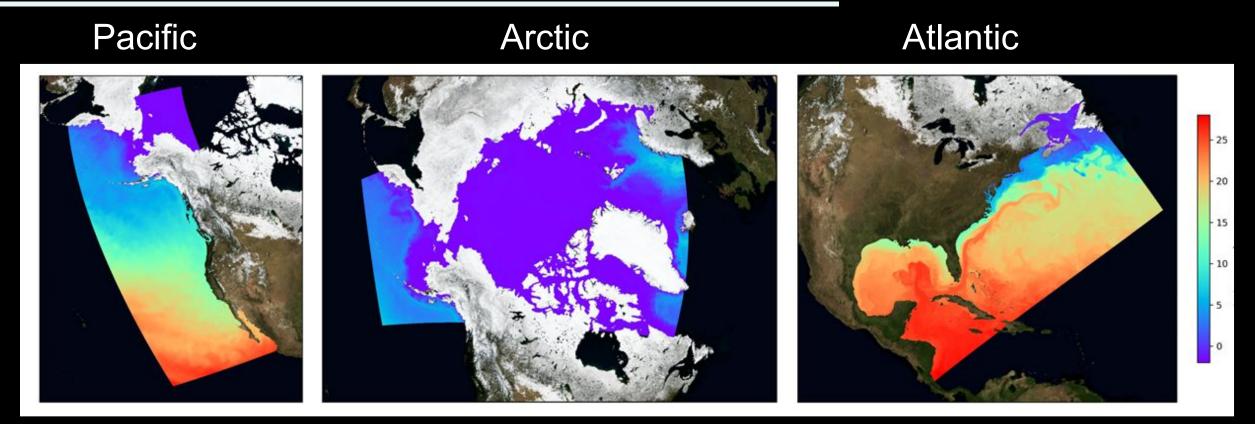
Credit: Kirstin Holsman


The Alaska Climate/CEFI Team (ACT)

Kirstin Holsman kirstin.holsman@noaa.gov

Climate, Ecosystems, & Fisheries Initiative

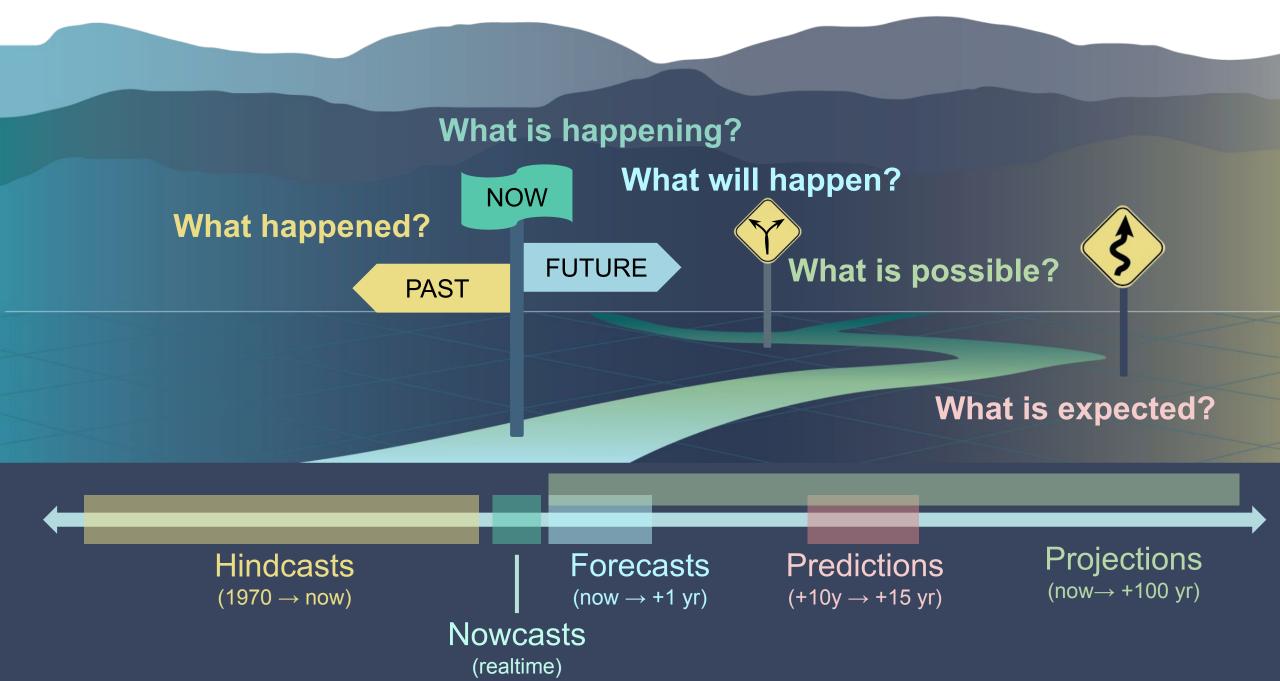

CEFI Decision Support System



Climate, Ecosystems, & Fisheries Initiative

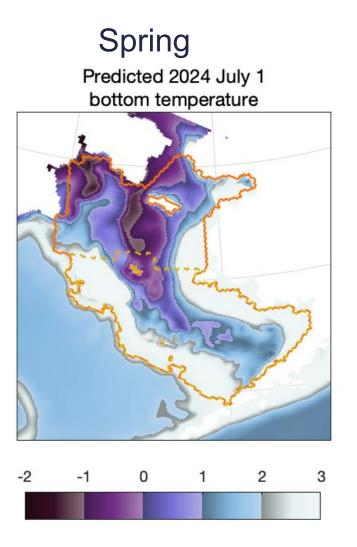
www.fisheries.noaa.gov/topic/climate-change/climate,-ecosystems,-and-fisheries

CEFI High resolution oceanographic model (MOM6) grids


CEFI-OAR High resolution models (operational delivery)

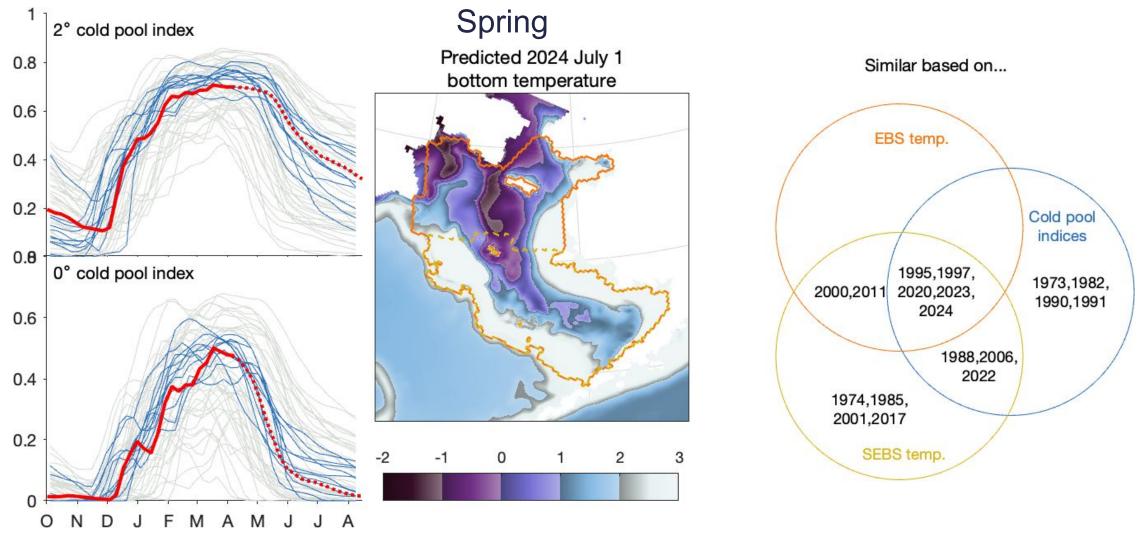
hindcasts seasonal forecasts decadal predictions

