A Regional Action Plan (RAP) for Climate Science in the Gulf of Alaska

Martin Dorn
Alaska Fisheries Science Center

February 8, 2018
NPFMC
Seattle, WA
Guidance Document from Headquarters

NOAA Fisheries Climate Science Strategy

Jason S. Link, Roger Griffis, Shallin Busch (Editors)

Contributors

Karen Abrams, Jason Baker, Rusty Brainard, Michael Ford, Jon Hare, Amber Himes-Cornell, Anne Hollowed, Nate Mantua, Sam McClatchie, Michelle McClure, Mark Nelson, Kenric Osgood, Mike Rust, Vincent Saba, Mike Sigler, Seth Sykora-Bodie, Valerie Termini, Eric Thunberg, Chris Toole, Robin Waples

Alaska Regional Action Plan for the Southeastern Bering Sea

Bering Sea plan published Sept 2016
Potential stressors by LME

<table>
<thead>
<tr>
<th></th>
<th>Arctic</th>
<th>EBS</th>
<th>AI</th>
<th>GOA</th>
</tr>
</thead>
<tbody>
<tr>
<td>Fishing</td>
<td>×</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Population</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Oil/Mineral</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Climate change</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Tourism</td>
<td>×</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Shipping</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Aquaculture</td>
<td>×</td>
<td>×</td>
<td>×</td>
<td></td>
</tr>
<tr>
<td>Forestry</td>
<td>×</td>
<td>×</td>
<td>×</td>
<td></td>
</tr>
</tbody>
</table>
Climate Science Strategy Objectives

1. Climate-Informed Reference Points
2. Robust Management Strategies
3. Adaptive Management Processes
4. Project Future Conditions
5. Understand Mechanisms of Change
6. Track Change and Provide Early Warnings
7. Build and Maintain Adequate Science Infrastructure

Interdependent
Projected changes in climate in the GOA

- Ocean warming
- Ocean acidification
- Oxygen limitation
- Changes in freshwater runoff
- Changes in ocean circulation and stratification
Projected increases in sea surface temperature for the Gulf of Alaska (left) and future temperatures relative to historic means (right).
Potential impacts on marine biota

- Direct: temperature and metabolism, ocean acidification and shelf formation
- Indirect: changes in prey, changes in predation
- Responses by individuals: growth, maturation, phenology, behavior, migration.
- Population responses: favorable or unfavorable recruitment, changes in productivity.
- Ecosystem responses: sudden or gradual ecosystem reorganization, species invasions.
AFSC’s climate science strategy for the GOA: four main areas of activity

• Long-term monitoring

• Process studies

• Risk assessment

• Modeling climate impacts and management scenarios
Long-term monitoring

- **Comprehensive set of assessment surveys for long-term monitoring.** AFSC conducts multispecies groundfish surveys, mid-water acoustic surveys, longline surveys, ichthyoplankton surveys, juvenile fish surveys, ecosystem process surveys, and marine mammal surveys.

- **Gulf of Alaska Ecosystem Considerations.** The AFSC Ecosystem Considerations report is produced annually to summarize information about the Alaska marine.

- **Community vulnerability indicators and snapshots.** Economic and social conditions in Gulf of Alaska fishing communities are tracked by updating susceptibility and exposure indices for the community vulnerability analysis, and by collecting and reporting the information in the community snapshots.
Process studies

- **Recruitment Processes Alliance.** This ongoing, multi-faceted research program attempts to understand recruitment variability, focusing on mechanisms that mediate growth and survival of egg, larval and juvenile stages of focal Gulf of Alaska fish species.

- **Ocean acidification research.** This project will involve a series of laboratory experiments to describe the effect of ocean acidification on the growth and development of walleye pollock and northern rock sole.

- **Spatial response of northeast Pacific groundfish to anomalous warming in 2015.** This project examines the role of extreme environmental conditions on the spatial distribution patterns of northeast Pacific groundfish throughout their range in an anomalously warm year (2015),
Risk Assessment

• **Climate vulnerability analysis for the Gulf of Alaska.** This project will qualitatively assess species vulnerabilities to climate change and provide guidance on research prioritization. This project will rely on standard NOAA Fisheries approach that has been used in the eastern Bering Sea and elsewhere.
Modeling climate impacts and management scenarios

Global Climate Models (x 3)
- ECHO-G (AR4 A1B)
- MIROC3.2 med res. (AR4 A1B)
- CGCM3-t47 (AR4 A1B)

IPCC Scenario
- AR4 A1B

Physical downscaling

Bering Sea Model
- Nutrients
- Phytoplankton
- Zooplankton
- Krill

ROMS

CEATTLE

Multi-species Model
- Walleye pollock
- Pacific cod
- Arrowtooth flounder

Climate Enhanced Assessment Models

Figure 5. Example of climate-enhanced multi-species model with socioeconomic module. (Holsman et. al. in prep)

Climate-specific Harvest & Population Projections
Modeling climate impacts and management scenarios

- CEATTLE multispecies model. This project will apply the CEATTLE multispecies model to characterize interactions between walleye pollock, Pacific cod, arrowtooth flounder and halibut in the Gulf of Alaska. This project will evaluate future fisheries productivity and climate-specific reference points under a variety of climate projections and harvest strategies.

- Computable general equilibrium (CGE) regional economic models for southwest Alaska. This project develops computable general equilibrium models for six borough and census areas in southwest Alaska to evaluate impacts of climate change at the local scale.
RAP Table of Projects

<table>
<thead>
<tr>
<th>NCSS objectives addressed</th>
<th>Action name</th>
<th>Funding scenario</th>
<th>Time frame</th>
<th>Action description</th>
<th>Division/Partners</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>Long-term monitoring</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>6, 7</td>
<td>Bottom trawl survey</td>
<td>Level</td>
<td>Ongoing</td>
<td>Multi-species bottom trawl surveys are conducted to monitor trends in abundance and distribution of demersal component of the ecosystem, including fish and invertebrates.</td>
</tr>
<tr>
<td></td>
<td>1, 2, 3, 4</td>
<td>Single species MSEs for sablefish and several rockfish</td>
<td>Increase</td>
<td></td>
<td>Link recruitment and other biological processes to environment variables. Project future population trends, distribution and movement patterns.</td>
</tr>
<tr>
<td></td>
<td>...</td>
<td>...</td>
<td>...</td>
<td>...</td>
<td>...</td>
</tr>
</tbody>
</table>