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Introduction

Stock assessment authors require unbiased and precise estimates of population parameters to appropriately
model marine populations. Parameters such as age-at-length and maturity-at-size usually cannot be mea-
sured directly and thus need to be estimated through various sampling designs, often via fisheries-independent
surveys. In these surveys, age- or maturity compositions are defined as the proportion of a population be-
longing to a specific age or maturity class, which are usually estimated via a two-stage sampling design. In
the first stage, species are randomly subsampled from a haul and measured for size (“subsample one”; e.g.,
length, carapace width, etc.). From this sized subsample, a further subsample is taken, from which more
detailed biological data are collected such as otoliths for age estimation or chela height for crab morpho-
metric maturity estimation ((“subsample two”; Quinn and Deriso 1999). From there, subsample two data
are usually aggregated into certain size bins and the proportion at age or proportion mature is calculated
for each bin. For fish, this is usually achieved through a classic age-length-key (ALK; Fridriksson 1934)
that describes the probability of being a specific age at a given length, which is then used to assign ages to
individual fish in subsample one that have only been measured for length. Using this all of this information
together with haul-level data, abundance and biomass at age and age compositions can then be calculated
via design-based methods (Steward and Hamel 2014; Thorson and Haltuch 2019).

Traditional design- (via ALKs) or model-based approaches that map age or maturity subsamples onto size
data generally ignore spatiotemporal variation in vital rates (Correa et al., 2020) and/or imprecision in
estimates to due low and uneven sampling across space and time. This may be problematic as marine
populations can exhibit spatiotemporal variation in vital metrics of interest, such as maturity in Bering
Sea Chioneocetes opilio (“snow crab”) and Chionoecetes bairdi (“Tanner crab”) populations. Chionoecetes
populations undergo a terminal molt upon reaching maturity, after which no further molting or growth
occurs. The size at which this terminal molt is estimated to occur is a widely used indicator of biological
fitness and an important management reference point (Mullowney and Baker, 2021), and it can vary across
both space and time. For example, the size-at-maturity for snow crab in Newfoundland and Labrador was
found to vary with temperature and the presence of large males in the population (Mullowney and Baker,
2021). Further, size-at-maturity for Bering Sea Tanner crab has been shown to vary in space (Somerton
1981), possibly reflecting influence from temperature (Hines 1989). In addition, there is evidence that size-at-
maturity is declining over time in both Bering Sea Chionoecetes populations (Stockhausen, 2025; Zacher et
al., 2025). Therefore, accurate, population-level estimates of Chionoecetes maturity are essential for effective
management and for advancing biological understanding.

Given this, our first goal was to evaluate the AFSC Shellfish Assessment Program’s (“SAP”) legacy workflow
for processing Chionoecetes maturity data from the NMFS Eastern Bering Sea (EBS) bottom trawl survey.
Our second goal was to update the workflow if necessary to account for potential spatiotemporal variation
in maturity and uneven sampling.
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Methods

Chela sampling on the NMFS bottom trawl survey

Chela data are taken via a two-stage sampling design from the NMFS bottom trawl survey. This process
is similar to how otoliths are sampled from fish on the survey to estimate age-at-length. As such, we
have modified the age-at-length equations from (Correa et al., 2020) for otolith samples collected on the
bottom trawl survey for the purposes of illustrating how maturity-at-size can be estimated from crab chela
measurements. In the first stage, crab are either fully sampled or subsampled from the haul and carapace
widths (mm) are then measured from sampled crab. These measured crab, along with various other biological
data, are what entail the “specimen data”, or subsample one. In these data, to expand the number of crab
in the specimen subsample to the haul catch, we calculate abundance-at-size ¢ ; (i.e., “sampling factor”)
following Equation (1)

Gy = 2 (1)

where ¢, ; is the number of crab measured at carapace width s in haul 7 divided by the subsampling intensity
at size A;. In the second stage, chela heights (mm) are taken from the left chela of male crab that were
subsampled for the specimen data with the aim of measuring the chela heights of five crab within three
carapace width size bins. These data entail the “chela data”, or subsample two. While the aformentioned
sampling strategy is the goal, chela sampling is variable across size bins and years (Figure 1), as well as
in space for snow crab (Figure 2) and for Tanner crab (Figure 3). For snow crab, the chela time series
extends from 1989-2025, with 2008, 2012, 2014, and 2016 omitted due to missing chela measurements. For
Tanner crab, the chela time series extends from 1990-2025, with 2013 and 2015 omitted from both Tanner
districts (east and west of 166°) and 2011 only omitted from the Tanner east district due to missing chela
measurements. Data from 2020 are omitted from all maturity analyses because the survey was not conducted
that year due to COVID-19-related suspension of field operations.

