C5 Joint Groundfish September Plan Team Report

Steve Barbeaux, Sara Cleaver, Jim Ianelli, Chris Lunsford, Kalei Shotwell, Diana Stram, Cindy Tribuzio

October 2025, Presentation to the SSC

Groundfish Plan Team Meeting, Sept 16-18, 2025

Virtual

BSAI Groundfish Plan Team Members:

AFSC REFM (co-chair)	Kirstin Holsman	AFSC REFM
AFSC REFM (co-chair)	Andy Kingham	AFSC FMA
AFSC ABL (vice chair)	Beth Matta	AFSC REFM
NPFMC (coordinator)	Andrew Seitz	UAF
AFSC	Jane Sullivan	AFSC ABL
IPHC	Steven Whitney	NMFS AKRO
WDFW	50000 0000 000 000 000 000 000 000 0 000	
	AFSC ABL (vice chair) NPFMC (coordinator) AFSC IPHC	AFSC REFM (co-chair) AFSC ABL (vice chair) NPFMC (coordinator) AFSC IPHC Andy Kingham Beth Matta Andrew Seitz Jane Sullivan Steven Whitney

GOA Groundfish Plan Team Members:

Jim Ianelli	AFSC REFM (co-chair)	Pete Hulson	AFSC ABL
Chris Lunsford	AFSC ABL (co-chair)	Nat Nichols	ADF&G
Sara Cleaver	NPFMC (coordinator)	Jan Rumble	ADF&G
Meaghan Bryan	AFSC REFM	Paul Spencer	AFSC REFM
Abby Jahn	NMFS AKRO	James Thorson	AFSC REFM
Craig Faunce	AFSC FMA	Sophia Wassermann	AFSC RACE
Lisa Hillier	WDFW	Ben Williams	AFSC ABL

Joint Teams Presentation Summary

- Met Tuesday, September 16-17, 2025 at 8:00 am AKDT
 - Virtual meeting only via Zoom, Team's <u>electronic agenda</u>
 - Presentations are linked in the header (in report)
- Future meetings:
 - November 10, 12-14, 2025
 - Tentative 2026 dates:
 - Week of September 21(4 days TBD)
 - November (TBD)

AFSC's Gulf of Alaska bottom-trawl survey

F/V Alaska Provider

2013-2016, 2021-Present

8 yrs experience

New stratified random survey as of 2025

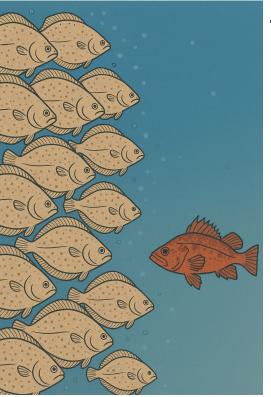
N stations ∞ stratum area, abundance, and inverse variance of 15 representative species

F/V Ocean Explorer

2010-2012, 2017-present 10 yrs experience

GOA bottom trawl survey

Species or complex	Biomass in 2023 (mt)	Biomass in 2025 (mt)	Percent change
Roundfishes			
walleye pollock	918,846	1,213,755	+32.1
Pacific cod	222,473	309,761	+39.2
sablefish	194,026	152,655	-21.3
Atka mackerel	76,627	89,117	+16.3
Sharks			
Sharks complex	67,601	89,624	+32.6


GOA bottom trawl survey

Biomass in 2023 (mt)	Biomass in 2025 (mt)	Percent change
1,184,806	1,442,691	+21.8
432,709	297,182	-31.3
139,969	202,537	+44.7
114,397	153,181	+33.9
48,444	64,282	+32.7
26,310	30,929	+17.6
	1,184,806 432,709 139,969 114,397 48,444	432,709 297,182 139,969 202,537 114,397 153,181 48,444 64,282

GOA bottom trawl survey

Species or complex	Biomass in 2023 (mt)	Biomass in 2025 (mt)	Percent change
Rockfishes			
Pacific ocean perch	1,537,683	824,335	-46.4
Other rockfish complex	110,351	123,133	+11.6
dusky rockfish	73,492	45,913	-37.5
Rougheye - blackspotted rockfish group	30,968	30,269	-2.3
northern rockfish	31,748	19,653	-38.1
rougheye rockfish	23,337	18,647	-20.1
Demersal shelf rockfish complex	19,013	8,891	-53.2

GOA AFSC's bottom-trawl survey comments

Team noted

- ★ Total stations dropped (431 stations, 17% fewer)
- Shifts in species groups (rockfish down, flatfish and roundfish up)
 - Suggestion to see if similar shifts occurred in other years
- Commended survey group in completing coverage given shortages and operational difficulties

Thanks to AFSC's RACE Division+

Groundfish assessment program

Christina Conrath

Alexandra Dowlin

Sarah Friedman

Zack Oyafuso

Pearl Rojas

Bethany Riggle

Sean Rooney

Megsie Siple

Bianca Prohaska

Joanna Magner

Susanne McDermott

Ned Laman

Rick Hibpshman

KC Dill

Kaitlyn Osborne

Mary Beth Rew Hicks

David McGowan

Mike Levine

Derke Snodgrass (SEFSC)

John Brogan

Kim Ledger

Katie D'Amelio

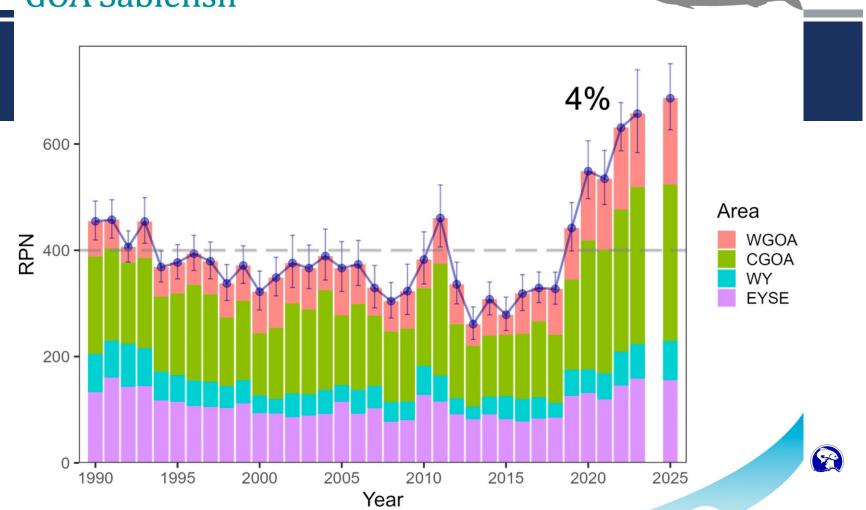
Jon Short

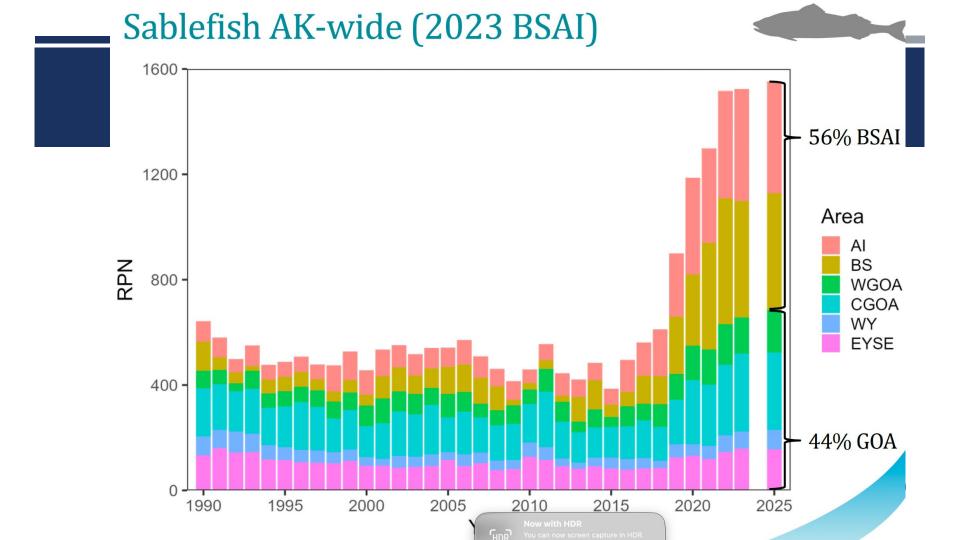
Sablefish activities

Stock assessment model updates, including

- ★ Counterfactual analysis of longline survey design changes
- ★ Spatial stock assessment model
- ★ Management Strategy Evaluation (MSE)

