Overview of Integrated Climate Impact Modeling

Evaluating strategies under different climate futures

Anne Hollowed

ACLIM PIs:
Anne Hollowed1, Kirstin Holsman1, Alan Haynie1, Stephen Kasperski1, Jim lanelli1, Kerim Aydin1, Wei Cheng2,3, Al Hermann2,3, Trond Kristiansen4, Andre Punt5

1. NOAA Fisheries, Alaska Fisheries Science Center
2. NOAA Office of Oceanic and Atmospheric Research, Pacific Marine Environmental Laboratory
3. Joint Institute for the Study of the Atmosphere and Ocean, University of Washington
4. Institute of Marine Research, Bergen Norway
5. School of Aquatic and Fisheries Science, University of Washington
Earth System Models (Stock, GFDL)

- Atmospheric circulation and radiation
- Interactive CO₂
- Ocean ecology and Biogeochemistry
- Ocean circulation
- Plant ecology and land use
- Land physics and hydrology
- Sea Ice
Intergovernmental Panel on Climate Change (IPCC) 5th Assessment Report (2013, 2014)

Projected Temperature Change

Difference from 1986–2005 mean (°C)

RCP2.6 2081–2100

Low CO₂ SCENARIO

“Paris COP21 agreement”

RCP8.5 2081–2100

High CO₂ SCENARIO

“Business as usual”

https://www.noaa.gov
Intergovernmental Panel on Climate Change; 5th Assessment Report

Carbon Emission Scenarios

“plausible descriptions of how the future may evolve with respect to a range of variables”

van Vuuren et al. 2011
Climate Change Assessment
(IPCC - WGII Summary for Policy Makers)

Climate Change Assessment (IPCC - WGII Summary for Policy Makers)

O’ Niell et al. 2014. Climate Change 122:387-00; Bauer et al. 2017
http://dx.doi.org/10.1016/j.gloenvcha.2016.07.006
IPCC global projections drive regional model (*dynamical downscaling*)

IPCC model (MIROC)

Regional model (Bering10K)

IPCC global atmosphere provides *surface forcing*
IPCC global global ocean provides *boundary conditions*
Bering10K validation:
Bottom Temp (deg C) summer 2009

Model

Data

http://www.st.nmfs.noaa.gov/ecosystems/climate/rap/afsc-rap
Climate Science Strategy Objectives

1. Project Future Conditions
2. Understand Mechanisms of Change
3. Track Change and Provide Early Warnings
4. Robust Management Strategies
5. Climate-Informed Reference Points

Interdependent
NCSS Key Objectives for Workshop

• Objective 1: Identify appropriate, climate informed reference points for managing living marine resources (LMRs).
• Objective 2: Identify robust strategies for managing LMRs under changing climate conditions.
• Objective 3: Design adaptive decision processes that can incorporate and respond to changing climate conditions.
Management Strategy Evaluation
Smith et al. 1999. ICES JMS 56:967-979

- Assess consequences of a range of management options
- Focus on trade-offs
- Not seeking an “optimal” strategy
- Decision-makers can weigh options and consider risks
- Specify clear management objectives
- Develop quantifiable performance measures for each objective
- Identify alternative management options
- Evaluate performance of each option: across range of objectives
- Account for uncertainty
- Communicate results to decision-makers.

M. Jones Presentation National SSC Jan 2018, San Diego, CA
Project changes in Bering Sea ocean conditions and fish populations

Physical, biological, & socioeconomic change; now - 2100

Evaluate how management can adapt to minimize negative impacts of future changes

gradual change & sudden shocks; test existing & new tools; estimate risk
The ACLIM team

Anne Hollowed Kirstin Holsman Alan Haynie Albert Hermann Wei Cheng Andre Punt

Darren Pilcher Kerim Aydin Jim Ianelli Andy Whitehouse Stephen Kasperski Cody Szuwalski

Amanda Faig Jonathan Reum Michael Dalton Paul Spencer Tom Wilderbuer William Stockhausen
Possible Impacts of a Changing Climate

Climate Changes
- ↑ Temperature
- Δ Precipitation
- ↑ Atmospheric Carbon Dioxide

Physical Chemical Impacts
- ↑ Ocean temperature
- ↓ Sea ice
- ↑ Sea level
- Δ Freshwater
- ↑ Ocean Acidification

Biological Impacts
- Δ Productivity
- Δ Phenology & survivorship
- Δ Species distribution
- Δ Species abundance
- Δ Community composition

Social Economic Impacts
- Δ Fishing activities
- Δ Revenues & economies
- Δ Industries
- Δ Subsistence use
- Δ Community health
Fish and Fisheries Integrated Approach
Projection modeling tools inform public and managers

Evaluation of risks and trade-offs requires integrated approach

NMFS NCSS is designed to encourage MSEs for Large Marine Ecosystems to inform decision makers

This workshop is designed to engage stakeholders in identifying integrated socio-economic pathways and management scenarios.
International Planning for Next IPCC Cycle

• 4th Effects of Climate Change on the World’s Oceans Symposium, June 2018
• FAO report - 2018
• IPCC Special Reports:
 • Special Report on Global Warming of 1.5°C (SR15)
 • Special Report on the Ocean and Cryosphere in a Changing Climate (SROCC) - 2019
 • Special Report on Climate Change and Land (SRCCL)
• IPCC 6th Assessment Report 2020 - 2021
Acknowledgements

Thanks to FATE, SAAM, IEA, NPCREP, and RTAP
and
the Bering Sea Project PIs (NPRB, NOAA, NSF)