Using Side-by-Side Haul Data to Estimate NMFS EBS Survey Catchability for Tanner Crab

William Stockhausen (NOAA/AFSC) Scott Goodman, Madi Heller-Shipley (BSFRF) January 15, 2025

What's "catchability" & why is it important?

- Proportionality, C, between
 - "what's caught in a haul" or "what's caught in a survey" and
 - "what's on the bottom"
 - Size-specific stock assessments, like the Tanner crab assessment, need to estimate (or assume) size-specific catchability, *C*_z, to relate size-specific model population estimates to survey catch data
- For surveys, can think about 2 types:

haul-specificsurvey-specific (aggregated) $N_z^{haul} = C_z^{haul} \cdot N_z^{area \, swept}$ $N_z^{survey} = C_z^{survey} \cdot N_z^{population}$

• z: size (sex, maturity state, shell condition, etc.)

2013-2018 Catch Comparison Studies

- Compare survey catches from target gear with *unknown* catchability C_z^U to reference gear with *known* catchability C_z^K
- BSFRF-NMFS collaborative studies to estimate NMFS survey catchability for Tanner crab using paired hauls conducted "side-by-side" at several EBS survey stations each year
- Synoptic surveys across same study area allow estimates of NMFS survey-level catchability, *relative* to the BSFRF gear, within the study area (integrating across environmental effects)
- Side-by-side (SBS) paired hauls allow estimates of NMFS haullevel catchability, *relative* to the BSFRF gear (possibly estimating environmental effects)
- BSFRF gear assumed to catch all crab in area swept $C_z^K = C_z^{BSFRF} = 1$

so estimated NMFS catchability is absolute

OAA FISHERIES

The Gear

NMFS BSFRF Nephrops Trawl 83-112 Eastern Trawl -0-0-0 -C3-C3-C tickler chain -0-0-0-0 34.1m 27 m err. footrope net net mesh 10.2 cm 8.0 cm body 8.9 cm cod end 6.0 cm 3.2 cm liner 5.0 cm tow characteristics 10 – 14 m 15 – 19 m net spread 2 kts 3 kts tow speed Area swept ratio ~ 6x30 min 5 min duration tow separation 0.1 – 0.2 nmi

Survey/Study-level (Aggregated) Catchability

Does not utilize side-by-side nature of paired hauls

Survey/study area-level (aggregated) catch comparisons

 N_z^U : estimated study area (expanded) abundance(or mean CPUE) at size using target gear with **unknown** catchability (NMFS)

 N_z^K : estimated study area (expanded) abundance(or mean CPUE) at size using reference gear with **known** catchability (BSFRF)

Total numbers sampled/caught

Mean CPUE (and 90% CIs)

Model fitting

• survey-level catchability modeled as Tweedie-distributed function of size

$$R_{z,y} \sim Tw(\mu_{z,y}, \phi) \quad V(R_{z,y}) = \beta \cdot \mu_{z,y}^{\phi}$$

• with a log-link function
Model 1: $\ln(\mu_{z,y} = E[R_{z,y}]) = f_y(z) = \alpha + s(z)$
Model 2: $\ln(\mu_{z,y} = E[R_{z,y}]) = f_y(z) = \alpha + s(z) + t(z|y)$
Model 3: $\ln(\mu_{z,y} = E[R_{z,y}]) = f_y(z) = \alpha + s(z) + t_{RE}(z)$
 $t_{RE}(z,y) \sim N(0,\sigma)$

• SO
$$C_{z,y}^{NMFS SBS} = E[R_{z,y}] = \exp(f_y(z))$$

NOAA FISHERIES

Year effects: males

NOAA FISHERIES

Year effects: females

Residuals analysis: males

DHARMa residual

Ò S

8

0 0 S

0

000

0

0

0

1.0

0

0

0

*

0

0

0 9h

0

0

0.8

ം

0 00

0 0

0

1.0

0

0

Model predictions (rank transformed)

