
# GEAR INNOVATION INITIATIVE







## FISHING EFFECTS MODEL

- Fishing Effects Model is a decision-support tool. It employs spatially-explicit Vessel Monitoring System (VMS), Observer data, gear dimensional and contact information and literaturebased habitat impact information to:
- Quantify and visualize fishing activity.
- Estimate fishing footprint and bottom contact.
- Estimate cumulative impacts of fishing on Essential Fish Habitat.

February 2024 - B1 Fishing Gear Research

#### FISHING EFFECTS MODEL – NEXT



Habitat Recovery

Corals

#### **Updates - Underway**

- Fishing
  - Catch-in-Areas
  - Footprint & Bottom Contact
- Habitat Effects
  - Species
  - Life stage
  - Stock area
  - Fishery

#### Upgrades - Future

- Scenario Exploration
  - Response to changes regs, environment, fish, markets
- Gear Fishery Species Interactions
  - Catch/ Discard Performance
  - Unobserved Fishing Mortality



## FISHING EFFECTS MODEL

- Fishing Effects Model is a decision-support tool. It employs spatially-explicit Vessel Monitoring System (VMS), Observer data, gear dimensional and contact information and literaturebased habitat impact information to:
- Quantify and visualize fishing activity.
- Estimate fishing footprint and bottom contact.
- Estimate cumulative impacts of fishing on Essential Fish Habitat.

D8 EFH Fishing Effects Discussion Paper October 2022

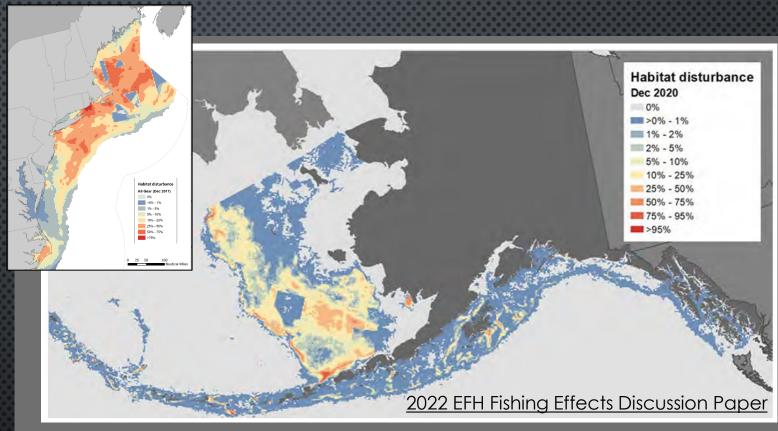

#### APPENDIX 2 GEAR PARAMETERS

Table A2.1. The gear parameter table provides the metrics used in the Fishing Effects model for each gear type, listed by fishery. Vessel types are either catcher vessels (CVs) or catcher-processors (CPs), and the definitions for gear type and target species and other species caught and retained can be found <a href="here">here</a>. Contact adjustments are reported as either a range (low to high) or single metric if they were the same.