(e.g., sea ice, water temp, pH, winds, currents, zooplankton)


multidecadal climate change projections

NOAA's Climate Ecosystem and Fisheries Initiative (CEFI)

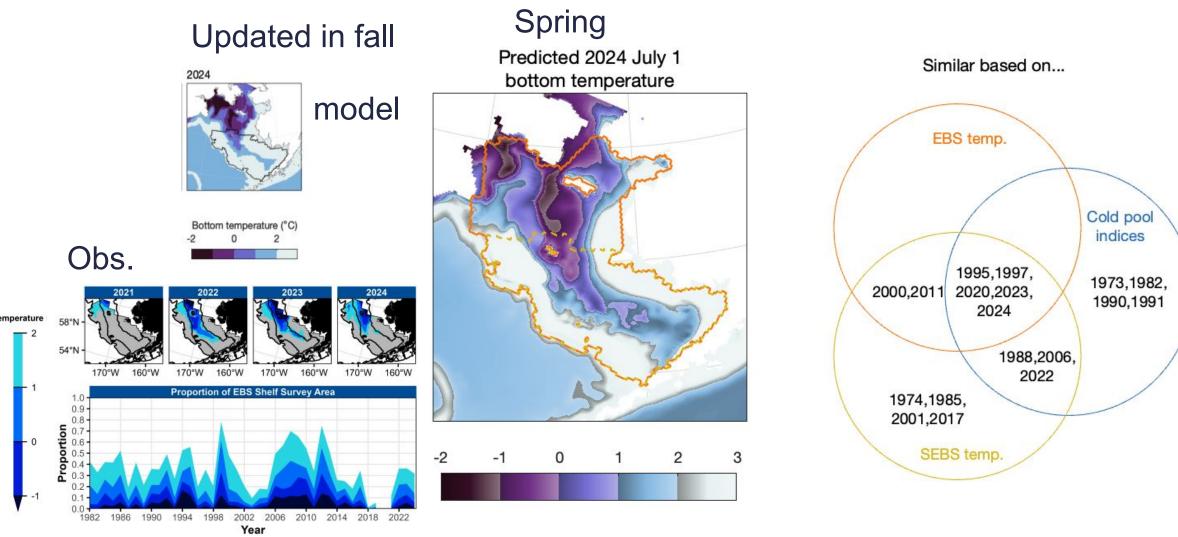
Current Bering10K high resolution oceanographic seasonal forecasts



Slide: Kelly Kearney (AFSC)

https://beringnpz.github.io/roms-bering-sea/B10K-dataset-docs/

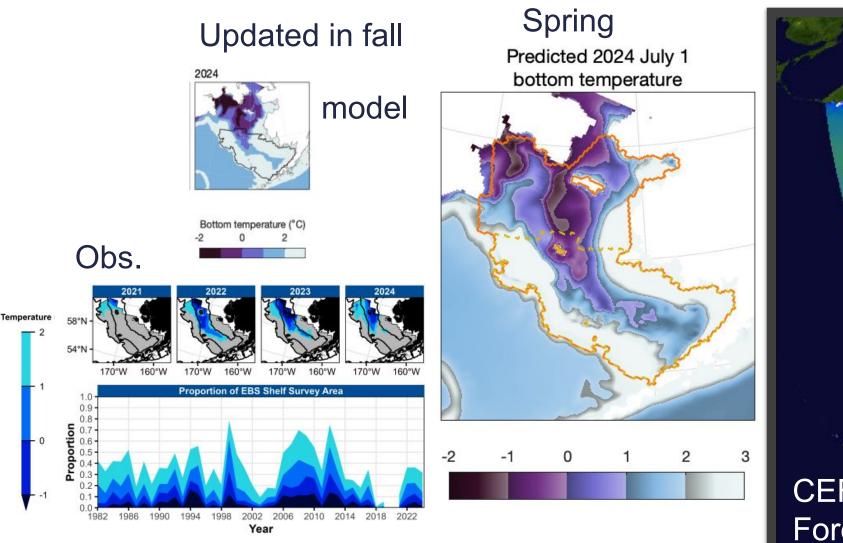
Current Bering10K high resolution oceanographic seasonal forecasts

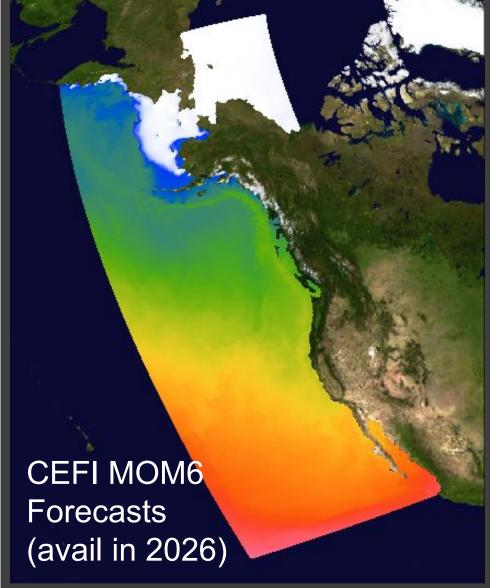


Slide: Kelly Kearney (AFSC)

https://beringnpz.github.io/roms-bering-sea/B10K-dataset-docs/

Current Bering10K high resolution oceanographic seasonal forecasts



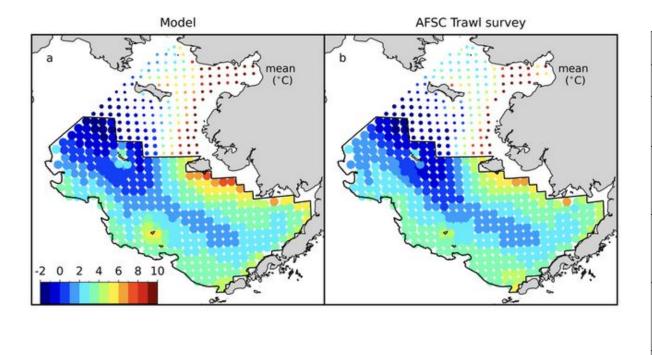

Slide: Kelly Kearney (AFSC)