Expected

0.6

0.8

1.0

0.4

0.0

0.2

Model predictions (rank transformed)

0.4

0.6

0.0

0.2

Residuals analysis: females

Expected

NOAA FISHERIES

QQ plot residuals

KS test: p= 0.01874

Deviation significant

1.0

œ

Ö

9

ö

4

ö

0.2

0.0

0.0

0.2

0.4

0.6

Expected

Observed

Model predictions (rank transformed)

Statistical analysis

males

females

Model 3

Tweedie

p=1.723

-484.92

-417.40

3.51

0.71

20.79

80

104

quantity	Model 1	Model 2	Model 3	quantity	Model 1	Model 2
family	Tweedie p=1.436	Tweedie p=1.537	Tweedie p=1.467	family	Tweedie p=1.642	Tweedie p=1.753
AIC	-330.11	-412.35	-449.83	AIC	-397.91	-469.71
BIC	-302.83	-352.09	-356.90	BIC	-376.57	-418.41
deviance	13.42	9.13	6.10	deviance	7.36	4.55
adj. R ^2	0.66	0.75	0.82	adj. R ^2	0.55	0.69
df	5.75	14.86	22.29	df	5.70	14.81
N(params)	10	34	80	N(params)	10	34
N(obs)	169	169	169	N(obs)	104	104

Best "survey-level" catchability: Model 3 for both sexes

Haul-level Catchability

Utilizes side-by-side nature of paired haul Allows incorporation of environmental covariates

Potential environmental covariates

phi (f): measure of In-scale mean grain size

sorting (s): measure of In-scale grain size variance

depth (d)

bottom temperature (t)

NOAA FISHERIE

Potential haul-specific environmental covariates

NOAA FISHERIES

Potential environmental covariates

Haul-level catchability: approach 1(a)

$$\begin{split} n_{Z}^{U} &\sim \Pr(c_{Z}^{U} \cdot A_{S}^{U} \cdot \lambda_{Z}^{loc} = \bar{n}_{Z}^{U}, variance) \\ n_{Z}^{K} &\sim \Pr(c_{Z}^{K} \cdot A_{S}^{K} \cdot \lambda_{Z}^{loc} = \bar{n}_{Z}^{K}, variance) \\ n_{Z}^{T} &\sim \Pr((c_{Z}^{K} \cdot A_{S}^{K} + c_{Z}^{U} \cdot A_{S}^{U}) \cdot \lambda_{Z}^{loc} = \bar{n}_{Z}^{T}, variance) \\ \end{split}$$

$$\begin{split} A_{S}^{g} &: \text{area swept by gear } g \\ \lambda_{Z}^{loc} &: \text{mean density at } loc \\ \bar{n}_{Z}^{g} &: \text{expected num caught by gear } g \text{ at } loc \\ n_{Z}^{T} &\sim \Pr((c_{Z}^{K} \cdot A_{S}^{K} + c_{Z}^{U} \cdot A_{S}^{U}) \cdot \lambda_{Z}^{loc} = \bar{n}_{Z}^{T}, variance) \\ \end{split}$$

if crab are distributed completely randomly (i.e., Poisson-distributed), the n_z^U , conditional on n_z^T , is binomially-distributed as $n_z^U | n_z^T \sim Bin(n_z^T, p_z)$ where p_z is the expected proportion of the catch in the gear with unknown catchability and

$$p_{Z} = \frac{\bar{n}_{Z}^{U}}{\bar{n}_{Z}^{K}} = \frac{c_{Z}^{U} \cdot A_{S}^{U} \cdot \lambda_{Z}^{loc}}{c_{Z}^{U} \cdot A_{S}^{U} \cdot \lambda_{Z}^{loc} + c_{Z}^{K} \cdot A_{S}^{K} \cdot \lambda_{Z}^{loc}} = \frac{c_{Z}^{U}}{c_{Z}^{U} + c_{Z}^{K} \cdot \frac{A_{S}^{K}}{A_{S}^{U}}} = \frac{r_{Z}}{1 + r_{Z} \cdot \frac{A_{S}^{K}}{A_{S}^{U}}}$$
where $r_{Z} = \frac{c_{Z}^{U}}{c_{Z}^{K}} \equiv$ the selectivity ratio (= c_{Z}^{U} under the assumption $c_{Z,h}^{BSFRF} = 1$)