Using chela and specimen data, the goal is to estimate mature abundance at size. To do so, the first step
is to calculate g5y, the probability that a crab is mature, m, at size s. From there, we combine g ,, with
abundance-at-size ¢ ; to estimate mature abundance, é,, ;, following Equation (2).

Zés,iQS,m = 6m,i (2)
s

The focus of this document is to achieve an unbiased and realistic estimate of ¢; ,, for Chionoecetes crab
in space and time that accounts for variability in sampling and maturity. All processing and analyses were
conducted in R (R Core Team, 2025).

Legacy maturity data processing workflow

Once the NMFS bottom trawl survey is finished for the year, chela data are QA/QC’ed and processed
following several steps (Figure 4). First, the maturity cutline by species is established following (Richar and
Foy, 2022) using only newshell crab from the chela data. Only newshell crab are used as they are most
likely to have undergone terminal molt within the year (Mullowney and Baker, 2020). Therefore, unless
otherwise noted, we limit our analysis and discussion to newshell males for the remainder of the document.
The maturity cutline identifies crab as mature or immature using the linear relationship between In(carapace
width) and In(chela height), where any carapace width X chela height point above the cutline is classified
as mature and any point below is immature. This relationship is well-supported for both snow and Tanner
crab (Figure 5). Each species’ cutline is then applied to the chela data to classify individual crab as mature
(1) or immature (0). From here, the legacy workflow then uses ¢, ; to calculate the proportion of crab that
are mature within 10mm bins. This approach is incorrect as ¢, ; represents expanded estimates of



crab due to subsampling in subsample one, not the second subsample for chela measurements
The legacy workflow then fits separate logistic models by year to proportion mature using the nls () function
in R (R Core Team, 2025) to estimate ¢s ,, following Equation (3)

1
~ 1+ e—a(s—b)

3)

ds,m

where s corresponds to each 10mm size bin, « is the slope parameter, and b is the size at 50% maturity
(“SAM?™), or the curve’s inflection point. These models are then used to predict g, for all specimen data
crab in subsample one and downstream outputs can be calculated.

Maturity ogives are plotted by calculating the mean g5 ,, for each year and size bin across hauls. SAM,
or the gs,, at which 50% of the population is predicted to have undergone terminal molt, is estimated
as the b parameter with associated error each year. However, while ogives and SAM are assumed to be
population-level metrics, the legacy workflow does not account for population size when calculating either.

Mature station-level biomass and abundance, or &, ;, is calculated following Equation (2) above by multi-
plying the predicted probability mature at size, gsm, by the é; abundance/biomass at size for each station
1. Mature CPUE and population-level biomass and abundance are then calculated using design-based ex-
pansion methods as outlined in Zacher et al. (2025). The legacy workflow treats ¢, as fixed, neither
propagating its estimation uncertainty into mature biomass and abundance calculations nor allowing for
potential spatiotemporal variation in g .

Proposed maturity data processing workflow

The proposed processing workflow follows the same steps as above for establishing and applying maturity
cutlines to identify chela crab as mature or immature. However, after this point, the proposed workflow
enacts several changes compared to the legacy which are summarized in Table 1.

The proposed workflow uses sdmTMB (Anderson et al., 2022) to build spatiotemporal models to estimate
gs,m- sdmTMB provides a flexible framework for estimating crab maturity because it explicitly models
spatial and spatiotemporal structure, rather than treating observations as independent in space and time.
Spatial random fields allow nearby locations to be correlated, so maturity estimates at one station are
informed by data from neighboring stations, even when sampling density varies across the survey domain.
Spatiotemporal random fields capture patterns that evolve through time but remain spatially correlated,
enabling the model to “borrow strength” from nearby locations and adjacent years (depending on the specified
correlation structure) when data are sparse or missing in particular space—time cells. sdmTMB also allows
GAM-style smooths for size, which can produce maturity ogives that are not constrained to a logistic shape.
Therefore, use of sdmTMB can facilitate robust prediction and smoothing across under-sampled space—time—
size combinations, with uncertainty estimates that reflect local data density. In practice, dense regions and
years drive more precise maturity predictions, while sparser regions are stabilized by the specified spatial
and temporal correlation structure (Anderson et al., 2022).