https://beringnpz.github.io/roms-bering-sea/B10K-dataset-docs/

Current Bering10K high resolution oceanographic seasonal forecasts

Slide: Kelly Kearney (AFSC)

https://beringnpz.github.i

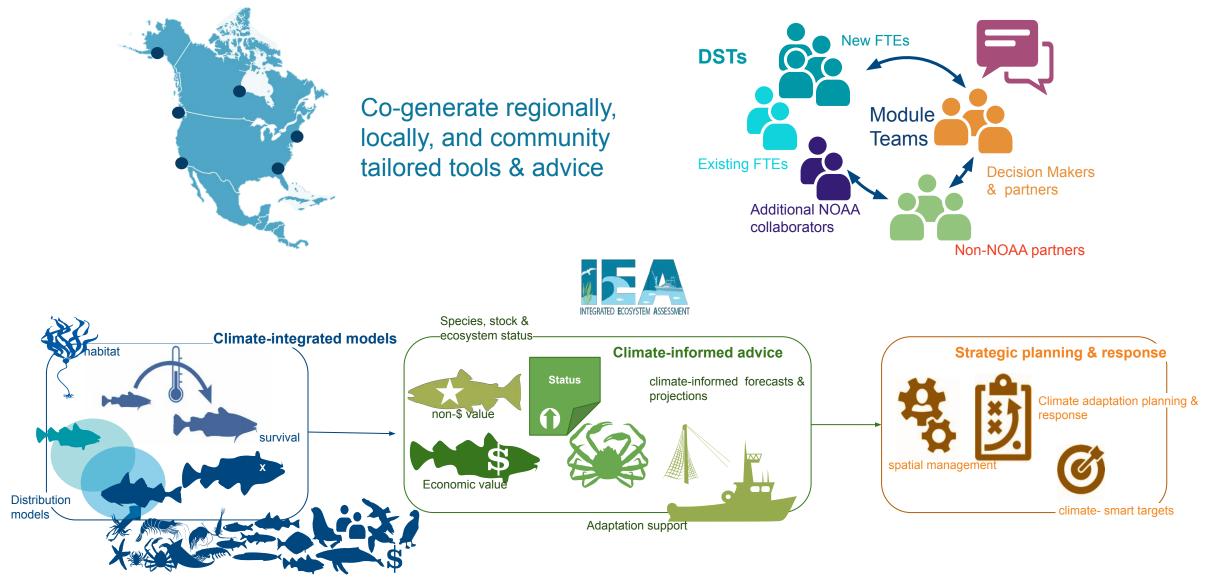

CEFI synergies at work in the Bering Sea

<section-header>

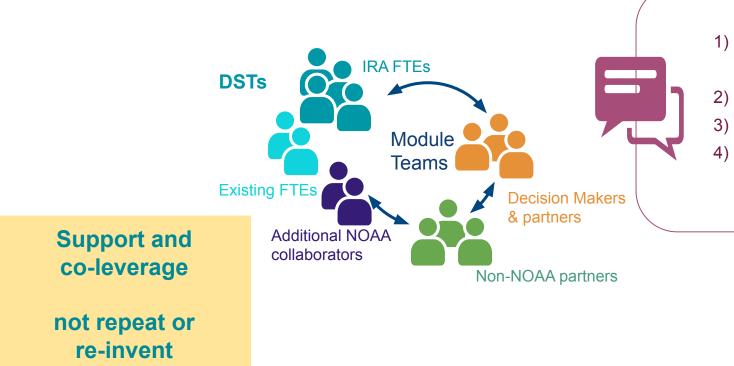
area

fraction of the trawl survey

MOM6 Bering Sea Cold Pool


Year	West Coast and Arctic	
FY23	Initial Configuration	
FY24	Initial hindcast	
FY25	Hindcast update, retrospective seasonal predictions , initial climate change projections	
FY26	Hindcast update, retrospective decadal predictions, initial climate change projections	
FY27	Hindcast update, expanded projections , seasonal outlooks reliably delivered	
FY28	All products reliably delivered	
FY29	All products reliably delivered	

Thanks to Wei Cheng, Vivek Seelanki, Liz Drenkard, Kelly Kearney, Al Hermann, Darren Pilcher, Theresa Morrison, Bob Hallberg and others in the regional MOM6 development forum...

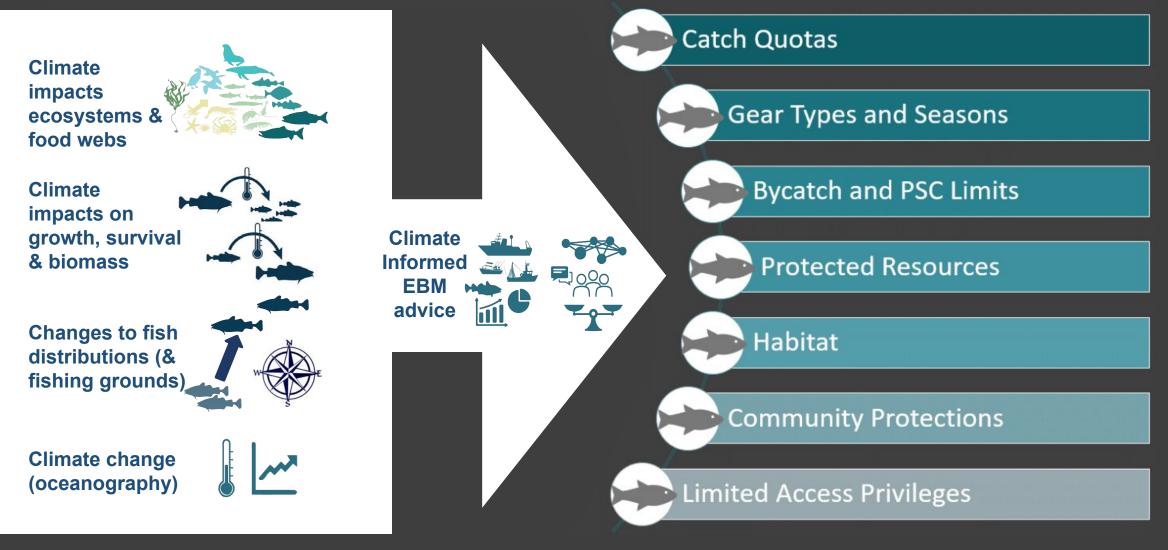

NOAA Climate, Ecosystems, & Fisheries Initiative

Decision Support Teams

What are Decision Support Teams?

Transdisciplinary nested teams that will help deliver climate informed products and advice, <u>specifically tailored</u> to decision maker needs.

