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wo-stage sampling designs are advantageous for
population metrics that cannot be measured directly

Measure
SPECIMEN DATA carapace widths
(subsample 1) for crab haul
subsample

Subsample 2 (“chela data”): crab subsampled from
"= the first subsample for chela maturity measurements

Measure chela

(Cl'LELA D‘?T‘;} heights from s =] » x
subsample specimen data SRENAR : : : . .
beamnls = ﬂﬁﬁ (or otoliths in fish for age), with sampling targets




wo-stage sampling designs are advantageous for
population metrics that cannot be measured directly

Many approaches do not account for uneven sampling
or spatiotemporal variability in this step
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Metric of interest (maturity-at-size, age-at-length) is
calculated using subsample 2 data then applied to
subsample 1 via age-length-keys, models, etc.

Measure chela ¢
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Why is this important for Bering Sea Chionoecetes?

* Chionoecetes undergo a terminal molt to maturity

e Size-at-maturity (SAM) is an important metric for
biological fitness and management

* There is evidence that SAM is declining for both
snow crab and Tanner crab in the Bering Sea

* Chionoecetes maturity dynamics can exhibit
spatiotemporal variation

* Reliable and unbiased maturity estimates are
needed that account for spatiotemporal and
sampling uncertainty




Goals

1. Evaluate the AFSC Shellfish Assessment
Program’s legacy workflow for processing
Chionoecetes maturity data from the EBS
bottom trawl survey

2. If necessary, update the workflow to
reflect potential spatiotemporal variation
in maturity and sampling uncertainty




Maturity data workflow

Calculate and plot yearly
ogives, size at 50%
maturity, and mature
biomass/abundance

Apply maturity models
to specimen data to
estimate maturity at size
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Chela data nuances
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Snow crab
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Chela data nuances

- Uneven sampling
across space

- Evidence of
spatiotemporal
variability in maturity
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Tanner crab
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Establishing maturity cutlines
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CHELA DATA
(subsample 2)

snow cutline

3.01

N
o
\

e
[
i

Cutline (In(chela height))

i
=
f

2.21

3.21

£
o

Cutline (In(chela height))

o
o
:

h
o
A

R-squared =1
p < 0.001

4.0
tanner cutline

4.2 4.4

4.6

R-squared = 0.99
p <0.001

2.41

4.4

46 4.8
Bin (In(carapace width))




1989 1990

Applying maturity cutlines
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Measure chela
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CHELA DATA

e
(subsample 2) f ’ CHELA_HEIGHT DATASET LN_CH LN_CW  CUTOFF MATURE

7 17 CRABPACK 2.833213 4.369448 2.780418
24 CRABPACK 3.178054 4.615121 3.069470

14 CRABPACK 2.639057 4.219508 2.604001
@ 12 CRABPACK 2.484907 4.127134 2.495317

18 CRABPACK 2.890372 4.356709 2.765429

i 25 CRABPACK 3.218876 4.615121 3.069470
Generate In(CH) ~ Aﬁpllygu:“qe to . 31 CRABPACK 3.433987 4.762174 3.242490
In(CW) maturity —’ chela data 1o assign 24 CRABPACK 3.178054 4.615121 3.069470
cutline crab as mature or 31 CRABPACK 3.433987 4.770685 3.252504
immature 25 CRABPACK 3.218876 4.615121 3.069470

23 CRABPACK 3.135494 4, 584967 3.033923

17 CRABPACK 2.833213 4.317488 2.719283

29 CRABPACK 3.367296 4.682131 3.148314

23 CRABPACK 3.135494 4.564348 3.009733

19 CRABPACK 2.944439 4.369448 2.780418

13 CRABPACK 2.564949 4.189655 2.568877
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Fitting models to chela data to estimate probability
mature at size
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Fitting models to chela data to estimate probability
mature at size
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Legacy workflow



@ Fitting models to chela data to estimate probability
mature at size

1. Bin chela data into 10mm bins
2. Calculate proportion mature within each bin
using sampling factor

LEGACY
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Fitting models to chela data to estimate probability
mature at size
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(subsample 1)




Fitting models to chela data to estimate probability
mature at size
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Fitting models to chela data to estimate probability
mature at size

1. Bin chela data into 10mm bins

mod <- nls{PROP_MATURE ~ (1/(1 + exp(-a®*(SIZE_BIN - b)))),

2. Calculate proportion mature within each bin data - dat,
. . start = list{a = 0.10, b = 60.0),
using sampllng faCtOr na.action = na.omit, nls.control(maxiter = 5000))