| Fishery                     | Vessel<br>type | Area | Gear | Target Sp. | Other Sp.     | Vessel<br>Length (ft) | Season | Depth<br>Range<br>(fath.) | Nominal<br>Width<br>(m) | Contact<br>Adjustment |
|-----------------------------|----------------|------|------|------------|---------------|-----------------------|--------|---------------------------|-------------------------|-----------------------|
| BS Pollock Pelagic<br>Trawl | CV             | BS   | PTR  | P          | B, all others | 125-151               | В      | ≥90                       | 115                     | 0.2 - 0.6             |
| BS Pollock Pelagic<br>Trawl | CV             | BS   | PTR  | P          | B, all others | 125-151               | В      | 60-90                     | 109                     | 0.2 - 0.6             |
| BS Pollock Pelagic<br>Trawl | CV             | BS   | PTR  | P          | B, all others | 125-151               | В      | <60                       | 96                      | 0.2 - 0.6             |
| BS Pollock Pelagic<br>Trawl | CV             | BS   | PTR  | P          | B, all others | 151-300               | A      | ≥90                       | 132                     | 0.2 - 0.6             |
| BS Pollock Pelagic<br>Trawl | CV             | BS   | PTR  | P          | B, all others | 151-300               | A      | 60-90                     | 124                     | 0.2 - 0.6             |
| BS Pollock Pelagic<br>Trawl | CV             | BS   | PTR  | P          | B, all others | 151-300               | A      | <60                       | 106                     | 0.2 - 0.6             |
| BS Pollock Pelagic<br>Trawl | CV             | BS   | PTR  | P          | B, all others | 151-300               | В      | ≥90                       | 163                     | 0.2 - 0.6             |
| BS Pollock Pelagic Trawl    | CV             | BS   | PTR  | P          | B, all others | 151-300               | В      | 60-90                     | 154                     | 0.2 - 0.6             |
| BS Pollock Pelagic<br>Trawl | CV             | BS   | PTR  | P          | B, all others | 151-300               | В      | <60                       | 137                     | 0.2 - 0.6             |
| BS Pollock Pelagic<br>Trawl | CP             | BS   | PTR  | P          | B, all others | all                   | A      | ≥90                       | 142                     | 0.7 - 0.9             |
| BS Pollock Pelagic<br>Trawl | CP             | BS   | PTR  | P          | B, all others | all                   | A      | 60-90                     | 133                     | 0.7 - 0.9             |
| BS Pollock Pelagic<br>Trawl | CP             | BS   | PTR  | P          | B, all others | all                   | A      | <60                       | 114                     | 0.7 - 0.9             |
| BS Pollock Pelagic<br>Trawl | CP             | BS   | PTR  | P          | B, all others | all                   | В      | ≥90                       | 175                     | 0.8 - 1               |
| BS Pollock Pelagic<br>Trawl | СР             | BS   | PTR  | Р          | B, all others | all                   | В      | 60-90                     | 166                     | 0.8 - 1               |
| BS Pollock Pelagic<br>Trawl | СР             | BS   | PTR  | P          | B, all others | all                   | В      | <60                       | 147                     | 0.8 - 1               |

## FISHING EFFECTS MODEL

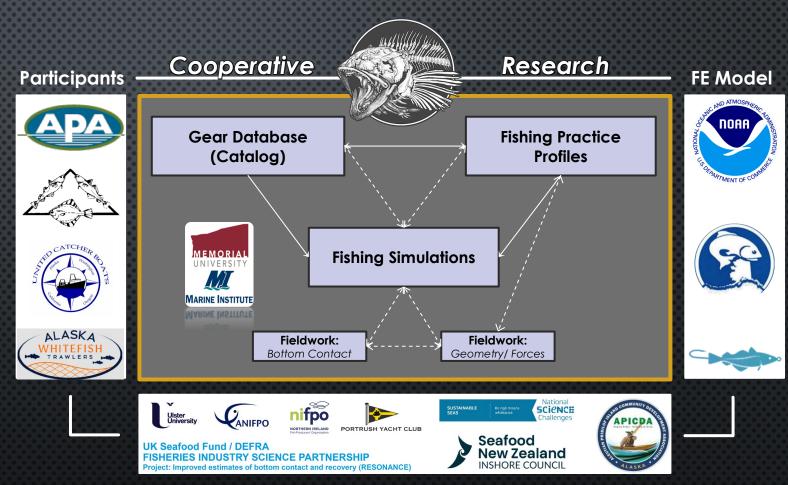
- Fishing Effects Model is a decision-support tool. It employs spatially-explicit Vessel Monitoring System (VMS), Observer data, gear dimensional and contact information and literaturebased habitat impact information to:
- Quantify and visualize fishing activity.
- Estimate fishing footprint and bottom contact.
- Estimate cumulative impacts of fishing on Essential Fish Habitat.



Funding: NMFS ARO Hab Div., NPFMC, NEFMC, Atkinson Foundation (Cornell Univ.)
Science Publications: Grabowski et al., 2014, Smeltz et al., 2019, Smeltz 2023
Student Research: Alaska Education Tax Credit Program (APA, AKSC, APICDA)
Management Peer Reviews: NEFMC SSC (4+), NPFMC SSC (4), more coming ...
Management Publications: NEFMC. 2011, 2020, Simpson et al., 2017,
Zaleski et al., 2024, Bachman et al., 2025, and more....

# - GEAR INNOVATION INITIATIVE (GII) -

#### **Purpose**


# Improve Understanding of Pollock Gear and Fishery → Foundation for Innovation

- What gear is currently used in BSAI and GOA pollock fisheries?
- How is this gear implemented in pollock fishing?
- When, where and how much is this gear fished?
- When, where and how much is this gear in contact with the bottom?

