MAPPING A FISHERY: A FULLY-SPATIAL STOCK ASSESSMENT FOR SNOW CRAB IN THE BERING SEA

Maxime Olmos, Jie Cao, James Thorson, Andre Punt, Cody Szuwalski

molmos@uw.edu

$5 \frac{\text { Aquatic and Fishery Sciences }}{\text { University of Washington }}$

Why a fully-spatial stock assessment model ?

- Need to increase biological realism in population dynamic and stock assessment
- Spatial homonogeity - BUT populations are spatially patchy and locally structured (Boudreau et al 20I7, Ehlren \& Morris, 2015)
\rightarrow Spatially aggregated population models are likely to yield biased estimated of population quantities (Punt 20|9, Goethel et al., 2015)

Why a fully-spatial stock assessment model ?

- Need to increase biological realism in population dynamic and stock assessment
- Spatial homonogeity - BUT populations are spatially patchy and locally structured (Boudreau et al 20I7, Ehlren \& Morris, 2015)
\rightarrow Spatially aggregated population models are likely to yield biased estimated of population quantities (Punt 20|9, Goethel et al., 2015)
- Survey data and catches are aggregated spatially \& Track total abundance across the entire stock
\rightarrow Degrading stock assessment performance
\rightarrow Leading to overexploitation of weaker populations units
\rightarrow and to ineffective recovery plans

Why a fully-spatial stock assessment model ?

- Need to increase biological realism in population dynamic and stock assessment
- Spatial homonogeity - BUT populations are spatially patchy and locally structured (Boudreau et al. 20I7, Ehlren \& Morris, 2015)
\rightarrow Spatially aggregated population models are likely to yield biased estimated of population quantities (Punt 20|9, Goethel et al., 2015)
- Survey data and catches are aggregated spatially \& Track total abundance across the entire stock
\rightarrow Degrading stock assessment performance
\rightarrow Leading to overexploitation of weaker populations units
\rightarrow and to ineffective recovery plans
- As a changing climate alters the spatial distribution of stocks and the potential for fisheries interactions increases

Snow crab in the Bering sea

- Spatial considerations are important for snow crab

A spatially concentrated fishery

- Migrations (ontogenic)
- The stock's association with the cold pool and the potential for marine heat waves to influence dynamics

|OBJECTIVE| Implement a spatial stock assessment

- Accepts raw survey data and spatial fishery dependent data as inputs
- Produces maps of
- exploitable biomass,
- recruitment,
- fishing mortality,
and other quantities used in management (SSB)
|CHALLENGE| How to implement a spatially-explicit stock assessment model

|CHALLENGE| How to implement a spatially-explicit stock assessment model

POPULATION DYNAMIC MODEL
including fisheries process

WITHIN A SINGLE
STATISTICAL
FRAMEWORK
to permit inference for each state
variable through space and time

SPECIES DISTRIBUTION MODEL

|CHALLENGE| How to implement a spatially-explicit stock assessment model

Model- spatiotemporal size-structured population model of abundance (cao etal, 2020)

- Spatiotemporal population model

- Combines theory and methods from population dynamics and geostatistics
- Assumes population density varies continuously across space
- Joint distribution for density at all locations
- Expanded to account for size-structured population dynamics

Model- spatiotemporal size-structured population model of abundance (cao etal, 2020)

- Spatiotemporal population model

- Combines theory and methods from population dynamics and geostatistics
- Assumes population density varies continuously across space
- Joint distribution for density at all locations
- Expanded to account for size-structured population dynamics

- Size structure model

- Requires no ability to age animals (invertebrate-crabs)
- Uses the data actually available
- Vulnerability / maturity are often function of size and not age

Model- spatiotemporal size-structured population model of abundance (cao etal, 2020)

- Process model

- Abundance at size (n) for a given size class I, location s and time $\boldsymbol{t + 1}$ is expressed as a product of

$$
n_{s, t+1}=g\left(n_{s, t}\right)^{\circ} e^{\varepsilon_{S, t}}
$$

Function of the previous density and Process error term
model parameters describing the
population dynamics

- $\varepsilon_{s, t}$ accounts for unmodelled spatial and temporal process
\checkmark movement,
\checkmark spatial variation in biological parameters such as growth and natural mortality.
- Process error considers pairwise covariation between
\checkmark any two size classes
\checkmark any two locations s and si

Model- spatiotemporal size-structured population model of abundance (cao etal, 2020)

- Population dynamic is described by $g\left(n_{s, t}\right)$

- Male/female
- Only males are retained in the fishery
- Split into maturity state
- Mature individuals do not molt