or, rearranging a bit: $\ln\left(\frac{p_z}{1-p_z}\right) = \ln\left(r_z \cdot \frac{A_s^O}{A_s^K}\right) = \ln(r_z) + \ln\left(\frac{A_s^O}{A_s^K}\right) = logit(p_z)$

Haul-level catchability: approach 1(b)

rearranging that last equation a bit

$$logit(p_z) = \ln\left(\frac{p_z}{1 - p_z}\right) = ln\left(r_z \cdot \frac{A_s^U}{A_s^K}\right) = ln(r_z) + \ln\left(\frac{A_s^U}{A_s^K}\right)$$

which suggests using a **binomial model with a logistic link** to estimate a smooth function of size and potential environmental covariates for $ln(r_z)$ as

$$\tilde{p}_{z,h} = \frac{n_{z,h}^U}{n_{z,h}^U + n_{z,h}^K} \quad \text{and} \quad logit(E[\tilde{p}_{z,h}]) \sim f(z, d_h, t_h, f_h, s_h) + \ln\left(\frac{A_h^U}{A_h^K}\right)$$

such that (under the assumption $c_{z,h}^{BSFRF} = 1$)

$$c_{z,h}^{NMFS} = r_{z,h} = \exp(f(z, d_h, t_h, f_h, s_h))$$

• Similar to Somerton's (2013) approach for snow crab

Somerton et al. 2013. https://doi.org/10.1139/cjfas-2013-0100

Haul-level catchability: approach 2

$$\begin{split} n_{Z}^{U} &\sim \Pr\left(c_{Z}^{U} \cdot A_{S}^{U} \cdot \lambda_{Z}^{loc} = \bar{n}_{Z}^{U}, variance\right) \Rightarrow \overline{CPUE_{Z}^{U}} = \bar{n}_{Z}^{U} / A_{S}^{U} = c_{Z}^{U} \cdot \lambda_{Z}^{loc} \\ n_{Z}^{K} &\sim \Pr\left(c_{Z}^{K} \cdot A_{S}^{K} \cdot \lambda_{Z}^{loc} = \bar{n}_{Z}^{K}, variance\right) \Rightarrow \overline{CPUE_{Z}^{K}} = \bar{n}_{Z}^{K} / A_{S}^{K} = c_{Z}^{K} \cdot \lambda_{Z}^{loc} \\ \tilde{r}_{z,h} &= \frac{c_{z,h}^{U}}{c_{z,h}^{K}} = \frac{c_{z,h}^{U} \cdot \lambda_{z,h}^{loc}}{c_{z,h}^{K} \cdot \lambda_{z,h}^{loc}} = \frac{\overline{n}_{Z}^{U}}{\overline{n}_{X}^{L}} = \overline{CPUE_{z,h}^{U}} \\ \text{so use} \quad r_{z,h} = \frac{CPUE_{z,h}^{U}}{CPUE_{z,h}^{K}} \quad \text{as observations} \end{split}$$

• model haul-level $r_{z,h}$ as Tweedie-distributed smooth function of size and local environmental covariates

$$r_{z,h} \sim Tw(\mu_{z,h}, \phi) \quad V(r_{z,h}) = \beta \cdot \mu_{z,h}^{\phi}$$

- with a log-link function (and BSFRF assumption) $\ln(\mu_{z,h} = E[r_{z,h}]) = f(z,t,d,f,s) \implies \tilde{c}_{z,h}^{NMFS} = E[r_{z,h}] = \exp(f(z,d_h,t_h,f_h,s_h))$
- Similar to Kotwicki et al. (2017)