	Model group	Change
Sablefish assessment	Bridge to RTMB (Section 1) Dev vector change Dev vector change	None, continuity (23.5, last year's accepted model)
		Dev vector change
		Dev vector change, max calls
<u>model</u>		Match RTMB version of 23.5b
		Legacy code fix
		SigmaR=1.1
	Code Fixes and "Good Practices" (Section 2)	Selectivity priors
	Cumulative changes	
		Lambdas=1, PDFs
Here without short	Sex specific (version of 23.5b) Disaggregate Age Compositions (Section 3) Sex specific (with code fixes) Remove length compositions where overlapping	Sex specific (version of 23.5b)
model names and		
numbers		Remove length compositions where overlapping
		Drop trawl survey
	Update Data and Model Assumptions (Section 4)	New M prior
	Account (Goodon 4)	Cumulative changes
		Time-varying growth
	Sensitivity Runs	Time-varying fixed-gear selectivity
	(Section 5)	Spatially explicit model
	Logistic-normal instead of multinomial	Logistic-normal instead of multinomial


Sablefish activities


Recommended model for 2025 features

- ★ Code refinements and improvements
 - Stability
 - Retrospective patterns
- ★ Consistency across changes,
 - Revised recent recruitment estimates
 - Stock status similar
- ★ Lower M estimate lowers $F_{40\%}$

GOA Sablefish

Sablefish discussion

Future pattern of alternating survey data between BSAI and GOA

- ★ Team had some comments/suggestions, reconsider in Sept 2026
- ★ Noted a CIE review expected in 2026 and could be addressed then

Sablefish

The Teams recommended

- -> clarifying and documenting the results of Francis reweighting and include tables of input sample sizes and final effective sample sizes.
 - ◆ Appreciate setting "Lambdas" to 1.0
- → comparing empirical length and weight-at-age directly with modeled estimates
 - mismatches among indices, lengths, and ages may reflect misspecified growth, as sablefish growth has shifted rapidly in recent years
- Testing approaches where fishery composition data inform removals only rather than population structure or recruitment.
 - ◆ Lower M improved fits to the plus group...
- → Showing the RTMB continuity model and Model 25.12 ("Drop_TS_Upd_M") for November

Teams noted several peer-reviewed studies on sablefish that have been recently published

Ecosystem Status Report

North Pacific: Similar warm & windy trends across all regions, but driven by region-specific dynamics

Gulf of Alaska (GOA): Warm waters from western/central Pacific and from central GOA gyre in winter and late summer at surface and depth; coupled with strong transport across shelf

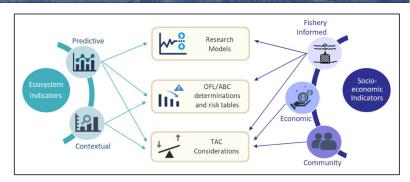
Aleutian Islands (AI): Strong AK currents increase eddies and northward transport through eastern & western passes; year-round high sea surface temperatures are back

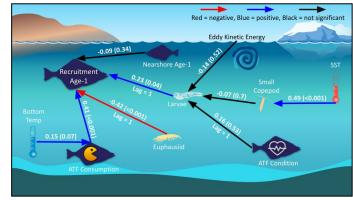
Eastern Bering Sea (EBS): Warm waters in winter coupled with storms led to reduced sea ice; summer cold pool was reduced; sea ice expected to arrive later this winter

Ecosystem Status Report

Discussion

- Teams appreciated the effectiveness and efficiency of the combined report and summarizing the roles of the ESR and ESP reports for informing the harvest specification process.
- O Teams also discussed expanding some of the hypothesized ecosystem impacts during the September report and noted that some of this information appears in other presentations (e.g., Ecosystem Surveys)


Recommendations:


• ESR team continue working to link climate trends to ecosystem and groundfish community processes in future reports

Ecosystem and Socioeconomic Profiles

- Categories and ESP templates
 - Predictive versus contextual and how they feed into advice
 - Full, update (reference), report card options
- Causal modeling
 - Dynamic Structural Equation Model (DSEM)
 - Within RCEATTLE (e.g., GOA arrowtooth, Al Atka Mackerel)

Ecosystem and Socioeconomic Profiles

Discussion

- The Teams discussed the timeline and potential for updating indicators to best reflect current stock conditions which is part of the update and report card
- The Teams discussed inclusion of marine mammal information in the multi-species RCEATTLE model and options for ice seal information in future reports.
- O The Teams acknowledged the utility of the new predictive/contextual categories and discussed the challenge of no framework for how to use multiple contextual indicators suggesting poor conditions

Recommendations:

 Develop a multivariate indicator that synthesizes contextual ecosystem time series to measure how anomalous the current year is relative to past conditions 2025 survey previews

GOA

160°W

Longitude

Latitude N°45

Aleutian

Islands

170°W

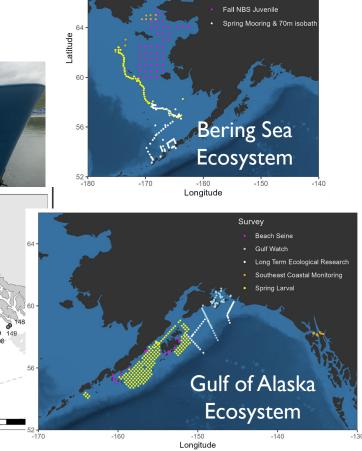
Alaska

Central

GOA

150°W

Longline survey


Southeast

140°W

Eastern

GOA

Yakutat

Survey

• Arctic DBO

Fall Mooring & 70m isobath

Ecosystem Surveys: Bering Sea Summary

Ocean conditions

- SEBS: Ice did not reach M2, warm year overall, mixed layer depth variable @ ~20m
- NBS Fall: warmer than recent years, not as warm as heatwave years.

Zooplankton

 Small copepod densities were above average in spring, similar to recent warm years. Large copepod densities were average (limited sample size).

Fish densities

- Age-0 Pollock: Fall (NBS) Very high densities of age-0 pollock.
- Capelin: Fall (NBS) low prevalence, characteristic of a warm year, and notable decline from recent years.

Ecosystem Surveys: GOA Summary

Ocean conditions

- Western GOA in spring was warm at surface and at depth.
- Similar to 2015 and 2019.

Zooplankton

 Springtime small copepod abundance was high, large copepod abundance was low consistent with warm conditions.

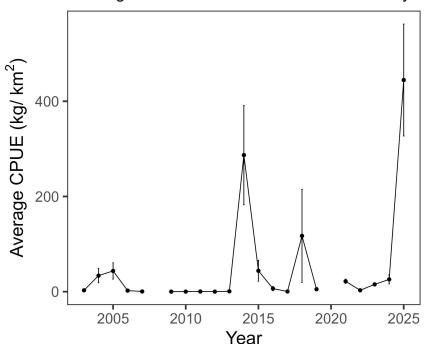
Fish densities

- Larval: Gadids extremely low, continuing trend since 2019. Rockfishes only 1 of 7 assessed species with high abundance.
- Age-0 Pacific cod densities in the nearshore were moderate, while age-0 pollock densities were low.

