Eastern Bering Sea pollock stock assessment

Jim Ianelli, Taina Honkalehto, Sophia Wassermann, Abigail McCarthy, Sarah Stienessen, Carey McGilliard, Elizabeth Siddon

Alaska Fisheries Science Center

This information is distributed solely for the purpose of pre-dissemination peer review under applicable information quality guidelines. It has not been formally disseminated by the National Marine Fisheries Service and should not be construed to represent any agency determination or policy.

Fishing conditions

Pollock CPUE (by weight)

Catch rates by sector

Fishery data on pollock "condition"

• Relative [figure 26 updated in SAFE chapter]

Fishery data on pollock "condition"

Fishery weight-at-age

					Fisl	hery							Sur	vey						F	Pred	icteo	k				
	1970																	0.38 0.37 0.4 0.38 0.41	0.49 0.51 0.49 0.54 0.52	0.61 0.63 0.64 0.64 0.68	0.72 0.75 0.76 0.78 0.78	0.83 0.86 0.87 0.9 0.93	0.94 0.97 0.98 1 1.03	1.05 1.07 1.08 1.11 1.14	1.14 1.16 1.17 1.2 1.23		
	1980									0.18 0.21 0.22	0.34 0.34	0.41 0.54 0.43	0.78 0.77 0.6	1.05 1.02 0.93	1.19 1.45	1.4 1.41 1.27	1.57 1.67 1.47	0.36 0.41 0.36 0.41 0.38 0.38 0.36 0.35 0.41 0.42	0.65 0.7 0.5 0.6 0.55 0.48 0.52 0.52	0.77 0.8 0.79 0.84 0.7 0.81 0.76 0.67 0.66 0.62	0.93 0.92 1.09 0.94 1.04 0.91 0.99 0.89 0.85 0.75	1.02 1.07 1.2 1.23 1.14 1.25 1.08 1.11 1.06 0.94	1.16 1.35 1.34 1.42 1.33 1.41 1.2 1.28 1.15	1.29 1.42 1.48 1.52 1.6 1.49 1.53 1.36	1.34 1.38 1.53 1.55 1.65 1.69 1.75 1.6 1.67 1.43		
	1990	0.28	0.48	0.6	0.73	0.84	0.88	1.02	1.12	0.22 0.23 0.17 0.25 0.28 0.17 0.19 0.2 0.25	0.37 0.31 0.33 0.33 0.33 0.28 0.36 0.33 0.4	0.48 0.41 0.42 0.45 0.37 0.48 0.57 0.46	0.72 0.61 0.55 0.49 0.55 0.54 0.65 0.57	0.91 0.77 0.72 0.59 0.66 0.61 0.78 0.76	1.21 1.02 0.85 0.81 0.84 0.73 0.86 0.77	1.72 1.3 1.01 0.91 1.03 1.03 1.02 0.93	1.44 1.65 1.26 1.04 1 0.98 1.1 1.01	0.42 0.38 0.42 0.38 0.33 0.33 0.34 0.33 0.43	0.54 0.51 0.47 0.49 0.46 0.47 0.46 0.46	0.62 0.63 0.6 0.54 0.57 0.61 0.6 0.59	0.74 0.69 0.7 0.68 0.63 0.72 0.74 0.73	0.88 0.8 0.78 0.77 0.76 0.77 0.85 0.87	1.06 0.94 0.89 0.85 0.85 0.9 0.89 0.97	1.26 1.12 1.02 0.96 0.93 0.98 1.01 1.01	1.47 1.31 1.19 1.08 1.03 1.05 1.09 1.12		