3. Fit logistic models to proportion mature by
10mm bin, separate by year

YEAR SIZE_BIN A_EST A_SE BE_EST E_SE PROP_MATURE
19389 75 0.1069941 0.01022512 90.65492 1.014503 0.2232185
19389 85 0.1069941 0.01022512 90.65492 1.014503 0.2423178
19389 105 0.1069941 0.01022512 90.65492 1.014503 0.7893232
19389 85 0.1069941 0.01022512 90.65492 1.014503 0.2837318
19389 105 0.1069941 0.01022512 90.65492 1.014503 0.7515437
19389 75 0.1069941 0.01022512 90.65492 1.014503 0.1725031

LEGACY



Fitting models to chela data to estimate probability
mature at size

1. Bin chela data into 10mm bins

mod <- nls{PROP_MATURE ~ (1/(1 + exp(-a®*(SIZE_BIN - b)))),

2. Calculate proportion mature within each bin data - dat,
. . start = list{a = 0.10, b = 60.0),
using sampllng faCtOr na.action = na.omit, nls.control(maxiter = 5000))

3. Fit logistic models to proportion mature by
10mm bin, separate by year
* Does not account for uncertainty due to
bin sample sizes

YEAR SIZE_BIN A_EST A_SE BE_EST E_SE PROP_MATURE

. 1989 75 0.1069941 0.01022512 90.65492 1.014503  0.2232185

* Does not account for 5pat|0temp0ra| 1989 85 0.1069941 0.01022512 90.65492 1.014503  0.2423178
IT 1989 105 0.1069941 0.01022512 90.65492 1.014503  0.7893232
varlablllty 1989 85 0.1069941 0.01022512 90.65492 1.014503  0.2837318
1989 105 0.1069941 0.01022512 90.65492 1.014503  0.7515437

1989 75 0.1069941 0.01022512 90.65492 1.014503  0.1725031

LEGACY



Use models to predict probability maturity at size for all
specimen crab

YEAR SIZE_BIN A_EST A_SE BE_EST E_SE PROP_MATURE
1989 75 0.1069941 0.01022512 90.65492 1.014503 0.2232185
1989 85 0.1069941 0.01022512 90.65492 1.014503 0.2423178
1989 103 0.1069941 0.01022512 90.65492 1.014303 0.7893232
1989 85 0.1069941 0.01022512 90.65492 1.014503 0.2837318
1989 105 0.1069941 0.01022512 90.65492 1.014503 0.7515437
1989 753 0.1069941 0.01022512 90.653492 1.014503 0.1725031
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Calculate ogives, SAM, and
mature biomass/abundance

Calculate and plot yearly
ogives, size at 50%
maturity, and mature
biomass/abundance
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Snhow
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Legacy workflow

Proposed workflow

Uses 10mm bins

Uses 5mm bins
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Legacy workflow
Uses 10mm bins

Fits nls logistic models to chela data

Uses proportion mature as the response, calculated
using sampling factor

Assumes logistic maturity-at-size ogive shape

Does not account for uncertainty in maturity due to
uneven sampling across space, time, and size bins
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Robust to spatiotemporal gaps and variability in
maturity through random fields; uncertainty is also tied
to sample sizes via binomial structure and propagated
across all workflow steps
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Legacy workflow
Uses 10mm bins

Fits nls logistic models to chela data

Uses proportion mature as the response, calculated
using sampling factor

Assumes logistic maturity-at-size ogive shape

Does not account for uncertainty in maturity due to
uneven sampling across space, time, and size bins

Models not vetted through diagnostics(?)

SAM and ogives do not account for population size

Proposed workflow
Uses 5mm bins

Fits sdmTMB models to chela data

Uses binomial (mature/immature) as response

Flexibly models maturity-at-size via gam-style smooths

Robust to spatiotemporal gaps and variability in
maturity through random fields; uncertainty is also tied
to sample sizes via binomial structure and propagated
across all workflow steps

Models vetted through diagnostics

SAM and ogives are weighted by abundance to account
for population size



Proposed workflow



Steps 1-4 the same as the legacy workflow

Measure
SPECIMEN DATA carapace widths
(subsample 1) for crab haul

subsample

Measure chela /N
heights from
specimen data &
subsample

CHELA DATA
(subsample 2)

S S

Apply cutline to Fit models to chela
Generate [n(CH) ~ PRl
. hela data to assign maturity data to
In(CW) maturit —’ ¢ —.
@ cutline y crab as mature or estimate probability

immature mature at size

PROPOSED



Fitting models to chela data to estimate probability
mature at size

1. Bin chela data into 5mm bins
2. Fit sdmTMB models to binomial (mature/immature)

individual crab data by 5mm size bin
mod.1l <- sdmTMB(

* Binomial: bins with more samples carry more weight MATURE ~ s(SIZE_5MM, k = 10) + YEAR_F,
in the likelihood spatial = “on,
. " » . spatiotemporal = "iid",
e Spatial =“on”: captures persistent space-only mesh = mat.msh,
. .. family = binomial(),
deviations time - "YEAR" .
* Spatiotemporal = “iid”: captures year-specific spatial extra_time = xtra.time,
. . . “ ” anisotropy = TRUE,
deviations, though no correlation across years (“arl”) data = tanner.chela
* Uneven sampling accounted for in random fields )

e Anisotropy in spatial deviations
e Also spatial_varying() and time_varying() arguments
3. Evaluate various model parameterizations using sanity(), k-
fold cv, and DHARMa residuals