Fish condition

Age-0 sablefish below average length, but average growth rate.

Ecosystem Surveys


Discussion

- Teams discussed high volume of age-0 pollock and response to survey timing
- Teams discussed synthesis of age-0 pollock and Pacific cod to create offshore/onshore combined index

Recommendation

Combined indices be provided in future presentations

NBS Age-0 Pollock - Fall Surface Trawl Surveys

Longline Survey

- Sampling in GOA in odd years, BSAI in even years
- 371,700 hooks fished, 109,263 lengths, 2,869 sablefish otoliths, 3,998 sablefish tagged
- 90 temp-depth profiles, sub- surface temps (~250m) near avg in WGOA, CGOA above avg in EGOA
- Pacific cod and REBS similar to last survey, shortraker decreased 16%, thornyhead up 21%

WGOA CGOA EGOA **GOA Shortraker** GOA RE/BS WGOA A CGOA EGOA

GOA P. Cod

GOA Shortspine Thornyhead

Thanks to Kevin Siwicke

Harvest Control Rules

- ★ Workplan guidance:
 - Stocks or species to cover,
 - types performance indicators to use
- ★ The Teams noted the need to focus on species that are most susceptible to environmental change
 - Agreed with SSC focus on Pacific cod, pollock, sablefish, snow crab, and Bristol Bay red king crab—added Pacific Ocean perch
- ★ Development of a framework for implementing alternative HCRs
 - Umbrella actions based on evaluations of relevant indicators
 - Consideration of exceptional circumstances invoke meta-rules—a set of guardrails when a simulation-tested HCR appears to be straying from expectations
- ★ Recommendations:
 - The Teams recommended that a Joint Team meeting be conducted in early 2025 (January) to review and recommend alternative frameworks for when different HCRs could be triggered.

Data Limited Working Group

- Presentation included application of the ORCS framework to Pacific sleeper shark,
 with continued refinement of attribute weighting and planned sensitivity testing
- Described progress toward developing a decision tree approach for Octopus complex
- Teams recommended:
 - Continue to explore the methods described in the report
 - Decision tree approach for GOA octopus, and encouraged authors to conduct simulations and power analyses to better evaluate the robustness of the approach.

Halibut DMRs

- Michael Fey provided a presentation on halibut DMRs.
 - Observer estimate methodology was same as last year.

The Teams recommended the 2026 and 2027 halibut DMRs as presented by the Halibut DMR Working Group, to be included in the proposed specifications.

Groundfish Plan Team Contacts:

Steve.Barbeaux@noaa.gov
Sara.Cleaver@noaa.gov
Jim.lanelli@noaa.gov
Chris.Lunsford@noaa.gov
Kalei.Shotwell@noaa.gov
Diana.Stram@noaa.gov
Cindy.Tribuzio@noaa.gov

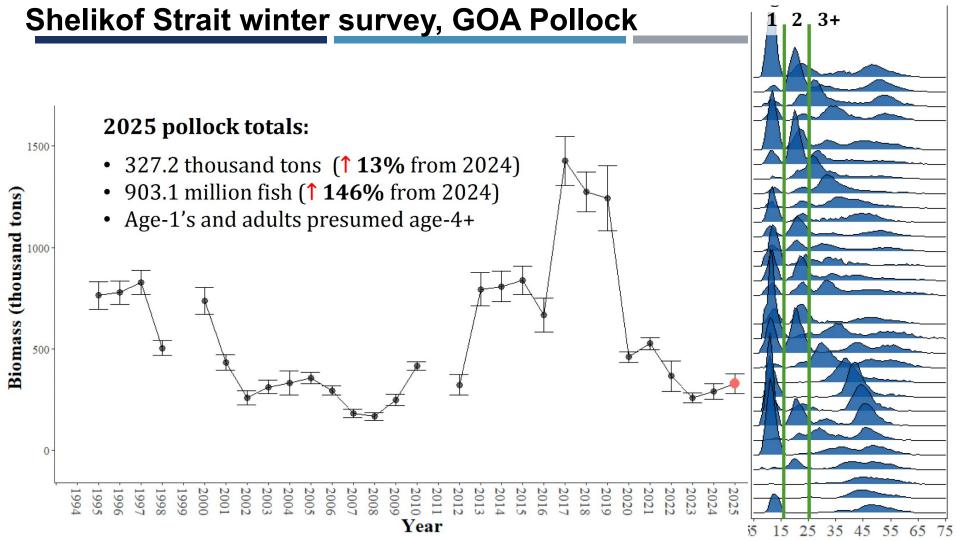
C5 Gulf of Alaska Groundfish September 2025 Plan Team Report

Jim Ianelli (AFSC), Chris Lunsford (AFSC), Sara Cleaver (NPFMC)

GOA Presentation summary

Topic	Presenter at Plan Team	Туре	Recommendations
GOA BTS survey	Zach Oyafuso	Survey Update	Suggestions
Winter Acoustic Survey, refinements	Darin Jones, David McGowan	Survey Update	No
GOA Pollock	Cole Monnahan	Full	Yes, author's
Arrowtooth, ESP	Kalei Shotwell, Grant Adams	Full	Yes, 25.0 and 25.1
Rex sole	Sandra Lowe (for C. McGilliard)	CIE Response, model updates	Yes
SW Flatfish: N/S rock sole	Meaghan Bryan	Full	Yes
Pacific ocean perch	Ben Williams	Full	Yes
REBS Assessment	Jane Sullivan	Full	Yes
Harvest Projections - DWF	Chris Lunsford	Final review	No
Proposed Specifications (including DMRs)	Abby Jahn	Proposed specs	Yes

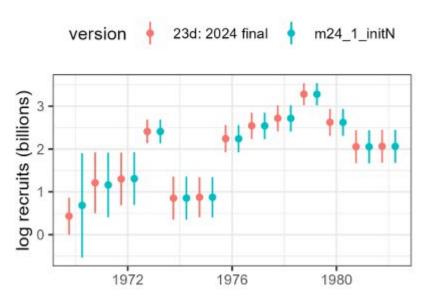
2025 assessment plans: GOA stocks


Assessment Type	GOA Stocks for 2025 (Nov)
Operational full	Pollock, POP, REBS, ATF, Rex sole, SWF (N/S rock sole)
Operational update	Pacific cod, Other rockfish, Shortraker, Skates, Atka mackerel, Octopus
Harvest Projections (reviewed in Sept/Oct)	Deepwater flatfish
Catch Reports	Dusky rockfish Northern rockfish Thornyhead rockfish Demersal shelf rockfish Flathead sole Sharks

GOA General comments

The Team commented on appropriate ISS for fishery age and length composition samples and how environmental data should be used to calibrate numerical models.

The Team noted virtual environment limited review capabilities



GOA Pollock: 3 refinements

- I. Minor change to initial age-composition
- 2. Updated acoustics (re-analysis)
- 3. Priors for stabilization:
 - Logit on AR(I) process
 - Descending selectivity for Shelikof survey

The Team concurred with author and recommended bringing forward model 23e, as well as the previously accepted model 23d.