For Sex == male

```
r
\mp@subsup{\boldsymbol{p}}{\mathrm{ male Proportion of male recruitment}}{}=\mathrm{ P}
    G
        Growth transition matrix
m
        Vector of natural mortality at location s, year t
    f
    v
n_s,t}\mp@subsup{|}{}{immat
                                Vector of immature abundance for each of I size classes
                                Vector of mature abundance for each of I size classes
                                Vector of maturity of each size class
```

$$
g\left(n_{s, t}\right)=\left\{\begin{array}{l}
r_{s, t} * \boldsymbol{p}_{\boldsymbol{m a l e}}+G\left(n_{s, t-1}^{i m m a t} e^{-m_{s, t-1}-v * f_{s, t-1}}\right) *(1-\omega) \text { if } n=n^{i m m a t} \\
G\left(n_{s, t-1}^{m a t} e^{-m_{s, t-1}-v * f_{s, t-1}}\right) * \omega+n_{s, t-1}^{m a t} e^{-m_{s, t-1}-v * f_{s, t-1}} \quad \text { if } n=n^{m a t}
\end{array}\right.
$$

Model- spatiotemporal size-structured population model of abundance (cao etal, 2020)

- Parameters and estimation

- Recruitment
\checkmark The model allows spatial process error to account for spatial variation in recruitment
\checkmark The model estimates the annual average recruitment

Model- spatiotemporal size-structured population model of abundance (cao etal, 2020)

- Parameters and estimation

- Recruitment
\checkmark The model allows spatial process error to account for spatial variation in recruitment
\checkmark The model estimates the annual average recruitment
- Fishing mortality

$$
\log \left(f_{s, t}\right) \mid \log \left(f_{s, t-1}\right) \sim N\left(\log \left(f_{s, t-1}\right), \sigma_{f}^{2}\right)
$$

\checkmark size specific selectivity

$$
f_{l, s, t}=f_{s, t} * v_{l}
$$

Model- spatiotemporal size-structured population model of abundance (cao etal, 2020)

- Parameters and estimation

- Recruitment
\checkmark The model allows spatial process error to account for spatial variation in recruitment
\checkmark The model estimates the annual average recruitment
- Fishing mortality

$$
\log \left(f_{s, t}\right) \mid \log \left(f_{s, t-1}\right) \sim N\left(\log \left(f_{s, t-1}\right), \sigma_{f}^{2}\right)
$$

\checkmark size specific selectivity

$$
f_{l, s, t}=f_{s, t} * v_{l}
$$

- Parameters (input data based on external information)

- Growth transition matrix
- Natural mortality
- Proportion of male at recruitment and achieving maturity at each size

Observation models (Cao et al, 2020)

- "Poisson link" delta model (Thorson 20|7) fit to observed survey biomass at location stime t
- Predicted local density of individual
- Encounter probability
- Spatially referenced fisheries- dependent data (total amount of fish by size class) is assumed to be lognormally distributed

Model validation \& evaluation using simulations (Cao etal, 2020)

- Experiment I- How model performance is affected by movement processes that are modelled explicitly when simulating data (Operating Model=OM)
- Scenario I- No measurement error and no movement in the OM

Scenario 2- Same as scenario I, except there is movement
Scenario 3- Both measurement error and movement in the OM

- Experiment 2- Effect of sample size

- data poor 50 locations
- moderate level IOO locations
data rich 200 locations

Results- Experiment I-Scenario I-

- The model can generate unbiased and precise estimates of abundance and fishing mortality spatially when data are not subject to measurement error and no movement

Distribution of size class without measurement error and movement

Results- Experiment I-Scenario 2 \& 3

- Scenario 2

- The model accounts for movement implicitly via its estimates of process error when the spatiotemporal model fits to data without measurement error but generated given unmodelled (in the Estimation Model) individual movement
- This unmodelled spatial process did not lead to poorer model performance. The model recovers the spatial variation in abundance and fishing mortality over time

- Scenario 3

- The model is able to recover the spatial variation when sampling errors are present (with lower precision)

Fishing mortality without measurement error

Conclusions

```
FISH and FISHERIES N
ORIGINAL ARTICLE
A novel spatiotemporal stock assessment framework to better
address fine-scale species distributions: Development and
simulation testing
Jie Cao\, James T. Thorson, André E. Punt, Cody Szuwalski
```

- The spatiotemporal model produced unbiased estimates of abundance and fishing mortality spatially
- The spatiotemporal model outperformed a spatially-implicit model
- The modeling approach bridges the gap between species distribution and population dynamic models and provides the opportunity to improve natural resource management and conservation

|CHALLENGE| How to implement a spatially-explicit stock assessment model

|CHALLENGE| How to implement a spatially-explicit stock assessment model

```
POPULATION DYNAMIC MODEL
including fisheries process
Fisheries data
(Alaska Department of Fish and Game)
```


WITHIN A SINGLE
 STATISTICAL
 FRAMEWORK

```
to permit inference for each state
variable through space and time
```


Survey data

(National Marine Fisheries Service)

VAST as a tool to explore spatial variations in survey data

- VAST (Thorson, 2019) (Vector Autoregressive Spatio-Temporal) is

- a spatially explicit model that predicts population density for all locations within a spatial domain
- VAST forms the underlying machinery of the assessment model (Cao et al. 2020)

DATA- Annual eastern Bering Sea bottom trawl survey (NMFS)

DATA- Annual eastern Bering Sea bottom trawl survey (NMFS)

- Stations (Zacher et al., 20|9)
- In I982: the survey net was changed resulting in a potential change in catchability
- 1989 : additional survey stations were added