Understand current capacity for inclusion of climate informed advice Identify near-term needs for CI-advice Identify long-term needs for development Link CEFI, IEA, Stock Assessment, and Other NOAA products to meet needs



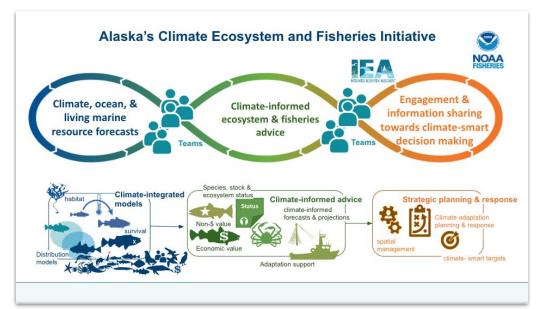
Decision Support Delivery Steps

2024 —	- Step 1: Engagement & Partnership Building Identify key partners and collaborators and begin or advance discussions around climate change planning and needs	MOM6 Parallel process
2024 — —	 Step 2: Co-identify on-ramps In coordination and collaboration with partners and decision makers, identify existing and needed climate specific decision support needs Step 3: Co-identify needs & prioritize 	Test ocean model output
2025	 Co-identify needs and prioritize decision support information, needs, and products Step 4: Design, build & TEST 	 Is there an existing tool/product that meets the need? Do the scales match advice? Does the output skillfully meet needs?
2027 —	 Match resources and tools to needs and test skill relative to co-identified metrics of performance Step 5: Deliver & refine Deliver decision support tools and advice; iterate and refine products with feedback and engagement 	Decision Support Teams Nodule Teams Existing FTEs Additional NOAA collaborators

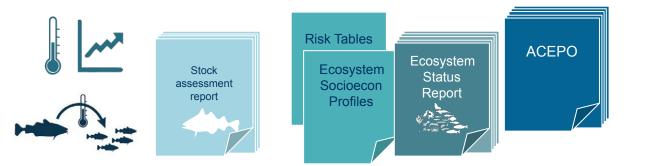
Non-NOAA partners

Types of Management Actions

https://www.npfmc.org/how-we-work/management-policies/


Draft Focal Areas for Alaska CEFI

FOCAL AREA 1: Web accessible and regionally tailored climate change products & trainings (cross cutting)


FOCAL AREA 2: Climate-integrated fisheries assessments and EBM

FOCAL AREA 3: Decision support for Climate aware regulatory frameworks

FOCAL AREA 4: Climate resilience community planning and response

Provide in addition to climate information on-ramps in ESPs, ESRs, Stock assessments, ACEPO, etc.

New this year: Prototype **Climate information overview**

Feedback welcome!

What is the ACT2 The ACT is the Alaska CEEI Regional Decision

Support Team. The Alaska Climate CEFI Team (ACT), established in fall 2021, and expanding to include new members and partner liaisons in 2024 guides regional development of publicly accessible CEFI tools and products to support climate-informed advice and adaptation planning. Regional Decision Support Teams

Regional Decision Support Teams produce climate-related information and advice for effective management of fisheries, ecosystem and protected species and industry, and community adaptation planning. They operat through NOAA's Regional Fisheries Science Centers to provide

How will CEFI change advice?

Scientists from the Alaska Fisheries Science Cente

Climate Integrated Modeling project (ACIIM) and

the Gulf of Alaska Integrated Modeling project

support. They demonstrate improved model

support climate-smart Ecosystem-Based

, process and advice pathways.

More Information

CEFI Fact Sheet

NOAA's Climate go

Alaska IEA Program

Questions? Email us! Kirstin Holsman (ACT Lead

Management and thriving climate-resilient communities in Alaska. Advice is designed to

performance with climate linkages and provide

integrated climate advice that considers climate

changes, biological and ecosystem responses, and

alternative management and adaptation ontions to

provide climate information via the existing Counci

have been leading pilot projects such as the Alaska

(GOACUM) These projects serve as prototypes for

the decision support tools and advice that CEFI may

2024 Climate Science Update

ALASKA'S MARINE ECOSYSTEMS are undergoing cl ising sea temperatures, shrinking sea ice, & shifts in ocean acid fication & productivity npacting species from snow crab to whales. Impacts on FISHERIES & FIS COMMUNITIES have been widespread affecting economies, livelihoods, family tructures, mental health, sharing networks, & food security. Future projections indicat urther changes in species distributions, stock abundances, and ecosys equiring climate planning & adaptive, flexible, & ecosystem-based strategie

CLIMATE IMPACTS: 2024 spotlight on the EBS

FEMPERATURE RISE: SSTs in the Eastern Bering Sea have rise nd. SEA ICE DECLINE: Arctic sea ice has decline over the observed record from 1978 to present. Easter in this region in 2018 and 2019 that have been attributed to ed climate change. OCEAN ACIDIFICATION: Global ocean e pH has dropped by 0.1 units since 1750, with a further decline of 0.1

KEVE SALMON & SABLEFISH

What we are planning & what we will do

Biological

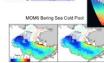
narios

climate-ecosys dynamics.

Oceanographic

Region-specific oceanographic products will be developed for public use to support climate change adaptation. This includes the current Ren Regional Ocean Modeling System (ROMS) and the advanced Modular Ocean Model 6 (MOM6), These high resolution, three dimensional ocean models effectively simulate past ocean conditions and lower trophic level dynamics, from phytoplankton to krill, an are instrumental in forecasting future changes.

Hindcasts: hindcasts are a powerful tool for reconstructing the climate and environmental conditions of the recent past. Through CEFI, hincasts will be produced to recreate the oceanic and sea ice


states over the past several decades. The ACT will evaluate the accuracy of these reconstructions by comparing them with historical ocean observations Once validated, these model outputs will provide continuous data on ocean conditions from seabed 1 the surface. This information will enhance inderstanding of the ocean dynamics during different fishing and harvest seasons, and will help identify the drivers of species population changes, spatial shifts

and broader ecosystem responses to warming and marine heatwaves. Forecasts: Forecasts from the same models will be undated each season to provide neartem projections

ocean conditions one to twelve months out. Decadal predictions will provide data-driven outlool of potential ocean conditions up to 10 years into the

Long-term projections under high and low warming

scenarios will deliver detailed information to support risk analyses and climate adaptation plan Kelly Keamey, kelly keame Wei Cheng, wei cheng@

Develop dynamic climate-informed multispecies distribution models for Bering Sea groundfish, crai

sess changes in spatial overlap among specie

Link models and use ensemble approaches to quantify

variables can help predict stoc

ationships between climate-ecosystem varial

and population dynamics across fish species

nnifer Bigman, lennifer,bigman@noaa.go

Grant Adams, grant adams@noaa.gov

André Punt, acount@uw.edu

Identify best practices for selecting which

based on range projections under various climate

Elizabeth McHuron, Iz.mchuron@noaa.gov

Maurice Goodman, goodmm2/3

Indré Punt, aepunt@uw.edu

Social & Economi **Council Coordination**

What we are planning & what we will do

Develop social hindcast methodology with pilot of community responses to climate-induced changes in Naska fisheries (2018-2023) to better understand mmunity adaptation strategies

entify possible social indicators using ex data sources to detect and monitor the effects of climate-induced changes associated with resilier and vulnerability of Alaska fishing communities. Support development of publicly accessible

management.