#### Improve Fisheries Management Decision Support → Fishing Effects Model

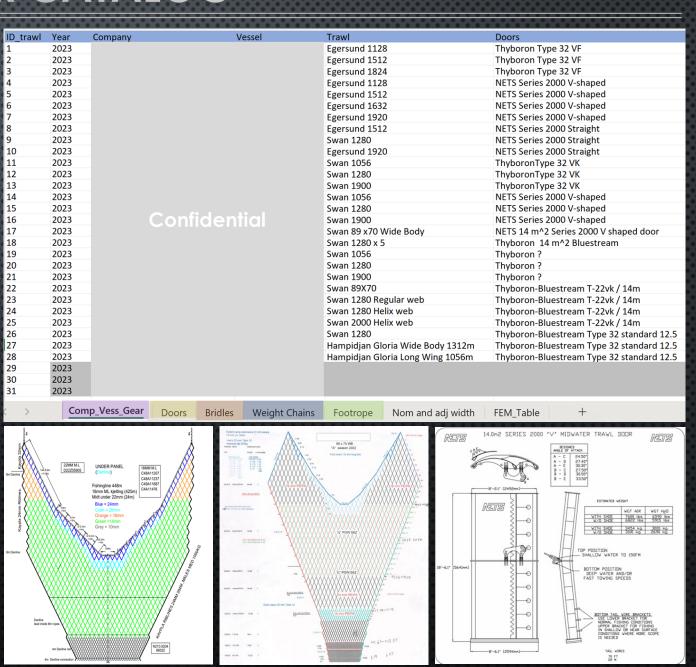
- Gear Tables
- Fishing footprint
- Bottom contact
- Benthic habitat disturbance
- Non-habitat species interactions (e.g., crab).

#### **Study Framework**



**Partners** 

## - GEAR CATALOG -

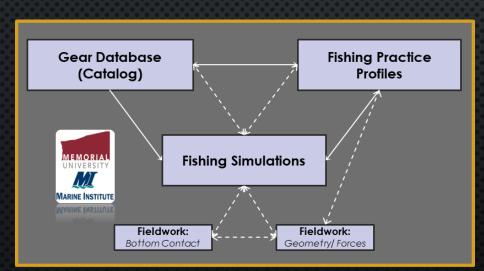

#### **Gear Catalog Structure:**

Each trawl is assigned a unique ID used to reference its components.

- Design Including individual net plan.
- Materials (e.g., footrope chain dimensions)
- Configuration (e.g., doors, bridle length, and set back)
- Modification (e.g., salmon excluders)
- Catalog Structure Guidance



Information Quality Control



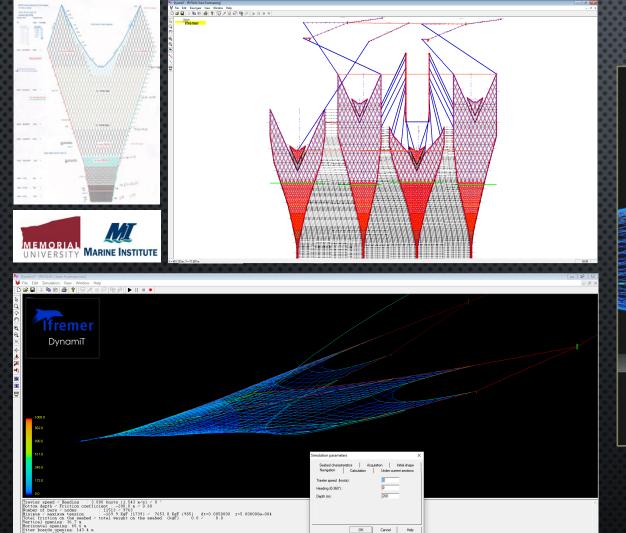

# - FISHING PRACTICE PROFILES -

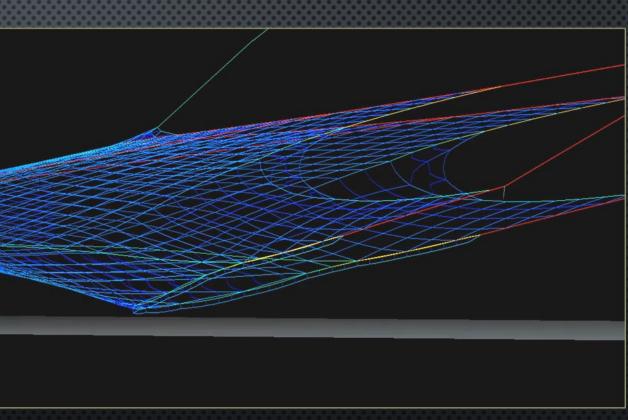
**Fishing Practice Profile:** Set of operatorcontrolled parameters/\*targets that influence the vertical location, and geometry of the trawl.