DATA- Annual eastern Bering Sea bottom trawl survey (NMFS)

- Stations (Zacher et al., 20|9)
- In 1982: the survey net was changed resulting in a potential change in catchability
- 1989 : additional survey stations were added
- Survey selectivity has been historically modeled in two'eras' in the assessment (Szuwalski et al., 2019)
\checkmark 1982-1988
\checkmark 1989-present
- 355-375 stations

DATA- Annual eastern Bering Sea bottom trawl survey (NMFS)

- Stations
- Hauls- For few years, several hauls within a station

DATA- Annual eastern Bering Sea bottom trawl survey (NMFS)

- Stations

- Hauls- For few years, several hauls within a station

DATA- Annual eastern Bering Sea bottom trawl survey (NMFS)

- Stations

- Hauls- For few years, several hauls within a station

- The standard survey is completed in late July or early August at the western edge of the survey grid, northwest of St. Matthew Island. In some years (i.e., 1999, 2000, 2006-2012, 2017) when the red king crab reproductive cycle is delayed due to colder water temperatures, a small portion of the inner Bristol Bay area is resampled after the conclusion of the standard survey

[^0]
DATA- Annual eastern Bering Sea bottom trawl survey (NMFS)

- Stations

- 1989-present: 355-375 stations
- Hauls: early summer
- Spatial distribution

DATA- Annual eastern Bering Sea bottom trawl survey (NMFS)

- Stations (Zacher et all, 20|9)
- I 989-present: 355-375 stations
- Hauls
- Spatial distribution
- Demographic categories

Width histogram plot

RUNVAST

- Output are not ecologically or even statistically interpretable because I made a lot of assumptions, like selectivity at length is the same
\rightarrow How VAST can help to explore data and understand spatial variations in survey data

Density

Density

Density

Center of gravity indicating temporal shifts in the mean east-to-west and north-to-south distribution

- Center of gravity indicated that crab was

 distributed farther south during the beginning of the time serie
- Perspective

- Climate change-related distribution changes
- Link density with covariates generating distribution changes
\checkmark Cold pool
\checkmark Temperature (bottom or surface)
- Link recruitment ?

Effective area occupied: indicating range expansion/contraction

- High size classes crab : decrease in area occupied

- Perspectives

Habitat loss? Depending on life stage ?

Index of abundance

|CHALLENGE| How to implement a spatially-explicit stock assessment model

POPULATION DYNAMIC MODEL

including fisheries process

Fisheries data
(Alaska Department of Fish and Game)

WITHIN A SINGLE
 STATISTICAL
 FRAMEWORK

to permit inference for each state
variable through space and time

SPECIES DISTRIBUTION MODEL

Survey data

(National Marine Fisheries Service)

RETAINED CATCHES provided by ADFG

- Time-serie : 1985-2019

Spatial distribution of catches

- Catches are spatially concentrated

Spatial distribution of catches

- Catches are spatially concentrated

Spatial distribution of catches

- Catches are spatially concentrated

Spatial distribution of catches

- Catches are spatially

 concentrated

Spatial distribution of catches

- Catches are spatially concentrated

Spatial distribution of catches

|Next steps|

POPULATION DYNAMIC MODEL

including fisheries process

Fisheries data

(Alaska Department of Fish and Game)

- Fit Data to Cao's model
- Two independent models for male and female
- Any possibility to implement:

○ Movement
\checkmark survey: summer
\checkmark fisheries: winter

- Spatially explicit information on the size composition of the catches
- Data to estimate parameters which were specified based on external information
\checkmark Proportion achieving maturity at each size/male in recruitment
\checkmark Natural mortality
\checkmark Growth transition matrix

|Next steps|

- Fit Data to Cao's model

- Catchability/Selectivity- trawl efficiency

○ "Snow crab survey catchability function is not a logistic function of carapace width as it is assumed in the stock assessment model."

- "Trawl selectivity was greater in sand than mud and greater in shallow water than deep"

SPECIES DISTRIBUTION MODEL

Survey data

(National Marine Fisheries Service)

Thank you very much

Details

Composition data output

Process

Abundance at size (n) for a given locations and time t

	(${ }_{\text {ct }}=g\left(\boldsymbol{n}_{s, t}\right) \circ e^{\varepsilon_{s, t}}$	$\boldsymbol{n}_{s, t}$	vector of abundances for each of 1 size classes
$\boldsymbol{\Sigma}_{t} \sim \operatorname{MVN}\left(0, \mathbf{R}_{\text {spatial }} \otimes \boldsymbol{\Theta}_{\boldsymbol{L}}\right)$		$g()$	function representing population dynamic
		$\varepsilon_{s, t}$	vector of random effects (process error)
-	Hadamard product (entrywise product)	$\boldsymbol{\theta}_{\boldsymbol{L}}$	covariance among size classes (l by 1 matrix \mathbf{L})
s	location	$\mathbf{R}_{\text {spatial }}$ spatial covariance matrix (covariance between 2 locations follows a Matern function)	
t	year		
\otimes	Kronecker product		

[^0]:

