
Aleutian Islands Golden King Crab Model Scenarios for May 2023 Assessment

## M.S.M. Siddeek<sup>1</sup>, T. Jackson<sup>2</sup>, B. Daly<sup>2</sup>, C. Siddon<sup>1</sup>, M.J. Westphal<sup>3</sup>, and L. Hulbert<sup>1</sup>

Alaska Department of Fish and Game, Juneau<sup>1</sup>, Kodiak<sup>2</sup>, and Dutch Harbor<sup>3</sup>, Alaska

January 19, 2023

#### Catch (t) and CPUE (number of crab per pot lift), 1985/86–2021/22

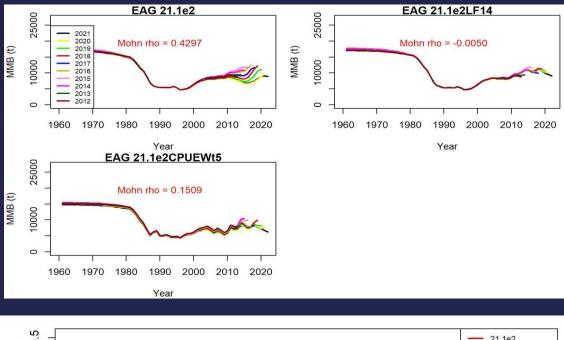


TACs : 2021/22: (1) EAG: 3.61 million lbs (2) WAG: 2.32 million lbs

## Selected May 2022 CPT comments

Comment 2: Continue work to obtain an index using the cooperative pot survey data for use in the EAG assessment model.

Response: Done. See Appendix C.


Comment 3: Identify and eliminate the conflict between the model and the data giving rise to the retrospective patterns for EAG models.

#### Response:

Models with variable catchability (see response 4), removal of some years' (above 2014) size composition data, and weighting CPUE likelihoods reduced the MMB retrospective patterns in the EAG (Figures Resp.1 and Resp.2).

Better CPUE fits were obtained for models with removal of some years' size composition data and CPUE likelihood weighting.

#### Fig. Resp1



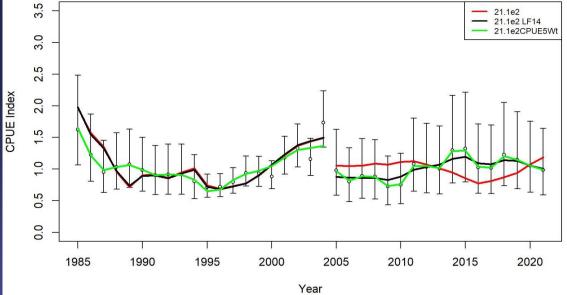



Fig. Resp2

## May 2022 CPT comments continued

 Comment 4: Revisit the analysis considering a model with time-varying catchability but impose a penalty on the devs to allow the index data to inform the model.

#### Response:

To address this question, we formulated the following time varying catchability sub-model for the post-rationalization period and fitted this sub-model (21.1e2Q):

$$Q_t = \bar{Q}e^{\sigma e_t - \frac{\sigma^2}{2}}$$

The variable catchability model reduced the **EAG** retrospective pattern with a low Mohn rho value (see Figure Resp.3).

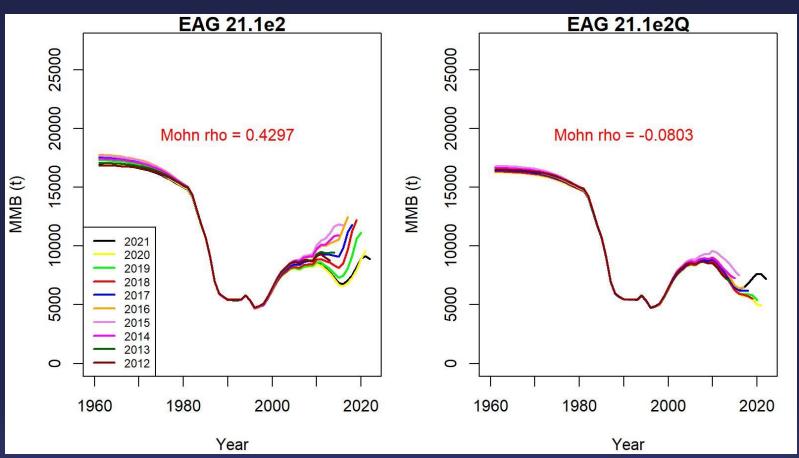
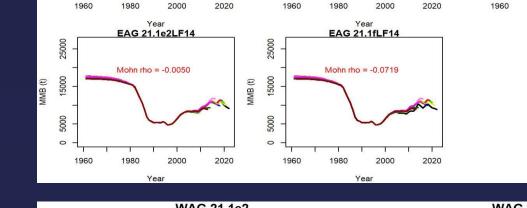



Fig. Resp3. Retrospective fits of MMB following systematic nine peels of terminal year data under models 21.1e2 (base three constant catchability model) and 21.1e2Q (time varying catchability model) for golden king crab in EAG, 1961–2022.