We fit binomial sdmTMB models to mature/immature crab (1/0) by 5mm carapace width bins. The general
formula for the maturity sdmTMB model follows Equation (4)

Y; ~ Bernoulli(p;)

logit(py) = £(s0) + i, + () + &0, (@2) @
where Y; is the maturity status for crab i, s; is its size with smooth function f(), /5, is a fixed effect of
year, w(x;) is the spatial Gaussian random field and ey, (z;) is the spatiotemporal Gaussian random field
with independent increments over time (“iid”). For both snow crab and Tanner crab, we specified the
spatial random field to exhibit anisotropic covariance. Other decision points included the resolution of the
spatial mesh used in fitting the model, the number of knots in the smooth function for size, and whether
the effect of size could change over space (modified via the spatial_varying argument) or time (modified



via the time_varying argument). We fit models with these different decision points in mind and compared
each model’s performance using sdmTMB’s sanity () function, AIC, log-likelihood via cross-validation, and
DHARMa residuals by year, by size, and in space. Any model that did not initially pass sdmTMB’s sanity ()
check was omitted from further evaluation. We also evaluated fitting simpler spatial GAM models and fitting
models separately by year, but sdmTMB models outperformed spatial GAMs and models separate by year
did not pass sanity () checks. Therefore, we did not pursue these approaches any further. For Tanner crab,
there were not enough maturity data to fit separate sdmTMB models by Tanner crab east and west of 166°.
However, we do plot separate ogives, SAM time series, and mature biomass/abundance time series by these
districts.

Uncertainty in gs ., the probability mature at size, was quantified by simulating from each model’s joint
precision matrix of fixed and random effects, following recommendations for spatiotemporal GLMMs in
sdmTMB. Predictive simulations (n=500) of ¢; ,,, were generated for all measured specimen crab in subsample
one from the best-fitting model for each species. For maturity ogives, we computed the mean g ,,, weighted
by the corresponding ¢, ; for each year, size bin, and simulation to account for spatial variation in population
density. Mean maturity ogives are plotted across simulations with 95% confidence intervals. To calculate and
incorporate uncertainty in SAM, we computed the size at which the each simulation’s weighted ogive first
intersects 50% each year. The resulting distribution of SAM across simulations was summarized by its mean
and empirical 95% confidence interval, which we interpret as capturing spatiotemporal and process-related
variability in SAM under the fitted models.

Mature station-level biomass and abundance, or &, ;, is calculated following Equation (2) above by multi-
plying the predicted probability mature at size, gs,m, by the é ; abundance/biomass at size for each station
i. Associated uncertainty in ¢, ; estimation was propagated in a two-step procedure. First, we used the 500
predictive simulations of g, to calculate 500 mature biomass and abundance estimates per stratum through
standard design-based procedures (Zacher et al., 2025). Second, for each of these estimates, additional sur-
vey uncertainty was incorporated by drawing 1,000 values from a normal distribution with mean equal to
the design-based estimate and standard deviation equal to the reported 95% confidence interval divided by
1.96. This procedure jointly propagates model predictive uncertainty and survey sampling uncertainty into
the final mature biomass and abundance estimates.

Finally, maturity ogives, SAM, and mature biomass and abundance generated from the best sdmTMB model
for each species were compared with the legacy workflow output. Since the legacy workflow uses 10mm bins,
we interpolated 10mm ogives to 5mm bins using mgcv’s gam() function (Wood, 2011) for comparison with
sdmTMB 5mm ogives.

Results/Discussion

Snow crab

For snow crab, the best sdmTMB model in terms of AIC and cross validation was a model using 13 knots
in the smooth function for size (Table 2), a 300-knot spatial mesh (Figure 6), and a spatially-varying effect
of size (Table 3). This model passed sdmTMB’s sanity() check, had the lowest AIC, and the largest
log-likelihood. QQ-plots of DHARMa residuals for this model did not demonstrate any strong deviations
when evaluated by year (Figure 7) or by size (Figure 8), though there was some evidence of deviation in the
smallest and largest size bins likely due to full separation in maturity status and limited data. Spatial plots
of DHARMa residuals did not exhibit evidence of spatiotemporal autocorrelation when examined by year
(Figure 9) or by size (Figure 10).

