Summary Review of
Prohibited Species Catch Limits below 200,000 chum salmon

What led to the preparation of the NMFS supplement?

- NEPA - reasonable range of alternatives

- Public comments at October 2023 Council Meeting

- Question: do the impacts at a 200,000 chum PSC limit reflect impacts at lower limits, such that an examination of lower limits would be unnecessary for NEPA compliance?

What is in Appendix 1?

- Alternative 2 - limits on overall chum salmon
- PSC limits reviewed in Appendix 1
- 0; 50,000, 100,000, 150,000, and 200,000 chum
- Quantitative analysis of impacts on pollock harvest and chum PSC
- Qualitative description of impacts on communities

Data and methods

- Data - NMFS Catch Accounting; AKFIN (prices)
- Identify each sector's chum PSC apportionment under pro rata (75\% 3-year avg.; 25\% AFA)

Pro rata allocation							
Sector	$\mathbf{\%}$	$\mathbf{0}$	$\mathbf{5 0 k}$	$\mathbf{1 0 0 k}$	$\mathbf{1 5 0 k}$	$\mathbf{2 0 0 k}$	
CDQ	7.1	0	3550	7100	10650	14200	
CP	25.4	0	12700	25400	38100	50800	
Inshore	58.4	0	29200	58400	87600	116800	
Mothership	9.1	0	4550	9100	13650	18200	

Appendix 1: Table A-1

Data and methods

For each year between 2011 and 2022, NMFS identified the day each sector would have met its PSC apportionment

Then calculated:
-total pollock (metric tons) subsequently caught -total chum salmon (\# of salmon) subsequently caught

For forgone pollock:
-Calculated gross ex-vessel value
-Calculated first wholesale value

Methods: CP Example

150,00 PSC limit: 38,100 Apportionment exceeded on DAY 295

Saturday, October 22, 2011

$\frac{\text { Day }}{290}$	Chum (\# fish)		Pollock (mt)
290	35,278		238,035
291	35,409		239,057
292	35,423		240,039
293	35,460		241,066
294	35,491		241,642
295	40,336		242,750
296	43,213		243,281
297	43,409		243,657
298	43,424		243,993
299	43,982		244,968
TOTAL	44,299		250,219

Pollock forgone $=7,379 \mathrm{mt}$ Avoid chum - 3,963 fish

Results: potential forgone pollock (Pro rata apportionment)

Calcuated using Pro-rata sector apportionment		Sum of Forgone B Season Pollock (mt)	Reduction as \% of B Season	Mean Annual Forgone B Season Pollock (mt)
If a 0 chum PSC limit had been in place 2011-2022:	Total	8,715,783	100\%	726,315
	CDQ	877,006	99\%	73,084
	CP	3,119,072	100\%	259,923
	Mothership	783,052	99\%	65,254
	Inshore	3,936,653	100\%	328,054
If a 50,000 chum PSC limit had been in place 2011-2022:	Total	4,648,109	53\%	447,228
	CDQ	319,649	36\%	35,517
	CP	1,598,394	51\%	159,839
	Mothership	405,279	51\%	40,528
	Inshore	2,324,786	59\%	211,344
If a 100,000 chum PSC limit had been in place 2011-2022:	Total	3,657,087	42\%	368,553
	CDQ	241,706	27\%	40,284
	CP	1,236,108	40\%	123,611
	Mothership	323,832	41\%	35,981
	Inshore	1,855,441	47\%	168,676
If a 150,000 chum PSC limit had been in place 2011-2022:	Total	2,894,255	33\%	300,045
	CDQ	213,554	24\%	42,711
	CP	955,942	31\%	95,594
	Mothership	244,723	31\%	27,191
	Inshore	1,480,037	38\%	134,549
If a 200,000 chum PSC limit had been in place 2011-2022:	Total	2,068,764	24\%	252,293
	CDQ	184,178	21\%	36,836
	CP	848,644	27\%	106,081
	Mothership	134,939	17\%	19,277
	Inshore	901,003	23\%	90,100

Appendix A-1: Table A-2

Results: potential chum salmon avoided (Pro rata apportionment)

Calcuated using Pro-rata sector apportionment		Sum of B Season Chum	Reduction as \% of B Season	Sum of Estimated WAK Chum Avoided (\#)	Mean Annual Estimated WAK Chum Avoided (\#)
If a 0 chum PSC limit had been in place 2011-2022:	Total	3,364,568	100\%	591,159	49,263
	CDQ	227,068	100\%	45,431	3,786
	CP	960,180	100\%	121,138	10,095
	Mothership	279,813	100\%	51,858	4,322
	Inshore	1,897,507	100\%	372,731	31,061
If a 50,000 chum PSC limit had been in place 2011-2022:	Total		81\%	472,310	39,359
	CDQ	$187,146$	82\%	38,082	3,174
	CP	812,087	84\%	101,532	8,461
	Mothership	223,404	80\%	41,084	3,424
	Inshore	1,520,175	80\%	291,612	24,301
If a 100,000 chum PSC limit had been in place 2011-2022:	Total	2,207,747	66\%	371,311	30,943
	CDQ	153,552	67\%	31,904	2,659
	CP	677,563	70\%	84,814	7,068
	Mothership	176,180	63\%	32,373	2,698
	Inshore	1,200,452	63\%	222,220	18,518
If a 150,000 chum PSC limit had been in place 2011-2022:	Total	1,710,185	51\%	277,658	23,138
	CDQ	139,922	61\%	29,103	2,425
	CP	547,270	57\%	69,140	5,762
	Mothership	138,456	49\%	25,548	2,129
	Inshore	884,537	47\%	153,866	12,822
If a 200,000 chum PSC limit had been in place 2011-2022:	Total	1,203,504	40\%	186,339	15,528
	CDQ	114,078	50\%	24,081	2,007
	CP	417,007	43\%	54,518	4,543
	Mothership	99,887	36\%	18,818	1,568
	Inshore	572,532	30\%	88,922	7,410

Appendix A-1: Table A-2

Inter-annual variability
 (2011-2022)

Appendix 1: Figure A-1

What was not included?

- analysis of avoidance costs
- analysis of potential fishing changes
- comprehensive analysis of economic impacts
- benefits of avoided chum salmon
- ecosystem impacts
- PSC tradeoffs (e.g., 6.2.6 of DEIS)
- stakeholder input
- other?

Questions?

Doug Shaftel, NOAA NMFS, Fishery Management Specialist doug.shaftel@noaa.gov