Thanks to Cole Monnahan

GOA Rex sole

- ★ CIE Review (desk review)
 - Comments addressed
- **★** Team supported Carey's recommendation to bring forward Models 25.0 and 25.1
 - 25.0 updated 2021 base model
 - 25.1 updated ageing error matrix
 - Commended on the extensive presentation bridging the modifications

GOA Shallow-water flatfish (N and S rock sole)

- Updated growth estimates by regions
 - N. rock sole stays region-specific
 - S. rock sole common region
- → Northern rock sole recommended model
 - ◆ 21.2c
- → Southern rock sole:
 - ◆ 25.1c and 25.1d
 - Refinements in length-wt, catch, and input sample sizes

GOA Arrowtooth flounder

The Team

- agreed with the author's recommendation to bring forward two models (Model 25.0 and 25.1, fixed or estimated male *M*) for November, and
- Recommended research on evaluating DSEM fits for
 - interpreting ESPs
 - framework for applying in a management context

GOA Pacific ocean perch

Discussion

- ★ Short turnover with new author
- ★ Converted ADMB code to RTMB
 - Updated basics (likelihood specifications to R functions etc)
 - Bridged satisfactorily
- ★ Survey data treatment
 - Model vs design-based estimates, may evaluate both both if time permits
 - Differences in uncertainties noted

GOA Pacific ocean perch

The Team recommended:

- ★ Previously accepted model, and Model 25.2a in November
 - Include updated survey input sample size (ISS)
- Include table of ISS for all fleets and the final adjusted sample sizes after reweighting, and
- * evaluate the ratios of effective sample size (ESS) to ISS and provide interpretations of results, particularly when ESS/ISS is greater than 1.0.

GOA Rougheye-black spotted rockfish

Discussion features

- ★ Extensive evaluation of functional and biological maturity
- ★ Differences between species within complex also notable
- ★ Correct identification rates evaluated
- ★ Recalled issues with the age-structured assessments

GOA Rougheye-black spotted rockfish

- ★ Accepted plus three alternative models:
 - 23.1b Base SCAA model using the same data as the 2023 assessment
 - 25.Ia Tier 4 model that uses species-specific biological-based maturity estimates
 - 25.1b Tier 4 model that uses species-specific functional maturity estimates
 - 25.2 Tier 5 calculations based on trawl survey biomass for the combined complex
- ★ Complex-level F rate based on blackspotted rockfish
 - Declining trends, added precaution appropriate
 - Functional maturity used
- * Recommended:
 - Tier 4 YPR/SBPR

GOA Harvest Projections: Reviewed in Sept instead of November meeting

1) GOA deepwater flatfish- Carey McGilliard

Thanks to Chris Lunsford (presentation) & authors

GOA Deepwater flatfish (Dover sole, Tier 3a)

Not overfishing, overfished nor approaching overfished

- Fishery Trends: catch remains low
 - 80 t as of September 5, 2025
- Survey Trends (as of Sept. 2025):
 - 2023 biomass similar to 2021
 - Preliminary indications of 2025 survey biomass show an increase (33%) in Dover sole biomass
- Last full/update assessment 2023, next 2027
- ABC: 6,836 t, OFL: 8,118 t
 - No reduction or change from maxABC

		10 TO	As estimated or		As estimated or		
Species	0	specified last year for:		recommended this year for			
	Quantity	2025	2026	2026	202		
	M(natural mortality rate)	0.129(f), 0.128(m)	0.129(f), 0.128(m)	0.129(f). 0.128(m)	0.129(f) 0.128(m		
	Tier	3a	3a	3a	3		
	Projected total (3+) biomass (t)	84,026	81,999	82,048	80,04		
	Projected Female spawning biomass (f)	24,399	23,960	23,964	23,61		
	Broom	15,968	15,968	15,968	15,96		
Dover sole	Barry	6,387	6,387	6,387	6,38		
	Ben	5,589	5,589	5,589	5,58		
	Fort.	0.15	0.15	0.15	0.1		
	mex Fix	0.12	0.12	0.12	0.1		
	Fac	0.12	0.12	0.12	0.1		
	OFL (t)	8,139	7,990	7,994	7, 83		
	max ABC (t)	6,865	6,739	6,743	6,60		
	ABC(t)	6,865	6,739	6,743	6,60		
	Tier	6	6	6			
Greenland turbot	OFL (t)	49	49	49	4		
Greening turbor	maxABC(t)	37	37	37	3		
	ABC(t)	37	37	37	3		
	Tier	6	6	6			
Kamchatka	OFL (t)	69	69	69			
flounder	max ABC (t)	52	52	52	5		
	ABC(f)	52	52	52	5		
	Tier	6	6	6			
Deepsen sole	OFL (t) max ABC (t)	4	4	4			
	ABC(f)	4	4	4			
	OFL (t)	8.269	8.114	8,118	7.95		
	max ABC (t)	6,958	6.832	6,836	6.69		
	ABC(t)	6,958	6.832	6,836	6.69		
Deepwater	Chains	As de termine for	d last year	As determine for	d this year		
	^	2023	2024	2024	202		
	T	no	n/a	no	n		
A second	1	n/a	no	n/a	1		

GOA Deepwater flatfish (Dover sole, Tier 3a)

Not overfishing, overfished nor approaching overfished

- Survey-informed apportionments for the 2026, 2027 ABCs
 - No change in area apportionment percentages since last full assessment (2023)

Species	Year	Western	Central	West Yakutat	Southeast	ABC
		2.6260%	37.5485%	26.6279%	33.1976%	100.0%
Dover Sole	2026	177	2,532	1,796	2,238	6,743
Dover Sole	2027	173	2,480	1,759	2,192	6,604
		100.0%	0.0%	0.0%	0.0%	100.0%
Greenland Turbot	2026	37	0	0	0	37
	2027	37	0	0	0	37
		32.1%	67.9%			100.0%
Kamchatka Flounder	2026	17	35	0	0	52
Kamenatka Flounder	2027	17	35	0	0	52
		0.0%	74.9%	11.2%	13.9%	100.0%
Doopson Solo	2026	0	3	0	1	4
Deepsea Sole	2027	0	3	0	1	4
Deepwater Flatfish	2026	231	2,570	1,796	2,240	6,836
Deepwater Flattish	2027	227	2,518	1.759	2,193	6,697

GOA Deepwater flatfish- Harvest Projection (PT Recommendations)

The Team recommended:

- Authors' OFLs and ABCs as shown in the documents
- Author's edit final November documents in response to the Council's new terminology regarding "biologically-informed recommended distribution" versus subarea apportionment of ABC

GOA Harvest specifications, highlights

- Shortraker rockfish catch in 2025 exceeded the CGOA TAC
 - Could hit the Gulf-wide ABC, hence flagged for Council
 - In November authors re-evaluating things in light of spatial apportionment

GOA stocks without assessments in 2025 (Catch reports)

Stock	Catch (t) (as of 9/14/25)	2025 Survey biomass estimate (t)	2025 biomass relative to 2023 survey estimate
Dusky rockfish	2,142	45,913	-38%
Northern rockfish	1,582	19,653	-38%
Thornyheads	487	42,328	-26%
Demersal shelf rockfish	193	8,891	-53%
Flathead sole	739	202,537	+45%
Sharks	1,396	89,624	+33%

GOA Groundfish Proposed Harvest Specifications- PT Recs <u>Table 1</u> (1 of 3)