Maturity ogives from the legacy (interpolated to 5mm bins) and sdmTMB workflows differ (Figure 11), likely
due to contrasting assumptions about ogive shape in the model structures, how sparse data are treated, and
weighting to achieve population-level estimates in the sdmTMB workflow. This, together with differing
approaches in calculating SAM, leads to systematic differences in SAM by year, with sdmTMB-based SAM
generally exceeding that from the legacy workflow (Figure 12). In some years such as 2010 and 2011, SAM



uncertainty in sdmTMB is significantly larger than uncertainty in the legacy workflow, likely due to the
propagation of spatiotemporal heterogeneity in SAM via simulation from the sdmTMB workflow whereas
the uncertainty in the legacy workflow just includes year effects.

Despite ogive and SAM differences, mature biomass and abundance were highly aligned between legacy and
sdmTMB workflows (Figure 13). The largest differences were earlier in the time series, in 2011, and in 2018,
but the ClIs still overlapped between the two workflows. While the two workflows may result in different
ogives and SAMs by year, these differences are not propagated to mature biomass and abundance since these
estimates are aggregated across sizes.

Tanner crab

For Tanner crab, the best sdmTMB model in terms of AIC and cross validation was a model using 10
knots in the smooth function for size (Table 4), a 200-knot spatial mesh (Figure 14), and a spatially-varying
effect of size (Table 5). This model passed sdmTMB’s sanity() check, had the lowest AIC, and the largest
log-likelihood. QQ-plots of DHARMa residuals for this model generally did not demonstrate any strong
deviations when evaluated by year (Figure 15) except for 2011, which had limited chela data. As with snow
crab, QQ-plots of DHARMa residuals by size exhibited some evidence of deviation in the smallest and largest
size bins likely due to full separation in maturity status and limited data for these bins, but were otherwise
well-behaved (Figure 16). Spatial plots of DHARMa residuals did not exhibit evidence of spatiotemporal
autocorrelation when examined by year (Figure 17) or by size (Figure 18).

Ogives were generally similar between legacy (interpolated to 5mm bins) and sdmTMB workflows for Tanner
crab east of 166° (Figure 19) and west of 166° (Figure 20). This could be due to less Tanner crab maturing at
smaller sizes which drives the hump-shaped ogives observed for snow crab, resulting in a more logistic-shaped
ogives that aligns with the legacy workflow. Despite similarities in ogive shape between the two workflows,
SAM values still differed for both east and west districts (Figure 21). As with snow crab, SAM uncertainty
was generally larger in the sdmTMB workflow as it propagates spatiotemporal heterogeneity, though in
many years the Cls overlap for SAM estimates across workflows and districts. The largest differences in
SAM correspond to years where the ogives exhibited the greatest difference in shape between the workflows,
such as in 2006 for each Tanner east and 1990 for Tanner west.

As with snow crab, mature biomass and abundance were highly similar between legacy and sdmTMB work-
flows for Tanner crab east of 166°(Figure 22) and west of 166° (Figure 23). The largest differences were
earlier in the time series and from 2005-2010. However, the CIs overlapped across the time series between
the two workflows.

Conclusion

Accounting for potential spatiotemporal variation and various forms of uncertainty in vital metrics such as
Chionoecetes maturity is essential for informing stock biology and for accurate inputs in stock assessments.
Here, we argue that the updated AFSC SAP Chionoecetes maturity data processing workflow provides sev-
eral distinct advantages relative to the legacy workflow. First, the updated workflow eliminates the use of
sampling factor to model maturity in subsample two, thereby correcting the inappropriate commingling of
subsample one and two that occurred in the legacy workflow. Second, by switching to sdmTMB spatiotem-
poral models, the updated workflow accounts for spatiotemporal variation in maturity, robustly handles data
gaps due to uneven sampling, and facilitates future spatiotemporal maturity research. Third, the updated
workflow explicitly incorporates uncertainty from model maturity estimates in downstream outputs. Finally,
by flexibly modeling maturity-at-size relationships with strong diagnostics, the updated workflow strengthens
confidence that observed non-logistic ogives reflect biological signal rather than process artifacts. In con-
clusion, we argue that the advantages of the updated workflow yield more accurate and unbiased maturity
estimates compared to the legacy workflow.