collaborative tools allowing communities to view CEFI information products on climate-induced shifts in species distributions and ecological and anographic conditions

Collaboratively identify drivers of Yukon Riv

Chinook salmon marine survival using ROMS

ocean temperature outputs, wind hindcasts, and

Ellen Yasumiishi, ellen.yasumiishi@no

arah Wise, sarah.wise@noaa.gov

acilitate Council planning for climate change impact on fisheries and fishing communities in Alaska through terative discussions, workshops, information reporting Explore pathways and examine barriers for and synthesis of medium to long-term impacts on Alaska marine ecosystems. Support management strategy utilizing social and economic information to inform Council decision-making on climate resilient fisheri

valuations (MSEs) to evaluate the performance of Itemative management measures and ass nder future climate scenarios. ingela Abolhassani, <u>angela abolhassani@noaa.go</u> Sarah Wise, sarah.wise@noaa.gov

Annual climate-informed advice: Develop interactive and publicly accessible resources for decision making and exploring tradeoffs in annual fisheries management ecisions. Support climate-informed biological reference sints and harvest control rules raditional Knowledge in partnership with the Yuko liver Drainage Fisheries Association. Rapid response: Support the development and delivery

coordination with the Council points of contact

velop a process for regular reporting of climate

hrough existing pathways (or "on-ramps"). Fisheries nitiative (CEFI) potential projects and outputs could also

elp support the Council's climate readiness planning

his information will highlight current and proposed mergies between CEFI products and Council planning

ordination on the development of these products will

volve collaboration among the Council, NOAA's Alaska

EFI team (ACT) and partners, and the Alaska

isheries Information Network

hange impacts and responses to the Council

NOAA

Alaska Fisheries

Science Center

of tools to aid in-season management and navigate nergent climate challenges.

> Indi Pirtle, indi pirtle@posa.gov Jason Gasper, jason gasper@noaa.gov Anne Marie Eich, annemarie.eich@noaa.gov

Katie Latanich, katie Jatanich@noaa.gc Diana Stram, diana.stram@noaa.gov Kiretin Holeman, kiretin holeman/Broasa

What is the ACT?

The ACT is the Alaska CEFI Regional Decision Support Team. The Alaska Climate CEFI Team (ACT), established in fall 2021, and expanding to include new members and partner liaisons in 2024, guides regional development of publicly accessible CEFI tools and products to support climate-informed advice and adaptation planning.

Regional Decision Support Teams

Regional Decision Support Teams produce climate-related information and advice for effective management of fisheries, ecosystems, and protected species and industry, and community adaptation planning. They operate through NOAA's Regional Fisheries Science Centers to provide:

- Early warnings and projections of ecosystem conditions
- Risk assessments & scenario planning for fisheries and fishing communities
- Science support for climate-ready Ecosystem-Based Management

How will CEFI change advice?

Scientists from the Alaska Fisheries Science Center have been leading pilot projects such as the Alaska Climate Integrated Modeling project (ACLIM) and the Gulf of Alaska Integrated Modeling project (GOACLIM). These projects serve as prototypes for the decision support tools and advice that CEFI may support. They demonstrate improved model performance with climate linkages and provide integrated climate advice that considers climate changes, biological and ecosystem responses, and alternative management and adaptation options to support climate-smart Ecosystem-Based Management and thriving climate-resilient communities in Alaska. Advice is designed to provide climate information via the existing Council process and advice pathways.

More Information

CEFI Fact Sheet NOAA's Climate.gov

Alaska IEA Program

Questions? Email us!

Kirstin Holsman (ACT Lead), kirstin.holsman@noaa.gov

Gina M. Raimondo U.S. Secretary of Commerce for Oceans and Atmosphere

Janet Coit Nation Assistant Administrator Alaska f for Fisheries 7600 Sa

Alaska Fisheries Science Center 7600 Sand Point Way N.E., Seattle, WA 98115-6349

2024 Climate Science Update

ALASKA'S MARINE ECOSYSTEMS are undergoing climate-driven changes, including rising sea temperatures, shrinking sea ice, & shifts in ocean acidification & productivity, impacting species from snow crab to whales. Impacts on **FISHERIES & FISHING COMMUNITIES** have been widespread affecting economies, livelihoods, family structures, mental health, sharing networks, & food security. Future projections indicate further changes in species distributions, stock abundances, and ecosystem dynamics, requiring climate planning & adaptive, flexible, & ecosystem-based strategies.

CLIMATE IMPACTS: 2024 spotlight on the EBS

TEMPERATURE RISE: SSTs in the Eastern Bering Sea have risen by 1.0°C to 1.5°C, with a further increase of 1.5°C to 3.0°C expected by century's end. **SEA ICE DECLINE:** Arctic sea ice has declined precipitously over the observed record from 1978 to present. Eastern Bering Sea ice has remained stable, but experienced unprecedented lows in this region in 2018 and 2019 that have been attributed to human-caused climate change. **OCEAN ACIDIFICATION:** Global ocean surface pH has dropped by 0.1 units since 1750, with a further decline of 0.1 -0.3 projected for the Bering Sea by the end of the century.

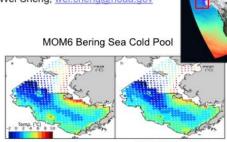
PACIFIC COD: Marine Heatwaves (MHW) were associated with a rapid redistribution of roughly half of Pacific cod biomass into the N. Bering Sea (NBS) in 2018 - 2019 as well as declines in biomass and recruitment. Future warming may push Pacific cod further north, expanding spawning habitat but potentially altering NBS carrying capacity. **SNOW CRAB** have also collapsed in response to marine heatwaves, & future warming is expected to further amplify impacts. Several WESTERN ALASKA **SALMON** stocks have declined in recent years, potentially linked to climate change, though impacts across across freshwater & marine life histories are complex. In contrast, Bristol Bay **SOCKEYE SALMON** & **SABLEFISH** have had increased abundance under warming conditions. The exact reasons for these divergent responses across species and stocks are still being evaluated.

CEFI: The Climate, Ecosystems, & Fisheries Initiative is a cross-NOAA effort to build the to build ocean modeling capacity & provide science support needed to allow management & resource users to adapt to changing ocean conditions. CEFI aims to provide: (1) Robust forecasts, decadal predictions, and long-term projections of ocean conditions; (2) Publicly available climate-linked early warnings, climate-enhanced stock, ecosystem, & risk assessments, & evaluations of climate-robust management response; (3) Increased capacity to provide climate- informed advice to support long-term sustainability & resilience.

Alaska Fisheries Science Center

Oceanographic

Region-specific oceanographic products will be developed for public use to support climate change adaptation. This includes the current Bering10K Regional Ocean Modeling System (ROMS) and the advanced Modular Ocean Model 6 (MOM6). These high resolution, three dimensional ocean models effectively simulate past ocean conditions and lower trophic level dynamics, from phytoplankton to krill, and are instrumental in forecasting future changes.