Year	2000	0.49 0.39 0.34 0.33 0.37 0.4 0.35 0.33	0.61 0.65 0.51 0.45 0.48 0.59 0.51 0.53 0.5	0.65 0.73 0.73 0.68 0.56 0.62 0.64 0.63 0.67	0.77 0.75 0.84 0.75 0.62 0.7 0.73 0.73	0.93 0.73 0.85 0.95 0.89 0.78 0.73 0.73 0.78	1.06 1.07 0.96 1.07 1.04 0.89 0.81 0.99	1.2 1.38 1.23 1.03 1.1 1.17 1.04 0.97 1.06	1.24 1.32 1.3 1.1 1.24 1.25 1.25 1.01 1.13	0.25 0.21 0.17 0.15 0.19 0.21 0.22 0.22 0.22	0.41 0.4 0.36 0.3 0.28 0.33 0.35 0.4 0.36	0.46 0.54 0.48 0.49 0.38 0.45 0.39 0.47 0.62	0.55 0.67 0.58 0.53 0.52 0.53 0.52 0.52 0.73	0.65 0.62 0.76 0.67 0.81 0.62 0.72 0.72	0.78 1.05 0.79 0.82 0.78 0.89 0.88 0.76 1	0.99 1.17 0.91 0.98 1 1.08 1.04 0.92 0.98	1.11 1.28 1.02 0.97 1.29 1.01 1.03 1.03	0.49 0.41 0.33 0.38 0.44 0.41 0.4 0.38 0.38	0.61 0.61 0.51 0.42 0.48 0.53 0.51 0.51 0.53	0.65 0.74 0.72 0.6 0.53 0.58 0.64 0.62 0.67	0.78 0.84 0.81 0.71 0.63 0.69 0.75 0.75	0.92 0.97 0.93 0.92 0.81 0.73 0.79 0.9	1.04 1.03 1 0.96 1.03 1.01 0.91 0.83 0.94	1.14 1.16 1.13 1.08 1.06 1.12 1.1 1 0.97	1.17 1.24 1.24 1.2 1.17 1.14 1.21 1.19 1.14	And	omaly 0.4 0.2 0.0 –0.2
	2010	0.38 0.49 0.41 0.35 0.31 0.35 0.33 0.34	0.51 0.55 0.58 0.51 0.45 0.51 0.52 0.53	0.67 0.65 0.64 0.64 0.61 0.64 0.65 0.7	0.8 0.77 0.76 0.74 0.76 0.78 0.77 0.88	0.91 0.86 0.89 0.88 0.86 0.96 0.9 1	1.03 0.95 0.92 0.96 1.1 1.05 1.13	1.11 1.09 1.04 1.06 1.06 1.19 1.12 1.4	1.1 1.2 1.18 1.07 1.12 1.27 1.29 1.48	 0.27 0.34 0.28 0.23 0.18 0.29 0.22 0.22	0.4 0.42 0.52 0.39 0.46 0.49 0.49	0.54 0.65 0.54 0.64 0.64 0.69	0.68 0.71 0.75 0.68 0.81 0.73 0.81	0.71 0.89 0.89 0.86 0.79 0.93 0.86 1.01	0.9 0.87 0.93 0.93 0.87 1.06 0.95 1.07	1.01 1.12 1.12 0.99 1.06 1 0.99 1.12	1.05 1.24 1.03 1.22 1.17 1.31 1.15 1.36	0.43 0.47 0.34 0.33 0.36 0.3 0.3 0.34	0.52 0.55 0.49 0.45 0.51 0.53 0.53	0.65 0.64 0.65 0.66 0.64 0.65 0.73	0.79 0.77 0.74 0.74 0.77 0.79 0.79 0.89	0.9 0.87 0.83 0.85 0.96 0.93 1.01	1.02 1.01 0.95 0.94 1.03 1.09 1.15	1.05 1.12 1.1 1.08 1.06 1.11 1.16 1.3	1.08 1.15 1.21 1.17 1.18 1.21 1.23 1.35		