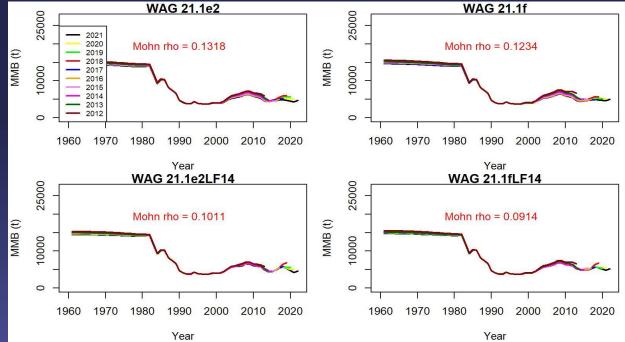

May 2022 CPT comments continued

Comment 7: Perform retrospective analyses for all models that have the potential to serve as the basis for calculating reference points.

### Response:

Retrospective plots of all models for EAG and WAG that have the potential to serve as the basis for calculating reference points are shown in Figures Resp.6 and Resp.7. Removal of some years' size composition data has vastly reduced the retrospective pattern with lower values of Mohn rho for EAG but not so much for WAG.






MMB (t)

EAG 21.1e2

Mohn rho = 0.4297

MMB (t)



EAG 21.1f

Mohn rho = 0.3953

Fig. Resp7 WAG EAG 21.1e2Q

Mohn rho = -0.0803

Year

MMB (t)

Comment 8: Calculate reference points using both combined-area and area-specific size-at-maturity values.

Response:

Table Resp.2 lists the reference points estimated at combined-area and area-specific knife-edge size at maturity. First row values are reference points estimated at the common knife-edge maturity size of 116 mm CL (combined area estimate), whereas the second-row values are those estimated at area specific maturity sizes.

|     |                           |      |                    | Current | MMB/               |              |                  | M(yr⁻¹) | OFL   | MaxABC    | ABC        |
|-----|---------------------------|------|--------------------|---------|--------------------|--------------|------------------|---------|-------|-----------|------------|
|     | Model                     | Tier | MMB <sub>35%</sub> | ММВ     | MMB <sub>35%</sub> | <b>F</b> OFI | F <sub>35%</sub> |         |       | (P*=0.49) | (0.75*OFL) |
| EAG | 21.1e2<br>Maturity<br>116 | 3a   | 6,524              | 7,545   | 1.16               | 0.56         | 0.56             | 0.22    | 2,898 | 2,884     | 2,174      |
|     | 21.1e2<br>Maturity<br>111 | За   | 6,747              | 7,824   | 1.16               | 0.64         | 0.64             | 0.22    | 3,213 | 3,198     | 2,410      |

|     |                           |      |                    | Current | MMB/               |      |                  | M(yr <sup>-1</sup> ) | OFL   | MaxABC    | ABC        |
|-----|---------------------------|------|--------------------|---------|--------------------|------|------------------|----------------------|-------|-----------|------------|
|     | Model                     | Tier | MMB <sub>35%</sub> | MMB     | MMB <sub>35%</sub> | FOE  | F <sub>35%</sub> |                      |       | (P*=0.49) | (0.75*OFL) |
| WAG | 21.1e2<br>Maturity<br>116 | 3a   | 4,905              | 4,911   | 1.00               | 0.54 | 0.54             | 0.22                 | 1,340 | 1,335     | 1,005      |
|     | 21.1e2<br>Maturity<br>121 | 3b   | 4,717              | 4,526   | 0.96               | 0.45 | 0.47             | 0.22                 | 1,152 | 1,145     | 864        |

| Model                               | M(yr⁻¹) | OFL   | MaxABC<br>(P*=0.49) | ABC<br>(0.75*OFL) |
|-------------------------------------|---------|-------|---------------------|-------------------|
| 21.1e2 Maturity 116                 | 0.22    | 4,238 | 4,219               | 3,179             |
| 21.1e2 Maturity EAG<br>111, WAG 121 | 0.22    | 4,410 | 4,391               | 3,307             |

## May 2022 CPT comments continued

 Comment 9: Perform a retrospective analysis on the ability to predict year-end CPUE prior to the end of the season.

Response:

Total Catch = Nominal Total CPUE \* Effort.

For an incomplete fishery (2020/21 and 2021/22), end of season total effort was predicted by dividing the TAC by the current retained CPUE to determine total catch.

CPT/SSC suggested to do a retrospective analysis to predict year-end nominal total CPUE prior to end of the season to improve total catch prediction capability. We used an exponential CPUE prediction model to address this issue:

$$CPUE_y = [a * e^{-b * f_y}] e^{\sigma e_t - \frac{\sigma^2}{2}}$$

To predict year-end CPUE and use it for year y+1 CPUE, the model was fitted with CPUE and fishing effort for completed fishing seasons, 1990 to year y. The estimated parameters were used to predict the CPUE as year-end CPUE (see Table Resp.3).

Table Resp3. Fishing effort and predicted year-end CPUE for 2016/17–2021/22 and estimated total catch for incomplete and complete fishing seasons, 2020/21–2021/22.

|                    | Incomplete Fish                            | ery                                          |                             | Comple          | eted Fishery          |                          |
|--------------------|--------------------------------------------|----------------------------------------------|-----------------------------|-----------------|-----------------------|--------------------------|
| Terminal<br>Season | Previous<br>Season<br>Incomplete<br>Effort | Predicted Year-<br>end Nominal<br>Total CPUE | Estimated<br>Total<br>Catch | Total<br>Effort | Nominal<br>Total CPUE | Estimated<br>Total Catch |
| 2016/17            |                                            | 26.3572                                      |                             |                 | 24.2900               |                          |
| 2017/18            |                                            | 26.6218                                      |                             |                 | 25.5289               |                          |
| 2018/19            |                                            | 27.4734                                      |                             |                 | 30.6098               |                          |
| 2019/20            |                                            | 27.9075                                      |                             |                 | 22.7350               |                          |
| 2020/21            | 38,733                                     | 25.9151                                      | 1,003,768                   | 46,701          | 22.7917               | 1,064,397                |
| 2021/22            | 37,478                                     | 25.3407                                      | 949,718                     | 46,161          | 20.9729               | 968,132                  |

May 2022 CPT comments continued

Comment 10: Re-evaluate the time frame over which to calculate mean recruitment every year.

#### Response:

Years selected to calculate mean recruitment for reference points estimation and equilibrium initialization for model simulation are the same. So, the change in the selected time for mean recruitment calculation did not affect the MMB time series (1960–2021) or OFL but slightly changed the MMB<sub>35%</sub> estimates for EAG and WAG, respectively (Table Resp4) Table Resp4. Estimates of reference points for the base model, 21.1e2, for different mean recruitment calculation periods. Biomass and OFL are in t. Current MMB = MMB in 2022.

| EAG | Years<br>Selected for                               |            |                             | Current        | MMB/                       |                                |                          | M(yr <sup>-1</sup> )         | OFL          |
|-----|-----------------------------------------------------|------------|-----------------------------|----------------|----------------------------|--------------------------------|--------------------------|------------------------------|--------------|
|     | Mean R                                              | Tier       | MMB <sub>35%</sub>          | MMB            | MMB <sub>35%</sub>         | <b>F</b> OFI                   | F <sub>35%</sub>         | ( <b>y</b> . )               |              |
|     | 1987–2017<br>(status quo)                           | 3a         | 6,524                       | 7,545          | 1.16                       | 0.56                           | 0.56                     | 0.22                         | 2,898        |
|     | 1987–2018                                           | 3a         | 6,649                       | 7,545          | 1.13                       | 0.56                           | 0.56                     | 0.22                         | 2,898        |
|     | 1987–2019                                           | 3a         | 6,659                       | 7,545          | 1.13                       | 0.56                           | 0.56                     | 0.22                         | 2,898        |
|     | 1987–2020                                           | 3a         | 6,630                       | 7,545          | 1.14                       | 0.56                           | 0.56                     | 0.22                         | 2,898        |
|     |                                                     |            |                             |                |                            |                                |                          |                              |              |
|     |                                                     |            |                             |                |                            |                                |                          |                              |              |
|     | Years                                               |            |                             |                |                            |                                |                          |                              |              |
|     | Years<br>Selected for                               |            |                             | Current        | MMB/                       |                                |                          |                              |              |
|     |                                                     | Tier       | MMB <sub>35%</sub>          | Current<br>MMB | MMB/<br>MMB <sub>35%</sub> | For                            | F <sub>35%</sub>         | M(yr <sup>-1</sup> )         | OFL          |
| WAG | Selected for                                        | Tier<br>3a | MMB <sub>35%</sub><br>4,905 |                |                            | <b>F<sub>оғі</sub></b><br>0.54 | F <sub>35%</sub><br>0.54 | M(yr <sup>-1</sup> )<br>0.22 | OFL<br>1,340 |
| WAG | Selected for<br>Mean R<br>1987–2017                 |            |                             | MMB            | MMB <sub>35%</sub>         |                                |                          |                              |              |
| WAG | Selected for<br>Mean R<br>1987–2017<br>(status quo) | За         | 4,905                       | MMB<br>4,911   | MMB <sub>35%</sub><br>1.00 | 0.54                           | 0.54                     | 0.22                         | 1,340        |

## May 2022 CPT comments continued <sup>15</sup>

Comment 11: Compare biomass trends from the RACE AI survey and the standardized assessment CPUE.

## Response:

Compared the RACE survey abundance index with the fishery (observer) CPUE index separately for EAG and WAG (Figure Resp.9).

For this comparison, each year's RACE survey total abundance estimate was standardized by dividing by the geometric mean of the survey abundance estimates for 1986 to 2018.