- Speed (k)
- Warp length (m, fa)
- Wing weight (kg)
- Bridle length (m, fa)

- Setback (m, fa)
- Door roll (deg)
- Headline Scope (ratio) \*Headline depth (m, fa)
  - \*Vert. opening (m, fa)
  - \*Wing spread (m, fa)



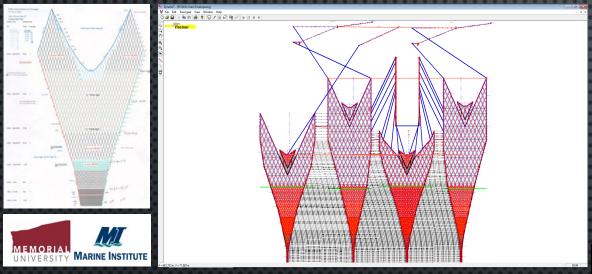


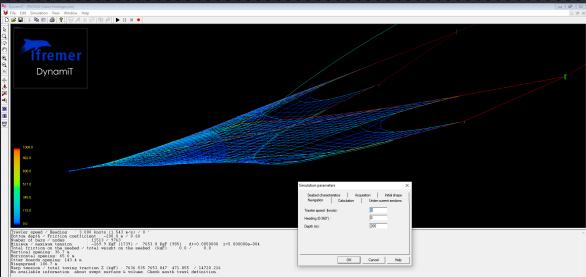



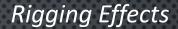

# - FISHING GEAR MODELS AND SIMULATIONS -

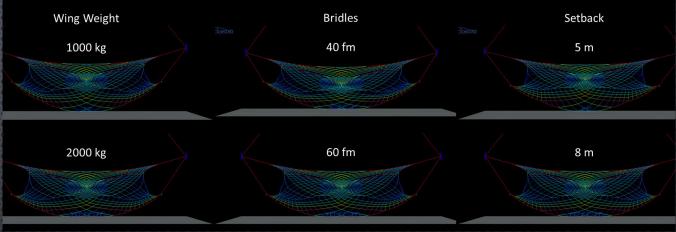
#### Gear Plan + Cataloged Specifications + Fishing Scenario

→ Geometry, Horizontal / Vertical Forces, Seabed Contact

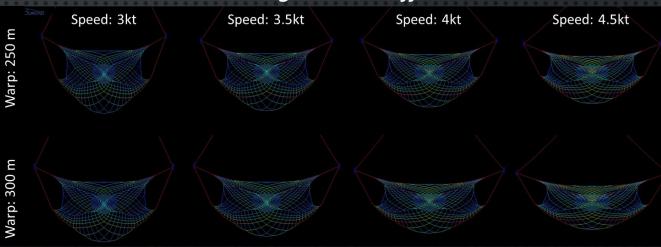




# - FISHING GEAR MODELS AND SIMULATIONS -


#### Gear Plan + Cataloged Specifications + Fishing Scenario

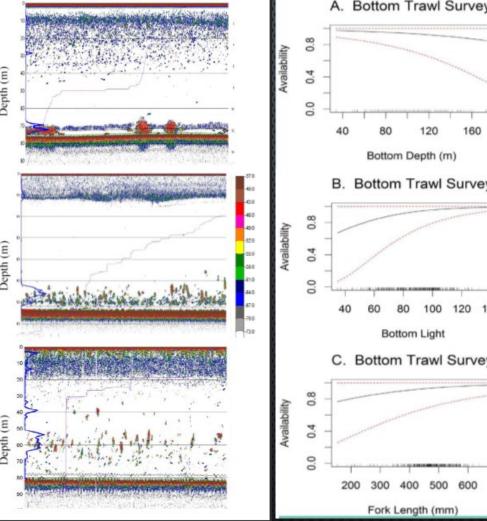
→ Geometry, Horizontal / Vertical Forces, Seabed Contact