			2025		Catch	Plan Team Recom	mended 2026/2027
Species	Area	OFL	ABC	TAC	9/15/2025	OFL	ABC
	State GHL	n/a	4,526		4,226	n/a	3,326
	W (610)	n/a	37,344	37,344	9,300	n/a	27,453
	C (620)	n/a	82,265	82,265	63,338	n/a	60,477
Pollock	C (630)	n/a	51,605	51,605	19,632	n/a	37,963
Pollock	WYAK	n/a	5,282	5,282	1,861	n/a	3,883
	Subtotal	210,111	181,022	176,496	98,357	153,971	133,075
	SEO	12,998	9,749	9,749	2	12,998	9,749
	Total	223,109	190,771	186,245	98,359	166,969	142,824
	W	n/a	8,710	6,097	3,882	n/a	8,182
Pacific Cod	С	n/a	20,506	15,379	11,065	n/a	19,263
Pacific Cou	E	n/a	2,925	2,194	515	n/a	2,748
	Total	38,688	32,141	23,670	15,462	36,459	30,193
	W	n/a	4,996	4,746	2,268	n/a	4,687
	С	n/a	10,257	9,744	6,105	n/a	9,622
Sablefish	WYAK	n/a	3,125	2,686	1,904	n/a	2,652
	SEO	n/a	5,660	5,660	3,863	n/a	5,589
	GOA Total	n/a	24,038	22,836	14,140	n/a	22,550
Alaska-wide OFL and ABC	AK Total	58,532	50,111	n/a		57,797	47,008
	W	n/a	23,755	13,250	100	n/a	23,902
Challan W.	С	n/a	28,279	28,279	1,526	n/a	28,455
Shallow-Water Flatfish	WYAK	n/a	2,828	2,828	25	n/a	2,846
	SEO	n/a	1,697	1,697	-	n/a	1,707
	Total	69,277	56,559	46,054	1,651	69,610	56,910

GOA Groundfish Proposed Harvest Specifications- PT Recs <u>Table 1</u> (2 of 3)

			2025			Plan Team Recom	mended 2026/2027
Species	Area	OFL	ABC	TAC	9/15/2025	OFL	ABC
	w	n/a	234	234	1	n/a	231
	С	n/a	2,616	2,616	72	n/a	2,568
Deep-Water Flatfish	WYAK	n/a	1,828	1,828	5	n/a	1,795
i iddioii	SEO	n/a	2,280	2,280	4	n/a	2,238
	Total	8,263	6,958	6,958	82	8,114	6,832
	W	n/a	3,382	3,382	12	n/a	3,353
	С	n/a	13,698	13,698	454	n/a	13,582
Rex Sole	WYAK	n/a	1,436	1,436	-	n/a	1,413
	SEO	n/a	2,871	2,871	-	n/a	2,825
	Total	26,002	21,387	21,387	466	25,743	21,173
	W	n/a	33,593	14,500	126	n/a	33,716
	С	n/a	68,261	68,261	10,539	n/a	68,511
Arrowtooth Flounder	WYAK	n/a	6,695	6,695	19	n/a	6,719
	SEO	n/a	10,998	10,998	25	n/a	11,039
	Total	142,832	119,547	100,454	10,709	143,347	119,985
	W	n/a	13,592	8,650	45	n/a	13,757
	С	n/a	21,817	21,817	694	n/a	22,083
Flathead Sole	WYAK	n/a	3,970	3,970	-	n/a	4,018
	SEO	n/a	2,097	2,097		n/a	2,122
	Total	50,587	41,476	36,534	739	51,176	41,980

GOA Groundfish Proposed Harvest Specifications-PT Recs <u>Table 1</u> (3 of 3)

	Species
	Pacific occ perch
	Northern Rockfish
	Shortrak Rockfish
	Dusky Rock
	Rougheye Blackspott Rockfish
	Demersal s rockfish
	Thornyhe Rockfish
	Other Rock
	Atka mack
	Big Skat
	Longnos Skate
	Other Ska
	Sharks Octopuse
1	TOTAL
	/ 160

Species	Area	
-	w	
S1 2000	С	
Pacific ocean perch	WYAK	
percii	SEO	
	Total	
	w	
Northern	С	
Rockfish	E	
	Total	
	W	
Shortraker	С	
Rockfish	E	
	Total	
i i	W	
	С	
usky Rockfish	WYAK	
	SEO	
- 23	Total	
	w	
Rougheye and Blackspotted	С	
Rockfish	E	
	Total	
Demersal shelf	W/C/WYAK	
rockfish	SEO	
	w	
Thornyhead	С	
Rockfish	E	
	Total	
	W/C/WYAK	
Other Rockfish	SEO	
4 100 House Section 100	Total	_
Atka mackerel	Total	
	W	
Big Skate	С	
	E	_
	Total	
200000000000000000000000000000000000000	W C	
Longnose Skate	E	
Onato	Total	
Other Skates	GOA-wide	
Sharks	GOA-wide GOA-wide	
Octopuses	GOA-wide	
TOTAL	GOA-wide	-

2025

ABC

1,753

28,209

2,070

6.930

38,962

1,396

3,680

5,076

424

209

215

5.818

6,338

224

359

597

1,180

271

394

542

1,338

1,084

2,421

3,505

4,700

1,749

341

2,835

1,894

2,536

4,891

593.268

665

104

745

TAC

1,753

28,209

2,070

6.930

38,962

1,396

3,680

5.076

424

647

209

5,818

215

6,338

224

359

597

1.180

271

394

206

542

1.338

1,084

300

1,384

3,000

745

1,749

341

2.835

1,894

2,536

4,891

514.635

665

104

OFL

n/a

n/a

n/a

n/a

n/a

6.064

n/a n/a

n/a

863

n/a

n/a

n/a 7,705

n/a

n/a

n/a 1,576

361

524

n/a

n/a n/a

1,784 n/a

4.618

6,200

n/a

n/a

n/a

n/a 3,380

887

6,521

1,307

709,422

3,780

46,562

Catch

9/15/2025

1,753

1,892

25,510

465

n/a

1,117

1,582

126

381

2,053

2,142

54

119

60

233

176

193

15

32

487

365

384

930

1,610

254

1,952

638

523

408

57

1,217

1,396

1.861

19

66

23

21,865

Plan Team Recommended 2026/2027

1,688

27,156

1,993

6.672

37,509

1,346

3,549

4.895

647

5.527

204

229

608

1,203

271

542

1.338

1.084

2,421

4,700

745

1,749

2.835

1,894

2,536 665

4,891

n/a

n/a

n/a

n/a

5.848

n/a

863

n/a

n/a

7,319

n/a

n/a

1,631

361

524

n/a

n/a

1,784

n/a

4.618

6,200

3,780

n/a

n/a

3,380

6,521

1,307

649.064

887

44,826

OFL

GOA Halibut Discard Mortality Rates (DMRs)

Area	Gear	Operation	2025 DMRs (specified)	2026/27 DMRs (recommended)
	Pot	All	32%	29%♭
	Hook-and-line	СР	10%	12%
	Hook-and-line	CV	19%	15%°
GOA	Non-pelagic trawl	Mothership / CP	76%	79%
	Non-pelagic trawl	CV	74%	62%
	Non-pelagic trawl	CV-Rockfish Prog	56% ^b	53%♭
All	Pelagic trawl	All	100%*	100%*

Thanks to Michael Fey (AKFIN) and other Halibut DMR Working Group members: Jen Cahalan (PSMFC), Jennifer Ferdinand (NMFS AFSC), Krista Melani (NMFS AKRO), Jason Gasper (NMFS AKRO), Ian Stewart (IPHC)

C5 Bering Sea Aleutian Islands Groundfish September Plan Team Report

Steve Barbeaux, Kalei Shotwell, Diana Stram, Cindy Tribuzio

October 2025, Presentation to the SSC

BSAI Presentation Summary

Topic	Presenter	Туре	Recommendations
EBS Bottom Trawl Survey	Duane Stevenson	Survey Update	No
EBS Pollock	Jim lanelli	Full Model	Yes, data refinement
BSAI Skates	Cindy Tribuzio	Full Model	Yes, 4 models
Greenland Turbot	Meaghan Bryan	Full Model	Yes, 4 models
Yellowfin Sole	Ingrid Spies and Meaghan Bryan	Full Model	Yes, 2 models
BSAI Northern Rockfish	Paul Spencer	Full Model	Yes, 2 models
BSAI Atka Mackerel ESP	Jane Sullivan	Full ESP Draft	Yes, see in September
Catch Report	All Authors	Not Applicable	No
Proposed Specifications	Steve Whitney		