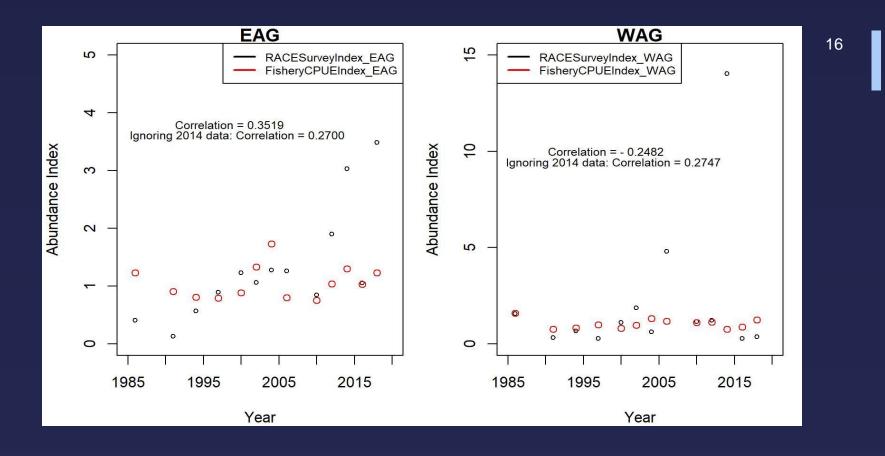



Fig. Resp9. Comparison of Race survey index and fishery CPUE index for EAG (left) and WAG (right), 1986 to 2018. The 2014 survey index for WAG appears to be an outlier and correlation coefficients with and without this data point are provided in the plots.

## May 2022 CPT comments continued

17

Comment 12: Develop a single-area model

Response: Table Resp. 5 and Figure Resp. 10 provide estimates of reference points and MMB retrospective fits for AI.

Table Resp5. Estimates of reference points for AI: Biomass and OFL are in t. Current MMB = MMB in 2022.

|             |      |                    |         |                    |      |                  | M(yr⁻¹) | OFL   |
|-------------|------|--------------------|---------|--------------------|------|------------------|---------|-------|
|             |      |                    | Current | MMB/               |      |                  |         |       |
| Model       | Tier | MMB <sub>35%</sub> | MMB     | MMB <sub>35%</sub> | FOFI | F <sub>35%</sub> |         |       |
| 21.1e2      | 3a   | 11,363             | 12,521  | 1.10               | 0.55 | 0.55             | 0.22    | 4,244 |
| 21.1f       | 3a   | 11,740             | 16,707  | 1.42               | 0.54 | 0.54             | 0.22    | 6,206 |
| 21.1e2 LF14 | 3a   | 12,208             | 14,424  | 1.18               | 0.54 | 0.54             | 0.22    | 5,212 |
| 21.1f LF14  | 3a   | 12,800             | 20,008  | 1.56               | 0.53 | 0.53             | 0.22    | 8,457 |

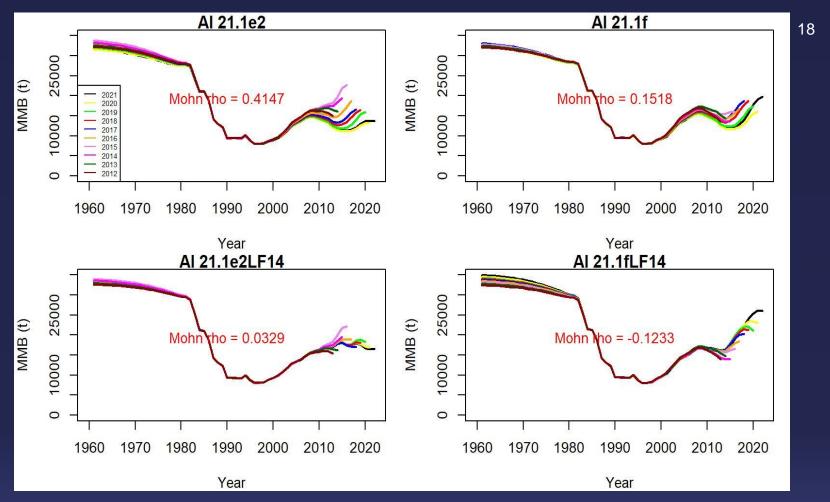



Figure Resp.10. Retrospective fits of MMB following systematic nine peels of terminal year data for all representative models (21.1e2, 21.1f, 21.1e2LF14, and 21.1fLF14) for golden king crab in AI, 1961–2022.

## Selected June 2022 SSC comments

Comment 3: The SSC requests that a future analysis consider the spatial footprint of the historical and new data sets to determine if the data exist to show a temporal trend in the spatial variability in size at maturity.

Response: We plan to do this investigation soon. Our group is currently investigating area specific maturity.

Comment 4: In the next assessment cycle, provide a model that includes year:area interaction in the CPUE index that includes all diagnostic tools, in particular, a retrospective analysis.

Response:

Diagnostics results on Year:Area interaction analysis are provided in Appendix B. Retrospective plots for Year:Area interaction models are also provided in Figures Resp.6, 7, and 10 for EAG, WAG, and AI, respectively.

## June 2022 SSC comments continued

 Comment 6: As the GMACS analysts develop and combine code, consider the ability of the model to accommodate 1) a unified (east and west) single-area AIGKC stock assessment model; 2) a two-area spatial model with some shared parameters and connectivity; and 3) the time series of cooperative survey data now available in both regions.

Response:

1. GMACS models have been developed as separate area (EAG and WAG) models. A preliminary analysis on unified single-area model was carried out in this cycle (see our response to CPT comment#12). Once this approach is accepted, it will be possible to implementing a single area model in GMACS.

2. We have still not figured out a two-area spatial model with some shared parameters and connectivity because AIGKC stock is still data poor. This can be identified as a future goal.

3. Cooperative survey data analysis is presented in Appendix C. Model 21.1g considered EAG cooperative survey indices. Once the approach and results are accepted by CPT/SSC, it can be implemented in GMACS.