Hindcasts: hindcasts are a powerful tool for reconstructing the climate and environmental conditions of the recent past. Through CEFI, hincasts will be produced to recreate the oceanic and sea ice states over the past several decades. The ACT will evaluate the accuracy of these reconstructions by comparing them with historical ocean observations. Once validated, these model outputs will provide continuous data on ocean conditions from seabed to the surface. This information will enhance understanding of the ocean dynamics during different fishing and harvest seasons, and will help identify the drivers of species population changes, spatial shifts, and broader ecosystem responses to warming and marine heatwaves.

Forecasts: Forecasts from the same models will be updated each season to provide neartem projections of ocean conditions one to twelve months out.

Decadal predictions will provide data-driven outlook of potential ocean conditions up to 10 years into the future.

Long-term projections under high and low warming scenarios will deliver detailed information to support risk analyses and climate adaptation planning.

Kelly Kearney, kelly.kearney@noaa.gov Wei Cheng, wei.cheng@noaa.gov

Model

NMFS trawl survey

Biological

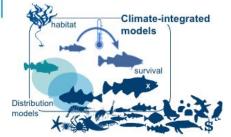
Develop dynamic climate-informed **multispecies** distribution models for Bering Sea groundfish, crab, and marine mammal species.

Assess **changes in spatial overlap** among species based on range projections under various climate scenarios.

Elizabeth McHuron, <u>liz.mchuron@noaa.gov</u> Maurice Goodman, <u>goodmm2@uw.edu</u>

Link models and use ensemble approaches to quantify relationships between climate-ecosystem variables and **population dynamics** across fish species.

Identify best practices for selecting which climate-ecosystem variables can help predict stock dynamics.


Jennifer Bigman, jennifer.bigman@noaa.gov Grant Adams, grant.adams@noaa.gov André Punt, <u>aepunt@uw.edu</u>

Develop **climate-linked harvest control rules** to determine ABC buffers for the North Pacific Fisheries Management Council.

Develop software to produce climate-informed short-term **growth and mortality forecasts** for NPFMC harvest control rules.

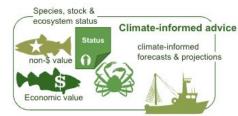
Support climate-informed stock assessments and multispecies models for groundfish in the Gulf of Alaska and Bering Sea.

Grant Adams, grant.adams@noaa.gov Kirstin Holsman, <u>kirstin.holsman@noaa.gov</u> André Punt, <u>aepunt@uw.edu</u>

Social & Economic

Develop **social hindcast methodology** with pilot of community responses to climate-induced changes in Alaska fisheries (2018-2023) to better understand community adaptation strategies.

Identify possible **social indicators** using existing data sources to detect and monitor the effects of climate-induced changes associated with resilience and vulnerability of Alaska fishing communities.


Support development of **publicly accessible**, **collaborative tools** allowing communities to view CEFI information products on climate-induced shifts in species distributions and ecological and oceanographic conditions.

Explore **pathways and examine barriers** for utilizing social and economic information to inform Council decision-making on climate resilient fisheries management.

Angela Abolhassani, angela.abolhassani@noaa.gov Sarah Wise, sarah.wise@noaa.gov

Collaboratively identify drivers of Yukon River Chinook salmon marine survival using ROMS ocean temperature outputs, wind hindcasts, and Traditional Knowledge in partnership with the Yukon River Drainage Fisheries Association.

Ellen Yasumiishi, <u>ellen.yasumiishi@noaa.gov</u> Sarah Wise, <u>sarah.wise@noaa.gov</u>

Adaptation support

Council Coordination

In coordination with the Council points of contact, develop a process for regular reporting of climate change impacts and responses to the Council through existing pathways (or "on-ramps"). Fisheries Initiative (CEFI) potential projects and outputs could also help support the Council's climate readiness planning. This information will highlight current and proposed synergies between CEFI products and Council planning. Coordination on the development of these products will involve collaboration among the Council, NOAA's Alaska CEFI team (ACT) and partners, and the Alaska Fisheries Information Network.

Facilitate Council planning for climate change impacts on fisheries and fishing communities in Alaska through iterative discussions, workshops, information reporting, and synthesis of medium to long-term impacts on Alaska marine ecosystems. Support management strategy evaluations (MSEs) to evaluate the performance of alternative management measures and assessments under future climate scenarios.

Annual climate-informed advice: Develop interactive and publicly accessible resources for decision making and exploring tradeoffs in annual fisheries management decisions. Support climate-informed biological reference points and harvest control rules.

Rapid response: Support the development and delivery of tools to aid in-season management and navigate emergent climate challenges.

Jodi Pirtle, jodi.pirtle@noaa.gov Jason Gasper, jason.gasper@noaa.gov Anne Marie Eich, annemarie.eich@noaa.gov

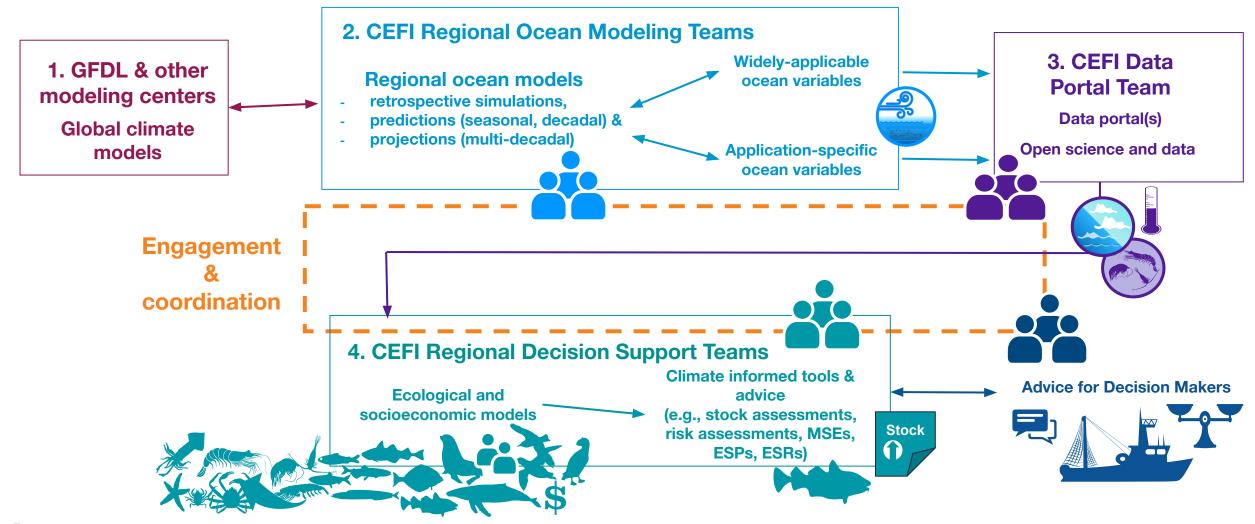
Katie Latanich, <u>katie.latanich@noaa.gov</u> Diana Stram, <u>diana.stram@noaa.gov</u>

Kirstin Holsman, kirstin.holsman@noaa.gov Angela Abolhassani, angela.abolhassani@noaa.gov

Overall, the latest studies on the net economic implications of decarbonisation – which also account for avoided climate damages – **point to overall benefit from the transition.** *-Prof Valentina Bosetti*

If people are provided with opportunities to make choices supported by policies, infrastructure and technologies, there is an untapped mitigation potential to **bring down global emissions by between 40 and 70% by 2050** compared to a baseline scenario.