BSAI Documentation Summary

Assessment	BSAI stocks for 2025 (November)
Operational Full	EBS Pollock, Yellowfin Sole, Greenland Turbot, Northern Rockfish, BSAI Skates
Operational Update	Pacific cod (Eastern Bering Sea and Aleutian Islands (AI))
Harvest Projection (reviewed in Sept/Oct)	None this year
Catch Report	Pollock (AI), Pollock (Bogoslof), Arrowtooth flounder, Kamchatka flounder, Northern rock sole, Flathead sole, Alaska plaice, Other flatfish, Pacific ocean perch, Rougheye & blackspotted rockfish, Shortraker rockfish, Other rockfish, Atka mackerel, Sharks, Octopus

Eastern Bering Sea Trawl Survey

- EBS 350/350, NBS 137/144 stations sampled (no NBS pres)
- 124,170 lengths, 6,532 otoliths, 4,408 stomachs collected
- Water temps slightly warmer than 2024, cold pool area smaller, no CTD or O2 data
- Biomass similar to last year for most fish species, lots of small Pacific cod

Common name	Year	Biomass (mt)	Population (x1,000)
welleve pelleek	2024	5,476,067	10,307,932
walleye pollock	2025	3,825,362 (-30%)	6,575,619 (-36%)
Davidia and	2024	635,840	436,530
Pacific cod	2025	570,986 (-10%)	516,669 (18%)
velleudin eele	2024	1,503,618	5,643,105
yellowfin sole	2025	1,548,142 (3%)	5,772,913 (2%)
nantham valuada	2024	1,439,739	7,417,950
northern rock sole	2025	1,490,955 (4%)	7,807,291 (5%)
flathead sole	2024	723,996	2,311,092
	2025	714,106 (-1%)	2,278,779 (-1%)
D	2024	10,370	48,918
Bering flounder	2025	12,315 (19%)	72,799 (49%)
Alaska wlata	2024	349,579	634,036
Alaska plaice	2025	333,810 (-5%)	586,292 (-8%)
	2024	582,469	926,415
arrowtooth flounder	2025	491,918 (-16%)	669,870 (-28%)
V	2024	28,362	69,129
Kamchatka flounder	2025	33,231 (17%)	73,058 (6%)
Pacific halibut	2024	125,145	65,136
Pacific nalibut	2025	133,705 (7%)	80,524 (24%)
Alaska skata	2024	407,133	102,931
Alaska skate	2025	399,887 (-2%)	113,374 (10%)
Danifia annun manuk	2024	50,664	71,612
Pacific ocean perch	2025	11,741 (-77%)	12,420 (-83%)

Thanks to Duane Stevenson

Eastern Bering Sea walleye pollock stock assessment

Preface

PUBLISHED 2025-09-16 22:08

Preface

This document is organized into two complementary parts.

Part 1 is a *discussion paper* that was prepared for and presented to the Center for Independent Experts (CIE) review panel in **May 2025**. It summarizes the assessment methods, data sources, and key uncertainties considered at that time.

Part 2 provides *subsequent updates* and reports on **developments since May 2025**, including research and model refinements in support of the North Pacific Fishery Management Council (NPFMC) review process in September 2025.

Together, these two parts provide a transparent record of the assessment's evolution over the course of 2025. Readers may wish to begin with Part 1 for context and then move to Part 2 for the most current results.

Contents

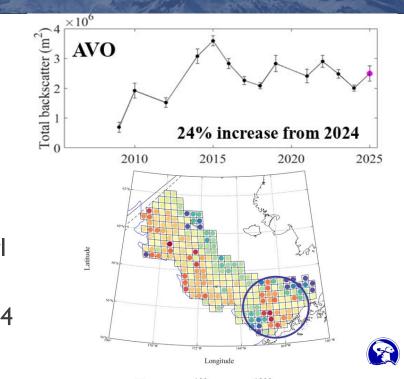
- Part 1: Discussion paper presented to CIE review
- Part 2: Assessment research developments for NPFMC Review

EBS Pollock CIE Review

Themes and responses/ status

Theme	Lead Reviewer	Recommendation	Status
RTMB transition	All	Port model from ADMB to RTMB	▼ Completed
Russian catch	All	Incorporate or test Russian removals	On progress
Selectivity complexity	Nielsen	Estimate process variances via marginal likelihood	On progress
Natural mortality	Jiao	Explore M variation and CEATTLE integration	On progress
Growth & WAA	Jiao	Model cohort and temperature effects on WAA	Deferred
Data weighting	Cieri	Test Dirichlet-multinomial likelihoods	Available but deferred
Retrospective	Nielsen	Use Mohn's rho over shorter periods	Available

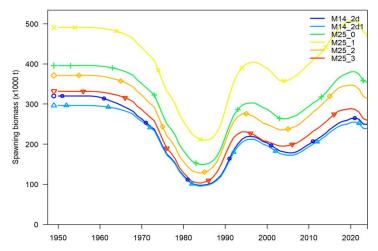
EBS Pollock Discussions & Recommendations:

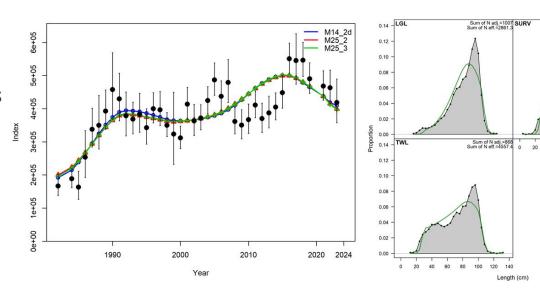

- Extensive presentation on CIE review and planned updates
- Plan Team recommended using the acoustic-survey design-based estimates and uncertainty for the 2025 assessment, along with other data refinements and conditions (e.g., new FT-NIR generated age data)
- Plan Team interested in seeing the exploratory model using Russian catches in September 2026 and encouraged ongoing work transitioning from ADMB to RTMB or other platforms (such as Rceattle or Sporc)

Acoustic Vessel-of-Opportunity (AVO)

- Annual index of midwater pollock backscatter from bottom trawl (BT) survey acoustics
- No concurrent midwater trawls during the BT survey
- Provides information on midwater pollock in years when the acoustic-trawl survey is not conducted (odd years)
- 2025 estimate is 24% increase from 2024

Thanks to Nathan Lauffenburger


 $s_A: 38 \, kHz \, (m^2 \cdot nmi^{-2})$


- Not converged (hitting bounds, high standard errors)
- Relying on limited age data, some procedural errors in model

Model Explorations

Model		Outcome
14_2d	2023 accepted	Not Converged
14_2d1	Updated SS3 version	Not Converged
25_0	Fixed growth	Not Converged
25_I	25_0 + catchability = 0.836	Not Converged
25_2	25_I + selectivity	Converged
25_3	25_2 + catchability = I	Converged

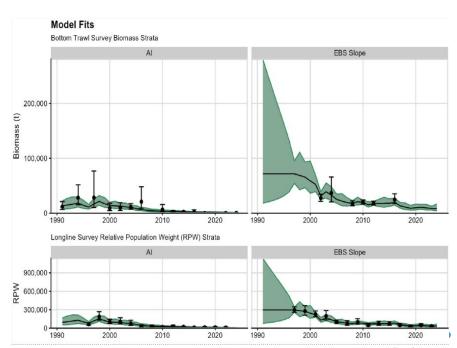
- Concerns over Tier 3 models
 - Small amount of age data, all from > 10 years ago
 - Converged models do not fix the poor fix to the survey index
 - Poor fits to the length composition data