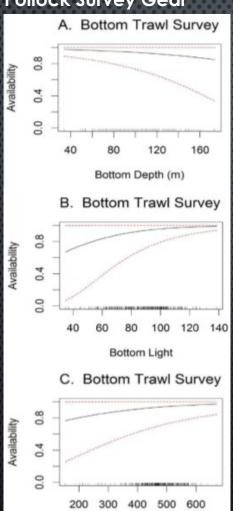






#### Fishing Practice Effects



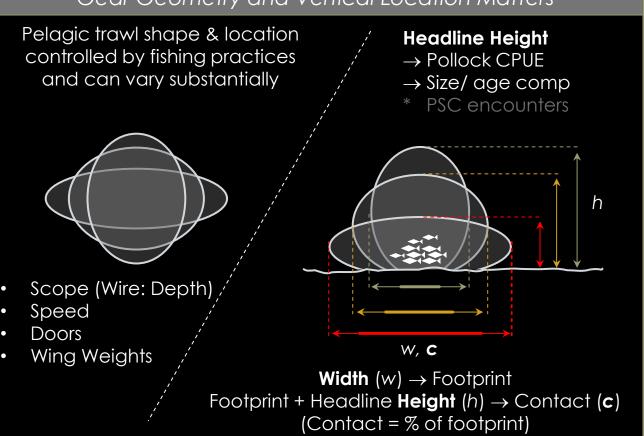
Simulations generate expected geometry and forces under realistic rigging and fishing practice iterations


## - TRAWL GEOMETRY -

#### Pollock Vert. Distribution

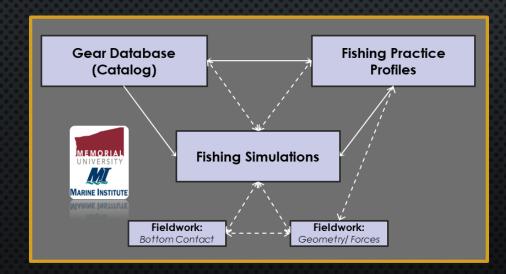


North Pacific Research Board Proj. #1507 Kotwicki et al., 2013. CJFAS, 70: 208-219. Kotwicki et al., 2015. ICES J. Mar. Sci. 72: 1425-1439.


#### **Pollock Survey Gear**



Pollock availability to the survey bottom trawl (3m height)


- High availability (80 -100%) in shelf waters (40 180m),
- Higher availability for large than small pollock,
- Availability decreases and becomes more variable in deeper waters and under low-light conditions

#### Gear Geometry and Vertical Location Matters



# - FIELD SAMPLING: TRAWL GEOMETRY -

- Gear specifications and haul-level fishing practice data
- Realized trawl geometry and forces (net mensuration sensors).
- Construct matching simulation
- Compare simulated and realized trawl geometry and forces