-Prof Joyashree Roy

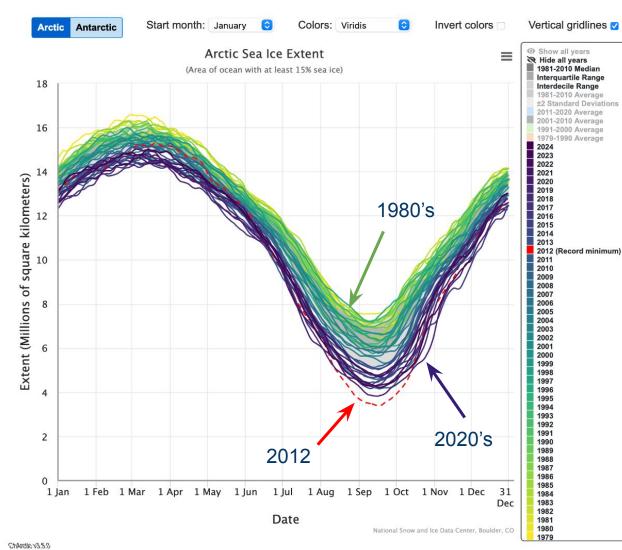

The evidence is clear: there are now mitigation options available in all sectors that could together **halve global greenhouse gas emissions by 2030.** *-Dr Céline Guivarch*

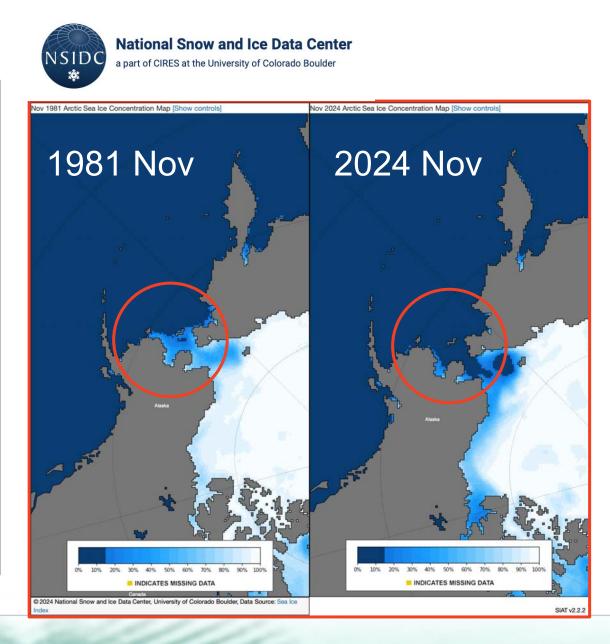
Climate change is challenging but solvable

Questions?