- Tier 4 and 5 alternatives:
 - Limited capacity for age data for Tier 3 but sufficient for Tier 4 and life history parameters supported by data
 - Species well sampled by the EBS shelf survey
- Length-based models for the future
 - Lot of length data available and many length-based models available for future exploration

Discussion:

- The Team discussed lack of large skates (>110 cm) in the length data potentially due to large fish moving out of the survey area or outswimming the survey net
- The Team also discussed poor fits to the survey and a potential shift in catchability from 2008-2015
- Recommendations for November:
 - Current model I4_2d with author discretion on updating data
 - Model 25_2 or Model 25_3 with fixed selectivity to ensure convergence
 - Tier 4 model with sensitivities if available (priority)
 - Tier 5 model (priority)

Greenland Turbot (Model explorations)



- Data updates (d1-d5 series)
 - Survey length data updates
 - Linear interpolation of AFSC longline RPNs
- Bottom trawl input sample size using surveyISS (Model 25.1)
- Fixing the stock-recruitment autocorrelation parameter (Model 25.2)
- Analytical solution for survey catchability (Model 25.3)
- Exploration of model start year (Models 25.4 and 25.5)

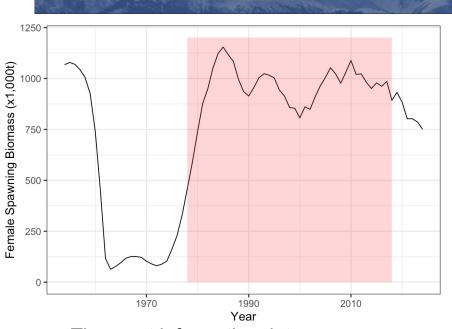
Greenland Turbot (Apportionment)

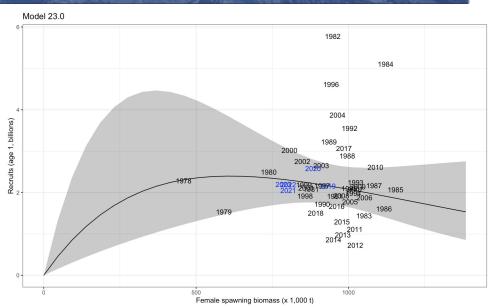
- REMA model for apportionment
 - Consistent with other stocks to use multiple surveys
 - Averages BS/Al split over previous 10 years
 - For 2025 II.2% to the Aleutian Islands from I5.7% in 2024

Thanks to Meaghan Bryan

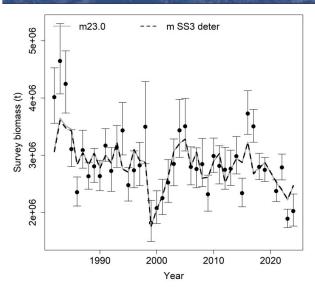
Greenland Turbot

- Discussion & Recommendations:
 - The Team recommended the new REMA method be used for spatial apportionment between the Aleutian Islands and Bering Sea as it was the best available science based on the limitation of slope survey data and noted it was an improvement to the previous approach.
 - The Team highlighted and supported the author's intent to bring forward a tier 5 alternative model for comparison to the tier 3 model in November.
 - The Team agreed with the author's recommendation to bring forward models 16.4c, 25.3, and 25.4 in November

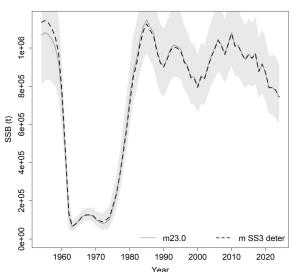

Yellowfin Sole Proposed Changes


- Proposed changes: Shift from Tier 1 → Tier 3
 - Unreliable recruitment curve, uninformed at the origin
- Bridge bespoke ADMB model → SS3
 - Consistency with other flatfish assessments and easier transition to FIMS
- Remove temperature covariate, retain survey start date for q
 - Eliminate double use of temperature data
- Change survey inputs sample size to bootstrap values from SurveyISS
 - Consistency with other assessment models

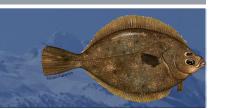
Yellowfin Sole (Shift from Tier 1 → Tier 3)



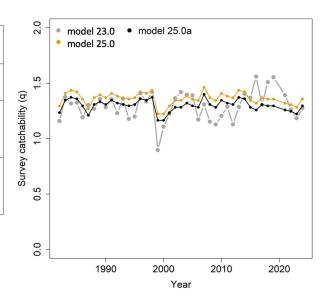
- Curve uninformed at the origin
- Unreliable PDF of F_{MSY}



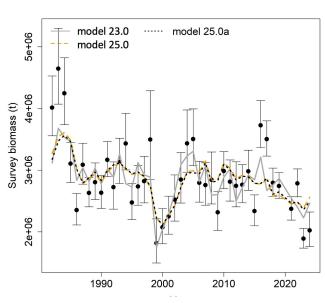
Yellowfin Sole (Bridging to SS3)



 Model fits are nearly identical between ADMB and SS3 deterministic model for all data components.



- Differences in results are minimal
- Initial difference due to how models incorporate mortality to initial numbers at age


Yellowfin Sole (Model alternatives)

Model	Description
23.0	Accepted ADMB model
25.0	Estimation version with SS3; q linked to survey start date
25.0a	25.0 W/ ISS survey age comp

 Differences in catchability due to dropping temperature covariate for SS3 models

 Results in difference in fit to survey index

Yellowfin Sole

- Discussion & Recommendations:
 - Team recommended presenting Models 23.0 and 25.0a in November
 - Model 25.0a is preferred because it:
 - Moves to Tier 3 as pdf of F_{MSY} not reliable
 - Transitions to SS3 as requested by the SSC
 - Removes redundant use of temperature covariates
 - Updates data weighting to best available science

Northern Rockfish

Model Explorations:

- Model 25_1: Same as the base (Model 21) but removing survey selectivity constraint and not fixing survey selectivity for ages > 30
- Model 25_2: Split-sex model with same priors and constraints as the base
- Model 25_3: Split-sex version of Model 25_1
- Models 25_4-6: is the base with increasing the CV on the AI survey prior,
 5-year time blocks on AI catchability, 5-year time blocks on AI survey selectivity
- Models 25_7-9: same as Models 25_4-6 but starts with the split-sex Model 25_2

Northern Rockfish

- Discussion & Recommendations:
 - The Team discussed time-varying catchability noting potential mechanisms (e.g., environment, patchy distribution) but did not recommend additional research at this time or to bring forward any time-varying catchability models in November
 - O The Team noted split-sex models were broadly similar to combined-sex models, but that reference points and management outcomes were not presented and could be informative
- Recommendations for November:
 - Base (Model 21) and the split-sex model (Model 25_2)

BSAI Atka Mackerel ESP

- Draft Full Ecosystem and Socioeconomic Profile (ESP):
 - Presentation on the advancement of the BSAI Atka mackerel ESP
 - Emphasizes spatial structuring across the eastern, central, and western Aleutians to evaluate regionally explicit hypotheses about recruitment variability, growth, and fishery performance.
 - Provides a foundation for process-informed, climate-resilient assessments, with a full ESP planned for 2026.