## June 2022 SSC comments continued<sup>21</sup>

• **Comment 7:** Consider a focused AIGKC GMACS item on the January 2023 modeling workshop for comparison with the non-GMACS model.

Response: Done (see Appendix D).

Comment 8: Based on public testimony regarding increasing trawl overlap with the AIGKC distribution, provide a map of historical trawl fishery distribution relative to the AIGKC fishery.

Response: The groundfish fishery and the golden king crab fishery overlap is shown in Figure Resp.12.

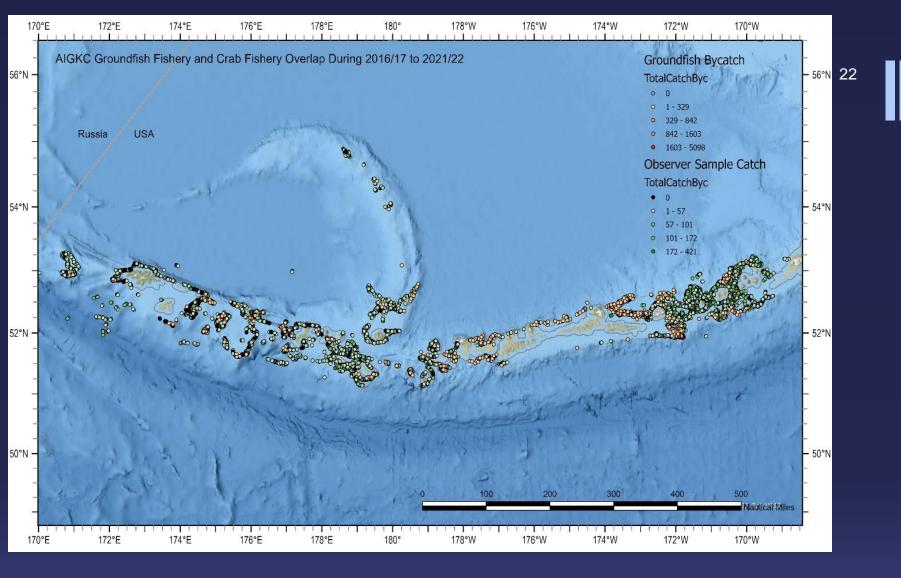



Fig. Resp.12. AIGKC groundfish (trawl and contact gear) fishery and golden king crab fishery overlap during 2016/17–2021/22 in the Aleutian Islands. Observer sample catch and groundfish fishery bycatch locations are plotted to show the overlap.

## Appendix C: Cooperative survey

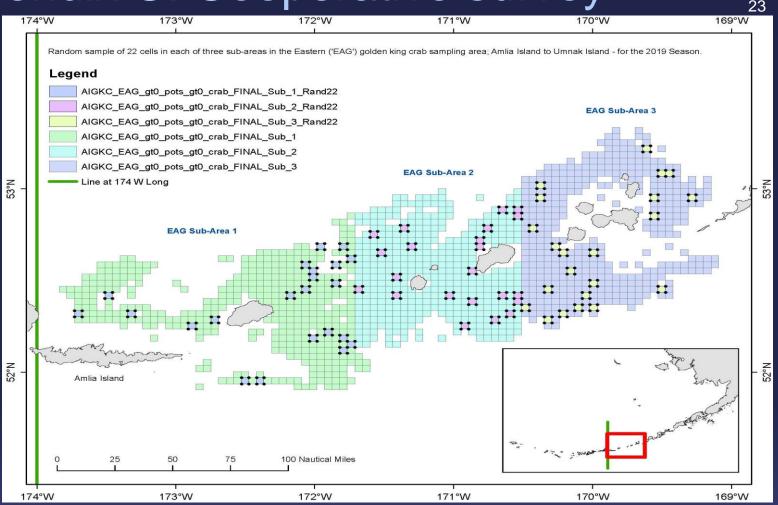



Figure C.3. Survey design: 2 nmi x 2 nmi grids stratified by three equal sizes for selecting random pot sampling locations in EAG. e.g., Random sample of 22 cells selected in each of three sub strata in EAG during the 2019 fishery.

- Summary of survey method:
- 1. The ADF&G and industry collaborative pot survey was started in 2015 in the EAG. All samples were taken in EAG except for 2018/19, during which measurements were also taken from WAG.
- A stratified two-stage sampling design has been implemented in a 2 nmi x 2 nmi grids within 1000 m depth covering the entire golden king crab fishing area.
- 3. Surveys occur during the first month of each fishing season. Fishing operation takes place in a randomly selected set of grids in each stratum with long-line pots. The number of pots per string ranges from 30 to 40, 200 m apart, and a vessel carries on average 35 strings.
- 4. There are multiple pots (typically about 5 pots) sampled for each longline string with approximately 35 crab measurement made per pot.