NOAA FISHERIES

Kotwicki et al. 2017. https://doi.org/10.1016/j.fishres.2017.02.012

The Devils in the Details

- hauls are random samples of local abundance
 - best case: truly random spatial distributions (i.e., Poisson-distributed)
 - different areas swept by gears imply
 - expected numbers caught are different
 - associated variances are different
- "side-by-side" hauls offset by 0.1-0.2 nmi
 - small-scale patchiness? <- affects sampling distribution
- sampling distribution of catch ratios??

SBS sampling randomly-dispersed crab

NOAA FISHERIES

Paired haul data

• removed observations with $n_T < 5$, missing environmental data

Joint histograms of numbers caught in paired tows

GAM models with environmental covariates

MGCV "gam" model formulae

```
link(response) \sim f(z,d,t,f,s) = intercept + ti(z,bs="ts") + ti(t,bs="ts") + ti(f,bs="ts") + ti(s,bs="ts") + ti(z,d,bs="ts") + ti(z,t,bs="ts") + ti(z,f,bs="ts") + ti(z,s,bs="ts");
```

Binomial distributions with logit link function

response_{haul,z} = proportion of crab caught in 5-mm size bin by NMFS gear in paired haul weight_{haul,z} = total number in 5-mm size bin caught in paired haul offset_{haul,z} = In-scale ratio of areas swept in paired haul

Tweedie distributions with log link function

```
\begin{array}{l} \text{response}_{\text{haul},z} = \text{ratio of CPUEs for caught in 5-mm size bin in paired haul} \\ \text{weight}_{\text{haul},z} = \text{none} \\ \text{offset}_{\text{haul},z} = \text{none} \end{array}
```


Model evaluation and selection

- used mgcv "gam" function to evaluate models
- for each distribution
 - evaluated every combination (256) of "intercept + ti(z)" with the environmental covariate terms
 - performed k-fold cross validation using 20 folds. for each fold:
 - randomly select 95% of observations as "training set"
 - fit (each) model
 - use fitted model to predict observations in "testing set" (i.e., remaining 5% of observations)
 - calculate predictive ability score by evaluating mean likelihood of predicted responses
 - selected "best" model based on (Yates et al. 2022)
 - mean prediction score,
 - absence of significant concurvity across model terms
 - simplicity of model

Binomial model results for males

Best binomial model has covariate terms for temperature (t) and grain size (f)

"Best" binomial model for males results

Model predictions (rank transformed)

NOAA FISHERIES

Tweedie model results for males

"Best" Tweedie model for males results

Model predictions (rank transformed)

Binomial model results for females

Best binomial model has covariate terms for temperature (*t*) and grain size (*f*)

"Best" binomial model for females results

Tweedie model results for females

"Best" Tweedie model for females results

Model predictions (rank transformed)

Models for males with haul-level random effects

haul-level deviations from smooth curve treated as random effects: response = intercept + s(z) + ti(z,h,bs="fs")

Models for males with haul-level random effects

NOAA FISHERIES

Models for females with haul-level random effects

haul-level deviations from smooth curve treated as random effects: response = intercept + s(z) + ti(z,h,bs="fs")

Models for females with haul-level random effects

Wrap-up

Further work

- incorporate results from "best" models into Tanner crab assessment
- finish similar analysis for BBRKC (2013-2016 data)
- revisit snow crab (add 2017, 2018 data)

Acknowledgments

- NMFS EBS Shelf Survey crews & vessels
- BSFRF SBS Studies crews & vessels
- Bob McConnaughey and the EBSSED-2 sediment database

Discussion

- "best" estimates of size-specific catchability?
- other model distributions to try?
- mechanisms for low catchability?

Survey-level estimates: Tweedie REs

Haul-level estimates: binomial REs