	2010	0.38 0.29 0.27 0.29 0.32 0.41 0.41 0.38	0.49 0.51 0.41 0.45 0.45 0.46 0.53 0.5 0.47	0.67 0.64 0.56 0.62 0.57 0.56 0.65 0.57	0.81 0.82 0.78 0.75 0.69 0.65 0.69 0.73	0.97 0.97 1.13 0.89 0.79 0.73 0.75 0.81	1.28 1.17 1.28 1.16 0.89 0.8 0.83 0.83	1.37 1.34 1.3 1.44 1.31 1.14 0.94 0.89 0.91	1.59 1.51 1.51 1.68 1.39 1.2 1.04 0.91 1.04	0.24 0.22 0.28 0.23 0.39 0.35 0.28 0.24 0.21	0.51 0.41 0.52 0.45 0.44 0.52 0.49 0.44	0.65 0.59 0.58 0.57 0.57 0.57 0.62 0.58	0.79 0.74 0.72 0.69 0.68 0.69 0.65 0.65	0.91 0.87 0.97 0.74 0.74 0.76 0.74	1.14 1.07 1.01 1.17 0.98 0.86 0.79 0.78 0.75	1.20 1.35 1.27 1.14 1.06 0.88 0.89 0.85	1.25 1.2 1.46 1.34 1.27 0.92 0.92 0.89	0.29 0.29 0.32 0.42 0.43 0.38 0.38 0.4	0.47 0.41 0.44 0.48 0.47 0.53 0.5 0.48	0.69 0.67 0.57 0.61 0.53 0.57 0.64 0.58	0.89 0.86 0.76 0.73 0.65 0.63 0.69 0.72	1.05 0.99 0.95 0.92 0.78 0.76 0.75 0.77	1.17 1.21 1.18 1.14 1.11 0.96 0.87 0.87 0.82	1.32 1.32 1.32 1.28 1.15 1.06 0.98 0.94	1.44 1.43 1.45 1.46 1.32 1.24 1.15 1.05		
	2020	0.42 0.39 0.39 0.44 0.49	0.57 0.52 0.48 0.51 0.48	0.64 0.63 0.57 0.57 0.52	0.76 0.72 0.69 0.72 0.61	0.88 0.76 0.84 0.8	0.96 0.96 0.84 0.88 0.92	1.01 1.01 1.01 0.98 0.96	1.06 1.04 1.13 0.97 1.05	0.29 0.28 0.35 0.32 0.33	0.51 0.44 0.45 0.42 0.48	0.64 0.59 0.58 0.53 0.58	0.71 0.67 0.64 0.62	0.82 0.77 0.76 0.78 0.7	0.9 0.85 0.85 0.92 0.95	0.9 0.96 0.94 0.98 1.01	0.99 1.23 0.97 1.02 1.04	0.47 0.4 0.39 0.45 0.48 0.4 0.38 0.38	0.58 0.52 0.46 0.5 0.47 0.67 0.53 0.51	0.65 0.64 0.59 0.58 0.53 0.66 0.8	0.75 0.71 0.7 0.7 0.61 0.72 0.79 0.92	0.89 0.81 0.77 0.81 0.73 0.79 0.85 0.92	0.93 0.95 0.87 0.88 0.84 0.91 0.91 0.97	0.98 0.98 1 0.97 0.9 1.01 1.02 1.03	1.08 1.03 1.03 1.1 0.99 1.06 1.12 1.13		
			4		6		8		10		4		6 Aç	ge	8		10		4		6		8		10		