Example of a data entry record:

| fishery | year | vessel | skipper         | String# | pot_size | mesh_<br>size   | bait    | subsample<br>_rate | species_<br>code | sex | size | legal |
|---------|------|--------|-----------------|---------|----------|-----------------|---------|--------------------|------------------|-----|------|-------|
| EAG     | 2015 | 20556  | Chad_<br>Hoefer | 1       | 5x5      | king(lar<br>ge) | halibut | 2                  | 923              | 1   | 187  | 1     |

| Pot# | date_in |       | depth_<br>start | start_lat | start_lon | depth<br>_out | end_lat | end_lon  | date_out | time_out | soak_time |
|------|---------|-------|-----------------|-----------|-----------|---------------|---------|----------|----------|----------|-----------|
| 1    | 8/4/15  | 17:00 | 132             | 52.74133  | -170.692  | 133           | 52.7515 | -170.675 | 8/17/15  | 3:00     | 12.41667  |

## Data preparation and model formulation for CPUE standardization:

- Created two new columns by concatenating Vessel code with String# as well as with String# and Pot# because String# and Pot# are not unique numbers to each vessel. The new column names were identified as VesString and VesStingPot.
- Summed up the catch across sizes for each Pot# and labelled it as SumCatch (response variable). Thus, each Pot# has a single catch number.
- The dispersion parameter for the negative binomial error model and the degrees of freedom for cubic splines for soak time and depth variables were estimated by a fixed effect GLM model using survey data.
- Selected random intercept model:

Sum Catch = Y+ns (Depth, df=2)+ns (Soak, df=9)+Captain+(1|Block/VesselString) (C.3) family= negative binomial ( $\theta$ =6.08).

## Results

**326**0 4 rstudent(best.lmefit2) N 0 2 4 -3 -2 -1 3 2 0 1 norm quantiles

Random Effects Model 2 Fit, Cooperative Survey 2015-2021

Figure C.10. Studentized residual plot for the mixed random effects model fit using the 2015–2019, 2021 EAG data.

## CPUE standardization:

- Mixed effects model predicted CPUEs were used to estimate, first yearly mean predicted survey CPUEs and then yearly CPUE indices by standardizing the yearly survey CPUE by the geometric mean of survey CPUEs.
- The variance of *CPUE* index<sub>t</sub> =  $var(log(CPUE))/n_t$
- Model 21.1g uses cooperative survey indices (Table C.3).
  Table C.3.

|      | Predicted CPUE |         |             |             | Sample size |
|------|----------------|---------|-------------|-------------|-------------|
| Year | index          | SE      | Lower Limit | Upper Limit |             |
| 2015 | 1.27802        | 0.03227 | 1.19815     | 1.36321     | 274         |
| 2016 | 0.99140        | 0.03174 | 0.93042     | 1.05637     | 288         |
| 2017 | 1.20299        | 0.04150 | 1.10718     | 1.30710     | 200         |
| 2018 | 1.20225        | 0.03556 | 1.11972     | 1.29086     | 230         |
| 2019 | 0.71618        | 0.03633 | 0.66598     | 0.77016     | 263         |
| 2021 | 0.76197        | 0.03155 | 0.71538     | 0.81160     | 227         |

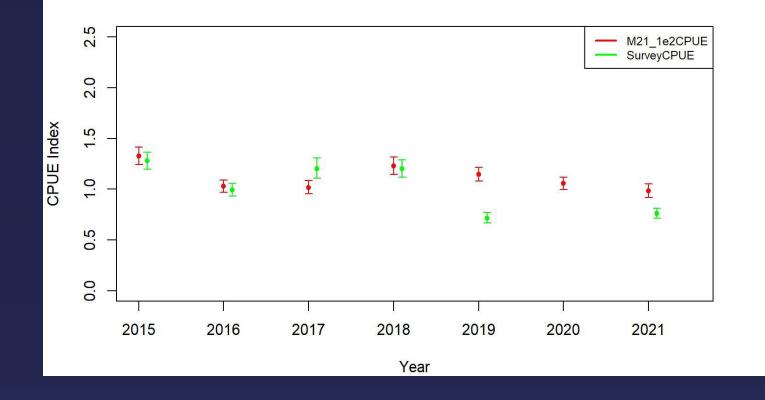


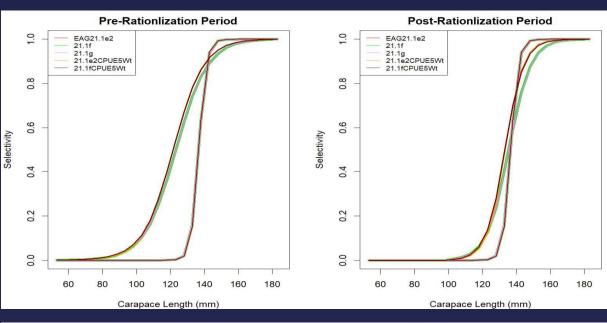

Figure C.11. Comparison of survey random effects model CPUE indices (green) and observer non interaction factor model CPUE indices (red, M21.1e2) for EAG. The confidence limits are calculated with  $\pm 2$ SE. Note: (a) No additional variance was added to observer indices. (b) There was no cooperative survey in 2020.