BSAI Atka Mackerel ESP

- Discussion & Recommendations:
 - Team discussed the proposed indicator suite and timeline.
 - Recommended considering pre- and post-warming contexts in the Aleutians and consider including Steller sea lion pup counts and killer whale predation as potential indicators.
 - Noted that the weekly TAC utilization indicator must be interpreted cautiously, since fleet behavior often reflects multi-species targeting rather than ecosystem conditions.
 - Authors should explore the use of MOM6 indices as empirical data are scarce for the Al.
 - The authors were asked to present the draft ESP in September 2026

Catch Report Table

(stocks without 2025 assessment)

Stock	Catch	EBS Shelf Survey	Biomass Relative
Stock	(as of 9/14/25)	Biomass (t)	to Last Year
Al Pollock*	4,125	NA	NA
Bogoslof Pollock*	334	NA	NA
Arrowtooth Flounder	7,495	491,918	-16%
Kamchatka Flounder	4,297	33,231	17%
Northern Rock Sole	28,543	1,490,955	4%
Flathead Sole	6,665	714,106	-1%
Alaska Plaice	6,206	333,810	-5%
Other Flatfish	5,113	NA	NA
Pacific Ocean Perch*	24,465	NA	NA
Blackspotted/Rougheye	481	NA	NA
Shortraker*	216	NA	NA
Other Rockfish	819	NA	NA
Atka Mackerel*	70,909	NA	NA
Sharks*	154	NA	NA
Octopus*	280	NA	NA

Catch Report

- No catches above OFL
- Two stocks above TAC, well below ABC
- 2025 survey biomass estimates of the EBS shelf are similar to last year's estimates
- Please see <u>full assessments</u> for more details

Proposed Specifications Team recommended (1 of 2)

Table 1. Plan Team Proposed recommended OFL, ABC for Groundfish in the Bering Sea and Aleutian Islands (metric tons) for 2026-2027

9/14/2025

			2024		Catch as of		2025		Catch as of	Plan Tea	m Proposed 20	26/2027
Species	Area	OFL	ABC	TAC	12/31/2024	OFL	ABC	TAC	9/14/2025	OFL	ABC	TAC
	EBS	3,162,000	2,313,000	1,313,580	1,311,261	2,957,000	2,417,000	1,389,000	1,216,540	2,496,000	2,036,000	
Pollock	Al	51,516	42,654	5,420	4,999	55,728	46,051	5,000	4,125	56,231	46,437	
	Bogoslof	115,146	86,360	250	23	77,354	58,015	250	334	77,354	58,015	
Pacific cod	BS	200,995	167,952	147,753	142,783	183,509	153,617	133,602	117,149	169,243	141,520	
i dellie cod	Al	18,416	12,431	8,080	4,169	16,782	13,376	8,694	3,355	16,273	12,973	
	BSAI/GOA	55,084	47,146	n/a	6,333	58,532	47,605	n/a	3,957	57,797	47,008	
Sablefish	BS	n/a	11,450	7,996	4,591	n/a	13,203	8,496	3,055	n/a	13,037	
Cubiciisii	Al	n/a	13,100	8,440	1,742	n/a	11,566	7,940	902	n/a	11,421	
Yellowfin sole	BSAI	305,298	265,913	195,000	91,192	299,247	262,557	152,000	58,785	305,039	267,639	
	BSAI	3,705	3,188	3,188	768	2,598	1,678	1,678	561	2,059	1,328	
Greenland turbot	BS	n/a	2,687	2,687	462	n/a	1,415	1,415	381	n/a	1,120	
	Al	n/a	501	501	305	n/a	263	263	180	n/a	208	
Arrowtooth flounder	BSAI	103,280	87,690	14,000	10,660	104,428	88,683	14,000	7,495	102,472	87,035	
Kamchatka flounder	BSAI	8,850	7,498	7,498	5,172	8,019	6,800	6,800	4,297	7,790	6,606	
Northern rock sole	BSAI	197,828	122,091	66,000	29,855	165,444	157,487	67,000	28,543	166,220	158,225	
Flathead sole	BSAI	81,605	67,289	35,500	13,176	101,621	83,807	27,000	6,665	106,283	87,700	
Alaska plaice	BSAI	42,695	35,494	21,752	10,399	34,576	28,745	15,903	6,206	33,965	28,230	
Other flatfish	BSAI	22,919	17,189	4,500	3,197	26,083	19,562	4,500	5,113	26,083	19,562	

Proposed Specifications Team recommended (2 of 2)

Pacific Ocean perch	BSAI	49,010	41,096	37,626	37,095	44,594	37,375	33,458	24,465	43,084	36,578	
	BS	n/a	11,636	11,636	11,746	n/a	10,121	10,121	7,315	n/a	9,905	
	EAI	n/a	7,969	7,969	7,792	n/a	6,278	6,278	3,305	n/a	6,144	
	CAI	n/a	5,521	5,521	5,250	n/a	5,559	5,559	3,453	n/a	5,441	
	WAI	n/a	15,970	12,500	12,308	n/a	15,417	11,500	10,391	n/a	16,058	
Northern rockfish	BSAI	23,556	19,274	16,752	8,809	22,848	18,694	12,000	7,093	22,284	18,232	
Blackspotted/Rougheye	BSAI	761	569	569	639	838	706	706	481	902	766	
	EBS/EAI	n/a	388	388	201	n/a	408	408	169	n/a	441	
Rockfish	CAI/WAI	n/a	181	181	439	n/a	298	298	312	n/a	325	
Shortraker rockfish	BSAI	706	530	530	177	631	473	473	216	631	473	
	BSAI	1,680	1,260	1,260	1,361	1,406	1,054	1,054	819	1,406	1,054	
Other rockfish	BS	n/a	880	880	788	n/a	639	639	403	n/a	639	
	Al	n/a	380	380	573	n/a	415	415	416	n/a	415	
	BSAI	111,684	95,358	72,987	72,172	122,622	103,247	82,000	70,909	107,889	92,361	
Atka mackerel	EAI/BS	n/a	41,723	32,260	31,764	n/a	46,650	39,000	33,231	n/a	41,731	
Atra macrerer	CAI	n/a	16,754	16,754	16,654	n/a	26,511	24,443	20,669	n/a	23,716	
	WAI	n/a	36,882	23,973	23,754	n/a	30,087	18,557	17,009	n/a	26,914	
Skates	BSAI	45,574	37,808	30,519	27,146	44,086	36,523	27,646	16,608	43,285	35,833	
Sharks	BSAI	689	450	400	174	689	450	400	154	689	450	
Octopuses	BSAI	6,080	4,560	400	246	6,080	4,560	400	280	6,080	4,560	
Total	BSAI	4,609,077	3,476,801	2,000,000	1,781,805	4,334,715	3,588,066	2,000,000	1,584,149	3,849,059	3,189,555	

Sources: 2024 OFLs, ABCs, and TACs and 2025 OFLs and ABCs are from harvest specifications adopted by the Council in December 2023 and December 2024 respectively; 2024 catches through December 31, and 2025 catches through September 14, 2025 from AKR Catch Accounting.

BSAI Halibut Discard Mortality Rates (DMRs)

Area	Gear	Operation	2025 DMRs (specified)	2026/27 DMRs (recommended)	
	Pot	All	21% 5	19%♭	
	Hook-and-line	CP	9%	10%	
BSAI	Hook-and-line	CV	9%°	10%*	
	Non-pelagic trawl	Mothership / CP	86%	86%	
	Non-pelagic trawl	CV	67%	62%	
All	Pelagic trawl	All	100%*	100%*	

Thanks to Michael Fey (AKFIN) and other Halibut DMR Working Group members: Jen Cahalan (PSMFC), Jennifer Ferdinand (NMFS AFSC), Krista Melani (NMFS AKRO), Jason Gasper (NMFS AKRO), Ian Stewart (IPHC)

BSAI Plan Team Contacts:

Steve.Barbeaux@noaa.gov Kalei.Shotwell@noaa.gov Diana.Stram@noaa.gov Cindy.Tribuzio@noaa.gov