Data and code availability

Maturity data and processing code are available on on the Chionoecetes.maturity.workflow Github repository
(https://github.com/eryznar/Chionoecetes.maturity. workflow).
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Tables

Table 1: Comparison of legacy and proposed workflows.

Legacy workflow Proposed workflow

Uses 10mm bins Uses bHmm bins

Fits nls logistic models to chela data Fits sdmTMB models to chela data

Uses proportion mature as the Uses binomial (mature/immature) as
response, calculated using sampling response

factor

Does not account for uncertainty in Robust to spatiotemporal gaps and
maturity due to uneven sampling variability in maturity through random
across space, time, and size bins fields; uncertainty is also tied to sample sizes

via binomial structure and propagated across
all workflow steps

Models not vetted through Models vetted through diagnostics
diagnostics(?)

SAM and ogives do not account for SAM and ogives are weighted by abundance
population size to account for population size

Table 2: Evaluation of snow crab sdmTMB models using different knots in the smooth function for size while
holding other variables constant.

k AIC logLik

13 48675.96 -23660.66
15 48676.52 -23675.14
12 48676.57 -23698.07

6 48717.42 -23701.87
10 48675.88 -23705.79

11 48677.25 -23714.03
14 48676.01 -23731.46

9 48673.71 -23732.86
48678.63 -23751.06
48711.29 -23772.82

48783.29 -23784.50
48932.80 -23875.43

S N e )

Table 3: Evaluation of snow crab sdmTMB models using different model parameterizations and knots in the
model mesh.

df AICc pass_sanity logLik  knots terms

mod.4 10 48001.37 -23350.89 300 spatial var of size
mod.2 10 48052.17 -23385.41 200 spatial var of size
mod.3 39 48597.31 -23680.37 300 no sptemp var
mod.1 39 48675.96 -23728.03 200 no sptemp var

o<




Table 4: Evaluation of Tanner crab sdmTMB models using different knots in the smooth function for size

while holding other variables constant.

k AIC logLik
10 18062.47 -8705.399
11 18063.05 -8705.557
12 18063.50 -8705.756
13 18063.63 -8705.809
15 18063.96 -8705.864
14 18064.06 -8706.141

9 18066.28 -8709.803

8 18068.93 -8710.844

7 18073.91 -8713.570

6 18086.37 -8719.999

5 18111.12 -8735.185

4 18118.68 -8738.815

Table 5: Evaluation of Tanner crab sdmTMB models using different model parameterizations and knots in
the model mesh.

df AIC pass_sanity loglik mesh_knots terms
mod.2 10 19195.77 'Y -9261.058 200 s(SIZE), YEAR, spatial variation of size
mod.4 10 19228.74 Y -9287.836 300 s(SIZE), YEAR, spatial variation of size
mod.1 40 19387.92 Y -9364.992 200 s(SIZE), YEAR, no spatial variation of size
mod.3 40 19405.56 Y -9380.608 300 s(SIZE), YEAR, no spatial variation of size
Figures
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Figure 1: Number of chela measurements by 5mm carapace width bins and year for snow crab (top panel)
and Tanner crab (bottom panel).
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Figure 2: Proportion mature by station and year for sampled chela snow crab.
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Figure 3: Proportion mature by station and year for sampled chela Tanner crab.
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Richar and Foy (2022). 13



