Does ignoring predation mortality leading to an inability to achieve management goals in Alaska?

Grant Adams University of Washington

SCHOOL OF AQUATIC & FISHERY SCIENCES

Management models:

Single-species

Reality:

Multi-species

Consequences

Single-species models can lead to:

- Biased biological reference points
 - Maximum sustainable yield & proxies
 - Stock status
- Poor predictive performance (Trijoulet et al. 2020)
 - Over fit data
- Suboptimal decision making
 - Over- and under-harvest

Previous studies are limited

Two classes of studies:

- Projection studies
 - Evaluate predictive capacity
 - Consequences of management actions

Simulation studies

- Multi-species model simulates data
- Single-species model fits to data
- Bias in model outputs

Do not account for:

- Feedback control
 - Continued data collection
 - Refine management strategy
- Feedback between species

Objectives

- Does ignoring predation mortality leading to an inability to achieve management goals in Alaska?
 - Multi-species assessment model
 - Management strategy evaluation approach

SEATTLE

CEATTLE= Climate-Enhanced Age-based Model with Temperature-Based Trophic Linkages and Energenics

Holsman et al. Deep Sea Research 2016

Age structured model

sp = species a = age y = year

3 sources of Mortality

CEATTLE implementation

TMB based R package Closely approximates stock assessments

- Estimate time varying M
 - Input in assessments
- Explain population fluctuations
 - Predation vs environmental drivers
- Strategic management decisions
 - Trade-offs & future climate impacts
- Tactical management decisions
 - Multispecies harvest strategies
 - Multispecies biological reference points (Moffit et al 2016)
 - Ecological reference points (Chagaris et al., 2020)

CEATTLE models

Walleye PollockPacific CodArrowtooth Flounder

Eastern Bering Sea:

Gulf of Alaska:

MSE scenarios

Operating models:

- Single-species fixed age-variant M (Fix M)
- Single-species estimated age-invariant M (Est M)
- 3. Multi-species model

Systems:

- 1. Gulf of Alaska (GOA)
- 2. Eastern Bering Sea (EBS)

Recruitment trends:

- 1. Constant
- 2. All up or down
- 3. Only arrowtooth up or down

Run MSE from 2017/2018 to 2060

Management strategies

- Single-species estimation models:
- 1. Fix M
- 2. Est M

Harvest control rules:

- 1. NPFMC Tier 3
- 2. PFMC Pstar
- 3. SESSF Tier 1
- 4. NEFMC F40%

Dynamic B0 biomass reference points

Performance metrics

Fishery goals:

- Average catch
- Interannual catch variation
- Probability of the fishery being open

Conservation goals:

- Not overfished:
 - Perceived (EM)
 - True (OM)
- Not overfishing:
 - Perceived (EM)
 - True (OM)

•Multi-species SB_{25}

Fishery goals – Bering pollock

Probability of being open

Fix M: NPFMC
Est M: NPFMC
Fix M: PFMC
Est M: PFMC
Fix M: SESSF
Est M: SESSF
Fix M: NEFMC
Est M: NEFMC
Est M: NEFMC
M: NEFMC

Conservation goals – Bering pollock

Probability of not overfishing (OM)

Perceived probability of not overfishing (EM)

SS fix M

Probability of not being overfished (OM)

Perceived probability of not being overfished (EM)

MS

SS est M

Recruitment trend – Bering pollock

Fishery goals – Gulf cod

Interannual catch variability (reciprocal)

Conservation goals – Gulf cod 剩

Perceived probability of not overfishing (EM)

Probability of not being overfished (OM)

Perceived probability of not being overfished (EM)

Summary

- Estimating M leads to better performance
 - Better approximate population scale
- Most management strategies achieve conservation objectives
 - Tiered harvest control rules outperform
 - Above multi-species SB25
 - Perceive to achieve objectives given predation
- Dynamic BRPs don't improve performance
 - BUT ignore time-varying growth!

Uncertainties

• Easy to compare management strategies...

- How to compare single- vs multi-species OMs?
- Form of species interactions
 - Focused on top-down via predation
 - Sensitivity to functional form?
 - Bottom-up processes?
- More drastic recruitment trends?

Future research:

- Harvest caps
- •Climate linkages
- Multi-species harvest control rules
- •Functional response/bottom-up impacts

Kirstin Holsman
Ian J. Stewart
André E. Punt

Questions?

Grant Adams <u>adamsgd@uw.edu</u>

University of Washington

https://github.com/grantdadams/Rceattle

SCHOOL OF AQUATIC & FISHERY SCIENCES

THANKS!

• Kirstin Holsman

• Ian J. Stewart

• André E. Punt