# EXAMPLE Vessel Name A Season

|                   | Vessel Name                                                    |                                                       |                              |  |  |  |  |  |  |
|-------------------|----------------------------------------------------------------|-------------------------------------------------------|------------------------------|--|--|--|--|--|--|
| A Season          |                                                                |                                                       |                              |  |  |  |  |  |  |
|                   | Trawl in use: □ Swan 1056 □ Egersund 1512 □ Śwan 1280 □ Other: |                                                       |                              |  |  |  |  |  |  |
|                   | Doors in use: ☑ Thyboron type 22 VK ☐ Other:                   |                                                       |                              |  |  |  |  |  |  |
| Digg              |                                                                |                                                       |                              |  |  |  |  |  |  |
|                   | Rigging:                                                       |                                                       |                              |  |  |  |  |  |  |
|                   | e length: 35                                                   | fathoms/meters/feet                                   |                              |  |  |  |  |  |  |
| Setb              | ack length: 15                                                 | fathoms/meters(feet                                   |                              |  |  |  |  |  |  |
| Wing              | g Weights per side: 2000                                       | <u>(bs</u> /kg                                        |                              |  |  |  |  |  |  |
| Haul Information: |                                                                |                                                       |                              |  |  |  |  |  |  |
|                   | Number:<br>h to logbook #) 120                                 | 03/04/25<br>Date:                                     |                              |  |  |  |  |  |  |
|                   | Start time: 1230                                               | Start Lat/Lon (dd.dddd): 54.4300 N 167.0977 W         |                              |  |  |  |  |  |  |
|                   | Bottom Depth: 48 fathoms                                       | Vessel Speed: 3.5 knots                               | Main wire payout: 90 fathoms |  |  |  |  |  |  |
|                   | Headrope Height: 38 fathoms                                    | Door Spread: 95 fathoms                               |                              |  |  |  |  |  |  |
| ar l              | Vertical Opening: 10 fathoms                                   | Fishing circle width <u>IF AVAILABLE</u> : 75 fathoms |                              |  |  |  |  |  |  |
| Start of haul     | Seastate: 5 (on Beaufort Scale)                                | Notes:                                                |                              |  |  |  |  |  |  |
| art               | Tension on winches IF AVAILABLE:                               | towing into/with/cross current                        |                              |  |  |  |  |  |  |
| \ \text{\sigma}   | 10100 kgf                                                      |                                                       |                              |  |  |  |  |  |  |
|                   | 3                                                              |                                                       |                              |  |  |  |  |  |  |
|                   |                                                                |                                                       |                              |  |  |  |  |  |  |
|                   | Time of entry: 1300                                            |                                                       |                              |  |  |  |  |  |  |
| 1 1               | Bottom Depth: 50 fathoms                                       | Vessel Speed: 3.4 knots                               | Main wire payout: 93 fathoms |  |  |  |  |  |  |
|                   | Headrope Height: 39 fathoms                                    | Door Spread: 93 fathoms                               | Main wife payout. 33 fathoms |  |  |  |  |  |  |
| In tow entry      | Vertical Opening: 11 fathoms                                   | Fishing circle width IF AVAILABLE: 73 fathoms         |                              |  |  |  |  |  |  |
|                   | Seastate: 4                                                    | Notes:                                                |                              |  |  |  |  |  |  |
| OW 6              | Tension on winches IF AVAILABLE:                               |                                                       |                              |  |  |  |  |  |  |
| ln t              | 10120 kgf                                                      |                                                       |                              |  |  |  |  |  |  |
|                   | 10120 kg.                                                      |                                                       |                              |  |  |  |  |  |  |
|                   |                                                                |                                                       |                              |  |  |  |  |  |  |
|                   |                                                                |                                                       |                              |  |  |  |  |  |  |
| 0.0               |                                                                |                                                       |                              |  |  |  |  |  |  |



## GEAR IMPACTS & INNOVATION PARTNERS

# SUSTAINABLE SEAS: FISHERIES INSHORE NEW ZEALAND (FINZ)

SUSTAINABLE SEAS Ko ngā moana whakauka





Seafood New Zealand INSHORE COUNCIL

Quantifying and reducing interactions between commercial fishing gear and the seabed in New Zealand

Wilson O, Restrepo F, Bowman B, Lawson C, Smith S, Burch R & Harris B

May 202



Repor

Wilson, O.L., Restrepo, F., Bowman, B., Lawson, C., Smith, S., Burch, R., and Harris, B.P (2023). Quantifying and reducing interactions between commercial fishing gear and the seabed in New Zealand, March 2023.

# FISHING INDUSTRY SCIENCE PARTNERSHIP (FISP)



Department for Environment Food & Rural Affairs





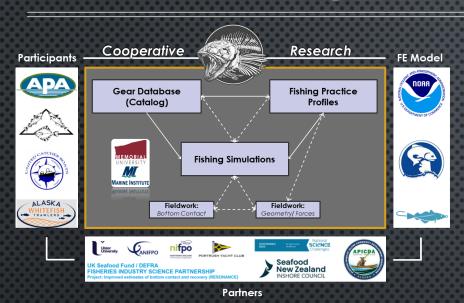


FISHERIES INDUSTRY SCIENCE PARTNERSHIP (FISP) FINAL PROJECT REPORT

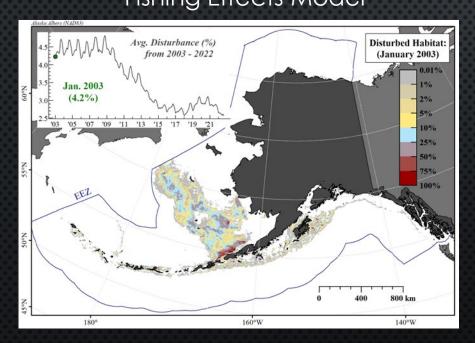
Project Title: Improved estimates of bottom contact and recovery (RESONANCE) Project Code: Project 35540 | FISP10B-2-2



McGonigle, C., Syms, C., Harris B.P., Sethi, S.A., Restrepo, F., Dooly, G., Weir, A., Hunter, W.R., O'Loughlin, R., Collier, B., McBride, B., McBride, M. (2025). Improved estimates of bottom contact and recovery. Final report FISP Project 335540, FISP10B-2-2.