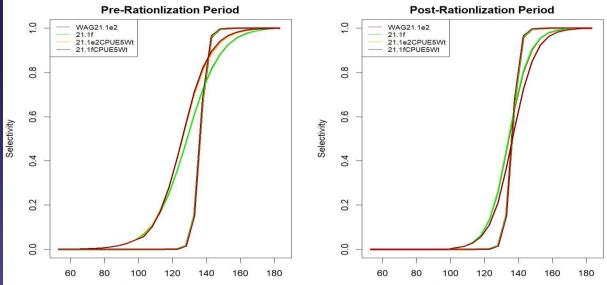
Model Scenarios

## Table T1

|                                                                                                                        |                  |                                                                                                                                                                                                                                                                                                     | 30                                                                                                                                             |
|------------------------------------------------------------------------------------------------------------------------|------------------|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|------------------------------------------------------------------------------------------------------------------------------------------------|
| Model                                                                                                                  | Area             | CPUE Data Type and Maturity Option                                                                                                                                                                                                                                                                  | Period for Mean Number of Recruit<br>Calculation for (a) Initial Equilibrium<br>Abundance and (b) Reference Points<br>Estimations; and Remarks |
|                                                                                                                        |                  |                                                                                                                                                                                                                                                                                                     |                                                                                                                                                |
| 21.1e2<br>(accepted<br>model in<br>May/June 2022,<br>implemented<br>with up to<br>2021/22 data)-<br>core/base<br>model | AI, EAG, WAG     | Observer data from 1995/96–2021/22; Fish ticket data from 1985/86–1998/99; Observer and fish ticket CPUE standardization by the negative binomial model; the knife-edge maturity size of 116 mm CL; M = 0.22; and three catchability and additional CVs during 1985–1998; 1995–2004; and 2005–2021. | 1987–2017; CPT/SSC suggested base model.                                                                                                       |
| 21.1f (core                                                                                                            | AI, EAG, WAG     | 21.1e2 + observer CPUE data standardized                                                                                                                                                                                                                                                            | 1987–2017                                                                                                                                      |
| model)                                                                                                                 |                  | including Year: Block interaction.                                                                                                                                                                                                                                                                  |                                                                                                                                                |
| 21.1e2 LF14                                                                                                            | AI, EAG, WAG     | 21.1e2 + size composition limited to 2014/15                                                                                                                                                                                                                                                        | 1987–2017                                                                                                                                      |
| 21.1f LF14                                                                                                             | AI, EAG, WAG     | 21.1f + size composition limited to 2014/15                                                                                                                                                                                                                                                         | 1987–2017                                                                                                                                      |
| 21.1e2CPUE5Wt                                                                                                          | EAG, WAG         | 21.1e2 + CPUE likelihood weighted by 5                                                                                                                                                                                                                                                              | 1987–2017                                                                                                                                      |
| 21.1fCPUE5Wt                                                                                                           | EAG, WAG         | 21.1f + CPUE likelihood weighted by 5                                                                                                                                                                                                                                                               | 1987–2017                                                                                                                                      |
| 21.1e2Q                                                                                                                | EAG              | 21.1e2 + variable catchability                                                                                                                                                                                                                                                                      | 1987–2017                                                                                                                                      |
| 21.1g                                                                                                                  | EAG              | 21.1e2 + EAG cooperative pot survey standardized CPUE                                                                                                                                                                                                                                               | 1987–2017                                                                                                                                      |
| 21.1e2 a, b, c                                                                                                         | AI, EAG, WAG     | 21.1e2 +variable period for mean recruitment estimation                                                                                                                                                                                                                                             | a: 1987–2019; b: 1987–2020; c: 1987–<br>2021                                                                                                   |
|                                                                                                                        | GMACS version of | of core models, 21.1e2 and 21.1f, for EAG and WAG                                                                                                                                                                                                                                                   |                                                                                                                                                |

Table 9. Negative log-likelihood values of the fits for models 21.1e2 (base), 21.1f, 21.1e2 LF14, 21.1f LF14, 21.1g, 21.1e2CPUE5Wt, and 21.1fCPUE5Wt for golden king crab in the EAG. Likelihood components with zero entry in the entire rows are omitted.


| Likelihood Component      | 21.1e2     | 21.1f      | 21.1e2 LF14 | 21.1f LF14 | 21.1g      | 21.1e2CPUE5Wt | 21.1fCPUE5Wt |
|---------------------------|------------|------------|-------------|------------|------------|---------------|--------------|
| Number of free parameters | 157        | 157        | 157         | 157        | 158        | 157           | 157          |
| Retlencomp                | -2155.9400 | -2150.5900 | -1609.3600  | -1619.3500 | -2158.3000 | -1826.6200    | -1859.3100   |
| Totallencomp              | -1387.6600 | -1385.3000 | -1053.5200  | -1054.7500 | -1387.2400 | -1328.9800    | -1353.8900   |
| Observer cpue             | -30.7872   | -32.0923   | -50.1416    | -58.9974   | -29.1853   | -375.2010     | -335.4950    |
| Fishery cpue              | -15.0060   | -14.8956   | -15.9309    | -15.7905   | -14.9586   | -203.3850     | -203.1740    |
| RetdcatchB                | 4.3596     | 4.2725     | 4.3490      | 4.2937     | 4.3446     | 13.4847       | 12.9743      |
| TotalcatchB               | 15.8541    | 15.7777    | 18.2634     | 18.0723    | 15.8344    | 23.1981       | 23.1523      |
| GdiscdcatchB              | 0.0003     | 0.0003     | 0.0003      | 0.0003     | 0.0003     | 0.0015        | 0.0013       |
| Rec_dev                   | 22.2110    | 22.1588    | 21.3453     | 23.3081    | 22.0225    | 36.8985       | 30.7957      |
| Pot F_dev                 | 0.0135     | 0.0133     | 0.0142      | 0.0137     | 0.0136     | 0.0121        | 0.0121       |
| Gbyc_F_dev                | 0.0229     | 0.0229     | 0.0213      | 0.0219     | 0.0229     | 0.0242        | 0.0236       |
| Тад                       | 2693.2100  | 2693.2800  | 2692.2300   | 2692.2000  | 2693.2500  | 2693.6300     | 2691.9900    |
| RetcatchN                 | 0.0016     | 0.0017     | 0.0015      | 0.0012     | 0.0015     | 0.0013        | 0.0017       |
| Total                     | -853.7190  | -847.3470  | 7.2694      | -10.9848   | -854.2010  | -966.9320     | -992.9190    |