	Age																									
		4		6		8		10			4		6		8		10			4		6		8		10
																								\bigcirc		
																			0.38	0.51	0.65	0.92	0.92	Q.97	1.03	1.13
																			0.38	0.53	0.8	0.79	0.85	0.91	1.02	1.12
					010					0.33	0.48	0.58	0.62	0.7	0.95	1.01	1.04		0.4	0.67	0.66	0.72	0.79	0.91	1.01	1.06
	0.49	0.48	0.52	0.61	0.8	0.92	0.96	1.05		0.32	0.42	0.53	0.64	0.78	0.92	0.98	1.02		0.48	0.47	0.53	0.61	0.73	0.84	0.9	0.99
	0.39	0.40	0.57	0.09	0.76	0.88	0.98	0.97		0.20	0.44	0.59	0.7	0.77	0.85	0.90	0.97		0.39	0.40	0.59	0.7	0.81	0.88	0.97	1.00
2020	0.39	0.52	0.63	0.72	0.8	0.96	1.01	1.04		0.28	0.44	0.50	0.7	0.77	0.95	0.06	1 22	C	0.4	0.52	0.64	0.71	0.81	0.95	0.98	1.03
2020	0.42	0.57	0.64	0.76	0.88	0.96	1.01	1.06		0.29	0.51	0.64	0.71	0.82	0.9	0.9	0.99		0.47	0.58	0.65	0.75	0.89	0.93	0.98	1.08
	0.38	0.47	0.57	0.73	0.81	0.85	0.91	1.04		0.21	0.44	0.58	0.66	0.76	0.75	0.85	0.89		0.41	0.48	0.58	0.72	0.77	0.82	0.94	1.05
	0.41	0.5	0.65	0.69	0.75	0.83	0.89	0.91		0.24	0.49	0.62	0.65	0.74	0.78	0.89	0.92		0.4	0.5	0.64	0.69	0.75	0.87	0.98	1.1
	0.41	0.53	0.56	0.65	0.73	0.8	0.94	1.04		0.28	0.52	0.57	0.69	0.76	0.79	0.88	0.92		0.38	0.53	0.57	0.63	0.76	0.87	1.06	1.24
	0.4	0.46	0.57	0.69	0.79	0.89	1.14	1.2		0.35	0.44	0.57	0.68	0.74	0.86	1.06	1.27		0.43	0.47	0.53	0.65	0.78	0.96	1.15	1.32
	0.32	0.45	0.62	0.75	0.89	1.16	1.31	1.39		0.39	0.45	0.57	0.69	0.74	0.98	1.14	1.34		0.42	0.48	0.61	0.73	0.92	1.11	1.28	1.46
	0.29	0.44	0.56	0.78	1.13	1.28	1.44	1.68		0.23	0.52	0.58	0.72	0.97	1.17	1.27	1.46		0.32	0.44	0.57	0.76	0.95	1.14	1.32	1.48
	0.27	0.41	0.64	0.82	0.97	1.17	1.3	1.51		0.28	0.41	0.59	0.74	0.87	1.01	1.35	1.2		0.29	0.41	0.6	0.8	0.99	1.18	1.32	1.43
al-age	0.29	0.51	0.67	0.81	0.97	1.22	1.34	1.51		0.22	0.51	0.65	0.79	0.91	1.07	1.16	1.25		0.29	0.47	0.67	0.86	1.06	1.21	1.32	1.44
$at a \sigma^{2010} -$	0.38	0.49	0.67	0.91	1.11	1.28	1.37	1.59		0.24	0.5	0.66	0.8	1.1	1.14	1.26	1.38		0.31	0.5	0.69	0.89	1.05	1.17	1.3	1.44
weigin-	0.34	0.53	0.7	0.88	1	1.13	1.4	1.48		0.24	0.51	0.69	0.81	1.01	1.07	1.12	1.36		0.34	0.53	0.73	0.89	1.01	1.15	1.3	1.3
woight	0.33	0.51	0.65	0.78	0.90	1.05	1.19	1.27		0.29	0.49	0.64	0.73	0.86	0.95	0.99	1.51		0.30	0.51	0.65	0.79	0.90	1.03	1.16	1.2
INTELY	0.31	0.45	0.61	0.76	0.86	0.96	1.06	1.12		0.18	0.46	0.6	0.68	0.79	1.06	1.06	1.17		0.33	0.45	0.6	0.77	0.85	0.94	1.06	1.18
Fichary	0.35	0.51	0.64	0.74	0.88	0.96	1.06	1.07		0.23	0.39	0.54	0.7	0.86	0.93	0.99	1.22		0.34	0.49	0.66	0.74	0.83	0.95	1.08	1.17
	0.41	0.58	0.64	0.76	0.89	0.92	1.04	1.18		0.28	0.52	0.6	0.75	0.89	0.93	1.12	1.03		0.4	0.57	0.65	0.74	0.87	1	1.1	1.2