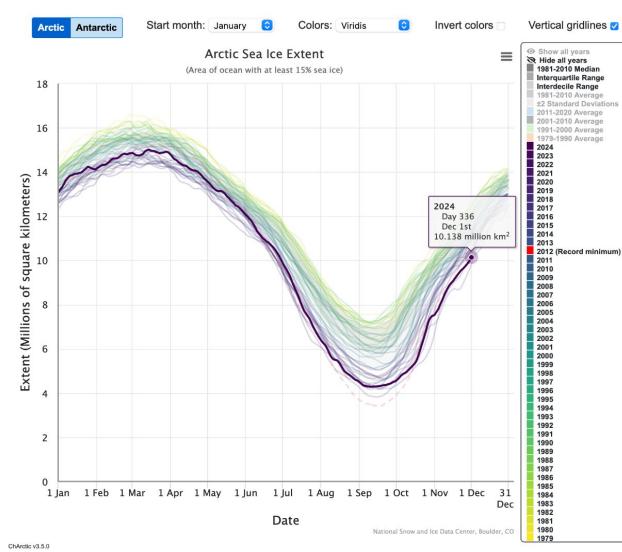
EXTRA SLIDES

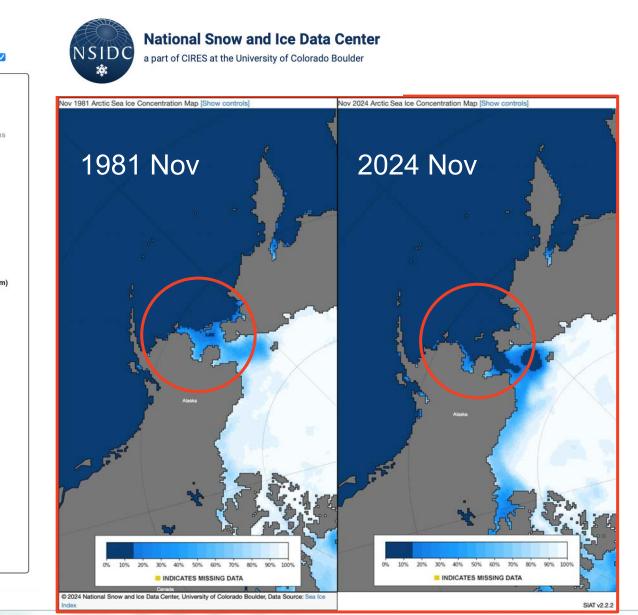
National CEFI Component Workflow




ACLIM Publications (direct & indirect) 1 of 2

- (2024) McHuron et al. Current and future habitat suitability of northern fur seals and overlap with the commercial walleye pollock fishery in the eastern Bering Sea Movement Ecology
- (2024) Goodman et al. Climate covariate choice and uncertainty in projecting species range shifts: a case study in the Eastern Bering Sea. Fish and Fisheries (in press)
- (2024) Hollowed et al. Selecting climate linked decision relevant and adaptation informing community level scenarios for ecosystems through constituent engagement : A case study for the eastern Bering Sea. ICES JMS
- (2023) Punt et al. Capturing Uncertainty when Modelling Environmental Drivers of Fish Populations, with an Illustrative Application to Pacific Cod in the Eastern Bering Sea. Fisheries Research
- (2023) Bigman, JvS, B J Laurel, K Kearney, A J Hermann, W Cheng, K K Holsman, L A Rogers. Predicting Pacific cod thermal spawning habitat in a changing climate. ICES Journal of Marine Science, fsad096, https://doi.org/10.1093/icesjms/fsad096
- (2023) Hermann et al. Applications of biophysical modeling to Pacific high-latitude ecosystems. Oceanography
- (2023) Szuwalski, C.S. et al. The collapse of eastern Bering Sea snow crab. Science.
- (2023) Olmos, M., et al., Punt, A.E., Szuwalski, C.S. A step towards the integration of spatial dynamics in population dynamics models: Eastern Bering sea snow crab as a case study. Ecological Modelling 485: 110484.
- (2023) Szuwalski et al., Unintended consequences of climate-adaptive fisheries management targets. Fish and Fisheries. https://doi.org/10.1111/faf.12737
- (2022) Barnes, C.; Essington, T. E.; Pirtle, J; Rooper, C; Laman, E.; Holsman, K.; Aydin, K.; Thorson, J.. Climate-informed models benefit hindcasting but may present challenges when forecasting species-habitat associations. Ecography 2022: e06189 doi:10.1111/ecog.06189
- (2022) Pilcher, D.J., J.N. Cross, A. Hermann, K. Kearney, W. Cheng, J.T. Mathis. Dynamically downscaled projections of ocean acidification for the Bering Sea, *Deep-Sea Research II: Topical Studies in Oceanography 198, 105055*
- (2022) Hollowed, A. B., A. C. Haynie, A. J. Hermann, K. K. Holsman, A. E. Punt, C. S. Szuwalski. Implications of climate change on the Bering Sea and other cold water systems. Introduction to the special issue of Deep-Sea Research Part II: Topical Studies in Oceanography.
- (2022) Punt, A.E., et al., Szuwalski, C.S. 2022. A framework for assessing harvest strategy choice when considering multiple interacting fisheries and a changing environment: The example of eastern Bering Sea crab stocks. Fisheries Research. 252: 106338.
- (2022) Szuwalski, C.S.. Estimating time-variation in confounded processes in population dynamics modeling: a case study for snow crab in the eastern Bering Sea. Fisheries Research. 251: 106298.
- (2021) Hermann, A. J., Kearney, K., Cheng, W., Pilcher, D., Aydin, K., Holsman, K. K., & Hollowed, A. B.. Coupled modes of projected regional change in the Bering Sea from a dynamically downscaling model under CMIP6 forcing. Deep-Sea Research Part II: Topical Studies in Oceanography, 194 (Dec), 104974. https://doi.org/10.1016/j.dsr2.2021.104974


- (2021) Cheng, W., Hermann, A. J., Hollowed, A. B., Holsman, K. K., Kearney, K. A., Pilcher, D. J., Stock, C. A., & Aydin, K. Y.. Eastern Bering Sea shelf environmental and lower trophic level responses to climate forcing: Results of dynamical downscaling from CMIP6. Deep-Sea Research Part II: Topical Studies in Oceanography, 193, 104975. https://doi.org/10.1016/j.dsr2.2021.104975
- (2021) Punt, A., M G Dalton, W Cheng, A Hermann, K Holsman, T Hurst, J Ianelli, K Kearney, C McGilliard, D Pilcher, M Véron. Evaluating the impact of climate and demographic variation on future prospects for fish stocks: An application for northern rock sole in Alaska. Deep Sea Research Part II: Topical Studies in Oceanography 189–190:104951.
- (2021) Whitehouse, G. A., K. Y. Aydin, A. B. Hollowed, K. K. Holsman, W Cheng, A. Faig, A. C. Haynie, A. J. Hermann, K. A. Kearney, A. E. Punt, and T. E. Essington. Bottom-up impacts of forecasted climate change on the eastern Bering Sea food web. Front. Mar. Sci., 03 February 2021 | <u>https://doi.org/10.3389/fmars.2021.624301</u>
- (2020) Holsman, K.K., A. Haynie, A. Hollowed, J. Reum, K. Aydin, A. Hermann, W. Cheng, A. Faig, J. Ianelli, K. Kearney, A. Punt. (2020) Ecosystem-based fisheries management forestalls climate-driven collapse. Nature Communications. DOI:10.1038/s41467-020-18300-3
- (2021) Thorson, J., M. Arimitsu, L. Barnett, W. Cheng, L. Eisner, A. Haynie, A. Hermann, K. Holsman, D. Kimmel, M. Lomas, J. Richar, E. Siddon. Forecasting community reassembly using climate-linked spatio-temporal ecosystem models. Ecosphere 44: 1–14, doi: 10.1111/ecog.05471
- (2020) Szuwalski, W. Cheng, R. Foy, A. Hermann, A. Hollowed, K. Holsman, J. Lee, W. Stockhausen, J. Zheng. Climate change and the future productivity and distribution of crab in the Bering Sea. ICES J. Mar. Sci fsaa140, <u>https://doi.org/10.1093/icesjms/fsaa140</u>
- (2020) Reum, J. C. P., J. L. Blanchard, K. K. Holsman, K. Aydin, A. B. Hollowed, A. J. Hermann, W. Cheng, A. Faig, A. C. Haynie, and A. E. Punt. 2020. Ensemble Projections of Future Climate Change Impacts on the Eastern Bering Sea Food Web Using a Multispecies Size Spectrum Model. Frontiers in Marine Science 7:1–17.
- (2020) Hollowed, A. B., K. K. Holsman, A. C. Haynie, A. J. Hermann, A. E. Punt, K. Aydin, J. N. Ianelli, S. Kasperski, W. Cheng, A. Faig, K. A. Kearney, J. C. P. Reum, P. Spencer, I. Spies, W. Stockhausen, C. S. Szuwalski, G. A. Whitehouse, and T. K. Wilderbuer. 2020. Integrated Modeling to Evaluate Climate Change Impacts on Coupled Social-Ecological Systems in Alaska. Frontiers in Marine Science 6. https://doi.org/10.3389/fmars.2019.00775
- (2019) Holsman, KK, EL Hazen, A Haynie, S Gourguet, A Hollowed, S Bograd, JF Samhouri, K Aydin, Toward climate-resiliency in fisheries management. ICES Journal of Marine Science. 10.1093/icesjms/fsz031
- (2019) Hermann, A. J., G.A. Gibson, W. Cheng, I. Ortiz1, K. Aydin, M. Wang, A. B. Hollowed, and K. K. Holsman. Projected biophysical conditions of the Bering Sea to 2100 under multiple emission scenarios. ICES Journal of Marine Science, fsz043, https://doi.org/10.1093/icesjms/fsz043
- (2019) Reum, J., JL Blanchard, KK Holsman, K Aydin, AE Punt. Species-specific ontogenetic diet shifts attenuate trophic cascades and lengthen food chains in exploited ecosystems. Okios DOI: 10.1111/oik.05630
- (2019) Reum, J., K. Holsman, KK, Aydin, J. Blanchard, S. Jennings. Energetically relevant predator to prey body mass ratios and their relationship with predator body size. Ecology and Evolution (9):201–211 DOI: 10.1002/ece3.4715


Sea Ice Loss

Sea Ice Loss