PROPOSED



Fitting models to chela data to estimate probability
mature at size S

*see document for more diagnostics

Snow sdmTMB_spatialvar_SIZE_k300 Tanner sdmTMB_spatialvar_SIZE_k200
1989 1990 1991 1992 1993 1994 1990 1991 1992 1993 1994 1995
1.0 1.0
0.5 0.5
0.0+ 0.0+
1995 1996 1997 1998 1999 2000 1996 1997 1998 1999 2000 2001
1.0 1.04
0.51 0.5
0.0+ 0.0+
2001 2002 2003 2004 2005 2006 2002 2003 2004 2005 2006 2007
1.04 1.04
0.5+ 0.5+
§ 0.0+ § 0.0+
ﬁ 2007 2009 2010 2011 2013 2015 o 2008 2009 2010 2011 2012 2014
€ 1.0 2 1.0
0.5 0.5
0.0 0.0+
2017 2018 2019 2021 2022 2023 2016 2017 2018 2019 2021 2022
1.0 1.0
0.5+ 0.5+
2024 2025 0.0 0.5 1.00.0 0.5 1.00.0 0.5 1.00.0 0.5 1.0 2023 2024 2025 0.0 0.5 1.00.0 0.5 1.00.0 0.5 1.0
1.0 1.0
Snow best model: 300 mesh Tanner best model: 200
0.5 knots, 13 size-smooth knots, 0.5 mesh knots, 10 size-smooth
ool spatially varying effect of ool knots, spatially varying
0.0 05 1.00.0 05 1.0 size 00 0.5 1.00.0 05 1.00.0 05 10 effect of size
expected expected

PROPOSED



Use models to predict probability maturity at size for all
specimen crab

Measure o R X
SPECIMEN DATA carapace widths &3 B Eo)
(subsample 1) for crab haul - i@ &

subsample

Measure chela /N
heights from
specimen data %&
subsample

CHELA DATA
(subsample 2)

Apply maturity models
to specimen data to
estimate maturity at size

for each specimen crab

S

Apply cutline to Fit models to chela
Generate [n(CH) ~ pply
In(CW) maturit q chela data to assign q maturity data to
@ cutline y @ crab as mature or estimate probability

immature mature at size

PROPOSED



Calculate ogives, SAM, and mature
biomass/abundance

Calculate and plot yearly
ogives, size at 50%
maturity, and mature
biomass/abundance

Apply maturity models
to specimen data to
estimate maturity at size

for each specimen crab

Measure
SPECIMEN DATA carapace widths
(subsample 1) for crab haul

subsample

Measure chela /N
heights from
specimen data &
subsample

CHELA DATA
(subsample 2)

Apply cutline to Fit models to chela
Generate [n(CH) ~ PPty ) ‘
In(CW) maturit q chela data to assign q maturity data to
@ cutline y crab as mature or estimate probability

immature mature at size

PROPOSED



Calculate ogives, SAM,
and mature
biomass/abundance

Ogives calculated by:

1.

Simulating 500 draws from each
model’s joint precision matrix
Computing the mean probability
mature at size across draws each
year, weighted by abundance at
size

Quantifying uncertainty by
summarizing ogive variation across
draws
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Calculate ogives, SAM,
and mature
biomass/abundance

Ogives calculated by:

1.

Simulating 500 draws from each
model’s joint precision matrix
Computing the mean probability
mature at size across draws each
year, weighted by abundance at
size

Quantifying uncertainty by
summarizing ogive variation across
draws

Tanner East
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Calculate ogives, SAM,
and mature
biomass/abundance

Ogives calculated by:

1.

Simulating 500 draws from each
model’s joint precision matrix
Computing the mean probability
mature at size across draws each
year, weighted by abundance at
size

Quantifying uncertainty by
summarizing ogive variation across
draws

Tanner West
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Snow
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and mature 22
. 1000+
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Tanner East
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2. Quantifying uncertainty as model
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Conclusions

Accounting for spatiotemporal variation and multiple uncertainty sources
in Chionoecetes maturity is essential for stock biology and reliable assessment inputs.

The updated workflow:

1. Removes the use of the sampling factor to model maturity in subsample two,
eliminating inappropriate commingling of subsamples.

2. Uses sdmTMB to account for spatiotemporal variation, handles data gaps from
uneven sampling, and enables future spatiotemporal maturity research.

3. Propagates uncertainty from model-based maturity estimates into downstream
outputs.

4. Flexibly models maturity-at-size, strengthening confidence that non-logistic ogives
represent biological signal via strong diagnostics
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