Fishery catch-at-age

Survey work

FV *Alaska Knight* 2010-present 12th year FV Northwest Explorer 2023 1st year

Bottom-trawl survey

• Abundance at length

Survey abundance-at-age

• Eastern Bering Sea pollock

Vertical

E. Bering Sea bottom trawl survey

Acoustic survey-NOAA Ship

New survey this summer

Acoustic-trawl survey (ATS)

7,500 ·

Acoustic trawl index ^{2,200}

0 -

Opportunistic acoustic survey results

AVO index

Longitude

2005

2010

-180-175-170-165-16080-175-170-165-16080-175-170-165-160 'O index AV

Year

2015

2020

2025

27.7

10 12 14

EBS Pollock

Stock status

What about productivity estimates?

• Tier 1 versus Tier 3?

Female spawning biomass (kt)

...and estimation period length

Specified variability about the SRR

 σ_R

Summary

Aspects of SRR suggest Tier 3 more appropriate

- No fault of data extent, rather historical stock and recruitment estimates uninformative
- Tier 1
 - Relies on priors ($F_{MSY} \sim F_{35\%}$)
 - Production aspect near origin on limited observations
 - Risk aversion basis depends on uncertainty (pdf)
 - Tier 2 has same issues related to SRR

Tier 3 more appropriate?

- No fault of data extent, rather historical stock and recruitment estimates uninformative
- Tier 1
 - Relies on priors ($F_{MSY} \sim F_{35\%}$)
 - Production aspect near origin on limited observations
 - Risk aversion basis depends on uncertainty (pdf)
- Tier 2
 - Still relies on SRR / steepness at origin

Tier 1 version

	As estimated	or <i>specified</i>	As estimated or <i>recommendee</i>				
	<i>last</i> ye	ar for:	this year for:				
Quantity	2024	2025	2025	2026			
M (natural mortality rate, ages $3+$)	0.3	0.3	0.3	0.3			
Tier	1a	1a	1a	1a			
Projected total (age $3+$) biomass (t)	10,184,000 t	9,437,000 t	8,526,000 t	8,075,000 t			
Projected female spawning biomass (t)	3,518,000 t	3,255,000 t	3,118,000 t	3,342,000 t			
B_0	6,728,000 t	6,728,000 t	5,975,000 t	5,975,000 t			
B_{msy}	2,689,000 t	2,689,000 t	2,310,000 t	2,310,000 t			
F _{OFL}	0.422	0.422	0.523	0.523			
$maxF_{ABC}$	0.379	0.379	0.443	0.443			
F_{ABC}	0.33	0.33	0.402	0.402			
OFL	3,162,000 t	3,449,000 t	4,383,000 t	3,785,000 t			
maxABC	2,837,000 t	3,095,000 t	3,715,000 t	3,209,000 t			
ABC	2,313,000 t	2,401,000 t	2,417,000 t	2,036,000 t			
Status	2022	2023	2023	2024			
Overfishing	No	n/a	No	n/a			
Overfished	n/a	No	n/a	No			
Approaching overfished	n/a	No	n/a	No			

Tier 3 version

	As estimated	or specified	As estimated o	r recommended			
	<i>last</i> ye	ar for:	this year for:				
Quantity	2024	2025	2025	2026			
M (natural mortality rate, ages 3+)	0.3	0.3	0.3	0.3			
Tier	1a	1a	3a	3a			
Projected total (age $3+$) biomass (t)	10,184,000 t	9,437,000 t	8,526,000 t	8,075,000 t			
Projected female spawning biomass (t)	3,518,000 t	3,255,000 t	3,118,000 t	3,342,000 t			
B_0	6,728,000 t	6,728,000 t	5,902,000 t	5,902,000 t			
B _{msy}	2,689,000 t	2,689,000 t	2,066,000 t	2,066,000 t			
F _{OFL}	0.422	0.422	0.513	0.513			
$maxF_{ABC}$	0.379	0.379	0.394	0.394			
F _{ABC}	0.33	0.33	0.394	0.394			
OFL	3,162,000 t	3,449,000 t	2,957,000 t	2,496,000 t			
maxABC	2,837,000 t	3,095,000 t	2,417,000 t	2,036,000 t			
ABC	2,313,000 t	2,401,000 t	2,417,000 t	2,036,000 t			
Status	2022	2023	2023	2024			
Overfishing	No	n/a	No	n/a			
Overfished	n/a	No	n/a	No			
Approaching overfished	n/a	No	n/a	No			

Thanks

CIE review coming 1st half of 2025