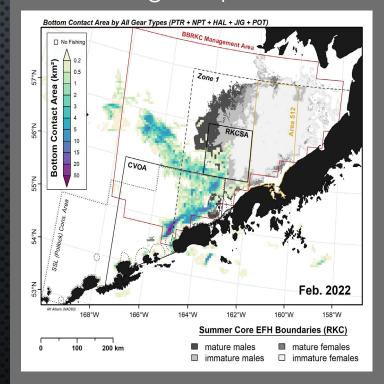




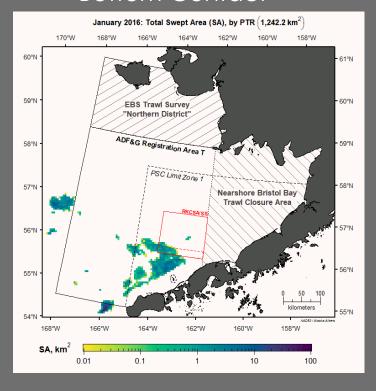





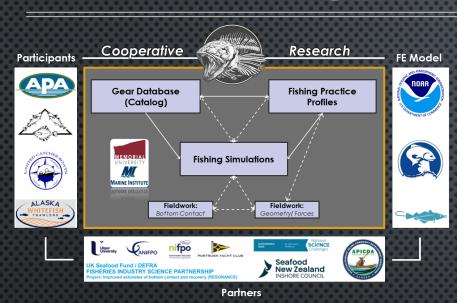

# GEAR INNOVATION INITIATIVE



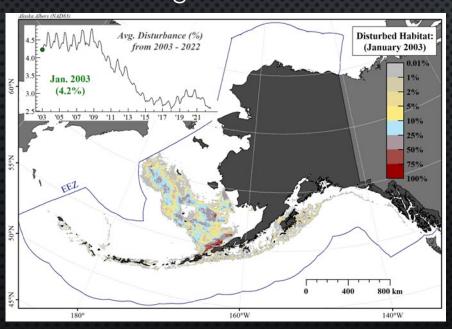

### Fishing Effects Model




- Building a Foundation for Gear Innovation
   3 Fleets, 119 Vessels, 266 Trawls, 129 Door sets
- Improving Precision and Accuracy of the NPFMC's Fishing Effects Decision Support Tool


#### Fishing Footprint




#### **Bottom Contact**



# GEAR INNOVATION INITIATIVE



#### Fishing Effects Model



- Building a Foundation for Gear Innovation
   3 Fleets, 119 Vessels, 266 Trawls, 129 Door sets
- Improving Precision and Accuracy of the NPFMC's Fishing Effects Decision Support Tool

#### Trends by (Management) Area

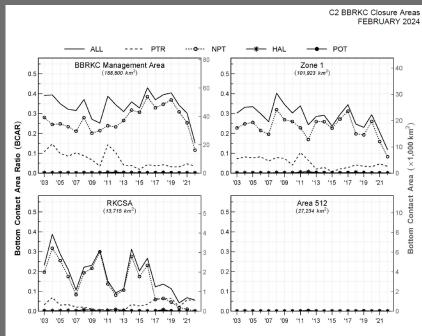



Figure 5-19 Estimated yearly bottom contact by gear type within the BBRKC stock boundary, Zone 1, RKCSA/SS, Area 512 from 2003-2022. Note the difference in y-axis scale between "Bottom Contact Area Ratio" on the left y-axis and "Bottom Contact Area" on the right y-axis. (Source: APU FAST Lab)

# Thank You

Dr. S. Smeltz F. Restrepo

Dr. S. Sethi

\*J. Olson

M. Eagleton

Dr. S. Lewis

Dr. C. Rose

Dr. J. Pirtle

\*A. Nimick

\*S. Zagorski

\*B. King

\*K. Yahnke

NPFMC SSC

**AKRO** Habitat

NEFMC SSC

**NEFMC** Habitat PT

... and MANY more!

\* Student