Figure 6: Snow crab sdmTMB spatial mesh using 300 knots. Red points designate mesh vertices and black
dots are observations from the chela data.
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Figure 7: QQ plot of DHARMa residuals for the best snow crab sdmTMB model by year.
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Figure 8: QQ plot of DHARMa residuals for the best snow crab sdmTMB model by size.
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Figure 9: Spatial plot of DHARMa residuals for the best snow crab sdmTMB model by year.
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Figure 10: Spatial plot of DHARMa residuals for the best snow crab sdmTMB model by size.
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Figure 12: Snow crab size-at-50%-maturity (SAM; mm) from the legacy workflow (tan) and proposed work-
flow using sdmTMB (blue). Legacy error bars are 95% confidence intervals from non-spatial year-specific
models, whereas sdmTMB error bars are 95% simulation-based confidence intervals derived from predictive
simulations that propagate spatial and spatiotemporal uncertainty.
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Figure 13: Mature snow crab abundance (millions; top panel) and biomass (metric tons; bottom panel)
predicted by the legacy workflow (tan) and proposed workflow using sdmTMB (blue). Shaded areas indicate
95% ClIs.
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Figure 15: QQ plot of DHARMa residuals for the best Tanner crab sdmTMB model by year.
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Figure 16: QQ plot of DHARMa residuals for the best Tanner crab sdmTMB model by size.
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Figure 17: Spatial plot of DHARMa residuals for the best Tanner crab sdmTMB model by year.

25



r_SIZE_k200

patialvar_

Tanner sdmTMB_s

1000 1250

1000 1250

T
750

500

250

3JANLILYT

) L0 L0 L3
3 g Linatt ||8 .
. . LS
it ’
3 .noﬂ L3
| o08s° L 39
o
: . E
o »w- oownn,o,-u -
Mo Segs -no“o ooW. S
"oo.u ow uo $ n; M-o ol
0 9 . ..w“&.ﬁmm © m.wnm..m..u L3
t 1
o 5 L w.&uum # e .WMﬂm
H 0 it LS
Y m%mﬁ uma umno.u 3
Regitie T T o
.un.mmu e° &
..
(311 o-o
$a3ds
[T [t
0 0 0 eeo ©
N~ ~ M oo °
© - = o St
L]
m.“.
m m.o
to) ) 9 .Mo .
S g S s
= - .&..
L]
[ ] .'
(]
L]
.mw.m.
° w -mo.o
0 w0 L0 s m. $
~ ~ o se6 “240
© g =
u\.,."*.
o .“ L]
oo .nuun * , *esde
, L]
o ° o o ° o o o o ° o
v o el n e} 2] o w n o wn
P 3 S s S S 3 S S 3 &

1000 1250

750

LONGITUDE

DHARMa_resid - _

250 500

250 500 750

1000 1250

0.00 0.25 0.50 0.75 1.00

Figure 18: Spatial plot of DHARMa residuals for the best Tanner crab sdmTMB model by size.
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Figure 19: Tanner crab east of 166° maturity ogives predicted by the legacy workflow (tan) and proposed
workflow using sdmTMB (blue). Original 10mm bin legacy ogives have been interpolated to 5mm bins
for comparison. X-axis rugs denote data extent and shaded blue area denotes sdmTMB 95% simulation-
based confidence intervals derived from predictive simulations that propagate spatial and spatiotemporal
uncertainty.
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Figure 20: Tanner crab west of 166° maturity ogives predicted by the legacy workflow (tan) and proposed
workflow using sdmTMB (blue). Original 10mm bin legacy ogives have been interpolated to 5mm bins
for comparison. X-axis rugs denote data extent and shaded blue area denotes sdmTMB 95% simulation-
based confidence intervals derived from predictive simulations that propagate spatial and spatiotemporal
uncertainty.
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Figure 21: Tanner crab size-at-50%-maturity (SAM; mm) predicted by the legacy workflow (tan) and pro-
posed workflow using sdmTMB (blue) for Tanner crab east of 166° (top panel) and Tanner crab west of
166° (bottom panel). Legacy error bars are 95% confidence intervals from non-spatial year-specific models,
whereas sdmTMB error bars are 95% simulation-based confidence intervals derived from predictive simula-
tions that propagate spatial and spatiotemporal uncertainty.
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Figure 22: Mature Tanner crab abundance (millions; top panel) and biomass (metric tons; bottom panel)
predicted by the legacy workflow (tan) and proposed workflow using sdmTMB (blue) for Tanner crab east
of 166°. Shaded areas indicate 95% Cls.

30



Tanner West morphometric mature males (newshell)
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Figure 23: Mature Tanner crab abundance (millions; top panel) and biomass (metric tons; bottom panel)
predicted by the legacy workflow (tan) and proposed workflow using sdmTMB (blue) for Tanner crab west
of 166°. Shaded areas indicate 95% Cls.
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