# Table 13. Negative log-likelihood values of the fits for models 21.1e2 (base), 21.1f, 21.1e2 LF14, 21.1f LF14, 21.1e2CPUE5Wt, and 21.1fCPUE5Wt for golden king crab in the WAG. Likelihood components with zero entry in the entire rows are omitted.

| Likelihood Component      | 21.1e2     | 21.1f      | 21.1e2 LF14 | 21.1f LF14 | 21.1e2CPUE5Wt | 21.1fCPUE5Wt |
|---------------------------|------------|------------|-------------|------------|---------------|--------------|
| Number of free parameters | 157        | 157        | 157         | 157        | 157           | 157          |
| Retlencomp                | -2109.4400 | -2096.5100 | -1655.7900  | -1666.5400 | -1954.5800    | -1984.9000   |
| Totallencomp              | -1530.8700 | -1541.1100 | -1187.2600  | -1196.1600 | -1427.7200    | -1411.4200   |
| Observer cpue             | -48.0187   | -44.0497   | -55.0027    | -46.2519   | -461.6480     | -330.7060    |
| Fishery cpue              | -19.4746   | -19.2602   | -20.6578    | -19.8670   | -180.4980     | -216.2270    |
| RetdcatchB                | 5.2842     | 5.0540     | 5.0378      | 4.8667     | 11.4356       | 10.4203      |
| TotalcatchB               | 52.7969    | 52.3098    | 50.8439     | 50.8401    | 52.0413       | 52.0603      |
| GdiscdcatchB              | 0.0011     | 0.0010     | 0.0012      | 0.0008     | 0.0056        | 0.0047       |
| Rec_dev                   | 20.8360    | 20.8027    | 22.3745     | 21.2696    | 33.6752       | 32.8384      |
| Pot F_dev                 | 0.0256     | 0.0257     | 0.0258      | 0.0262     | 0.0249        | 0.0246       |
| Gbyc_F_dev                | 0.0431     | 0.0427     | 0.0424      | 0.0415     | 0.0461        | 0.0450       |
| Тад                       | 2694.4000  | 2694.0100  | 2692.4400   | 2692.5600  | 2696.0400     | 2697.0700    |
| RetcatchN                 | 0.00052    | 0.0005     | 0.00021     | 0.000345   | 0.000087      | 0.00027      |
| Total                     | -934.4120  | -928.6830  | -147.9500   | -159.2100  | -1231.1800    | -1150.7800   |

## Results

#### Selectivity





Carapace Length (mm)

Carapace Length (mm)

WAG Fig. 16

#### CPUE

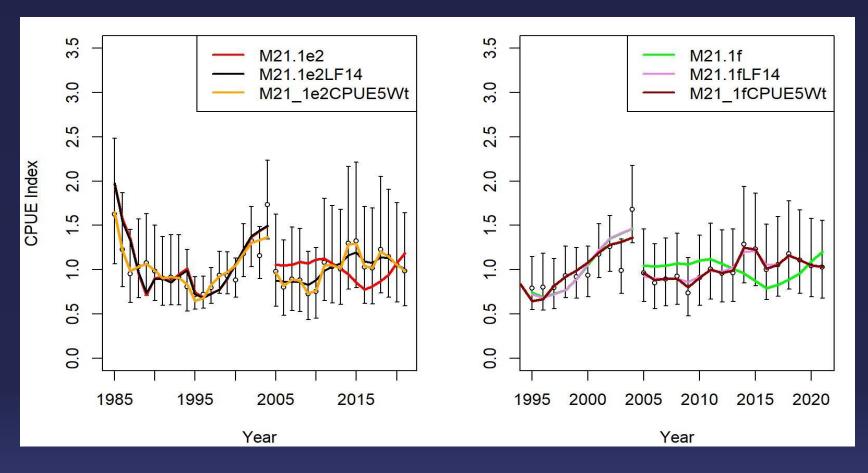



Figure 7. Comparison of input CPUE indices [black open circles with +/- 2 SE for model 21.1e2 (left) and model 21.1f (right)] with predicted CPUE indices (colored solid lines) by models 21.1e2, 21.1e2LF14, and 21.1e2CPUE5Wt (left); 21.1f, 21.1fLF14, and 21.1fCPUE5Wt (right) fits to EAG golden king crab data, 1985/86–2021/22. Model estimated additional standard error was added to each input standard error.

CPUE

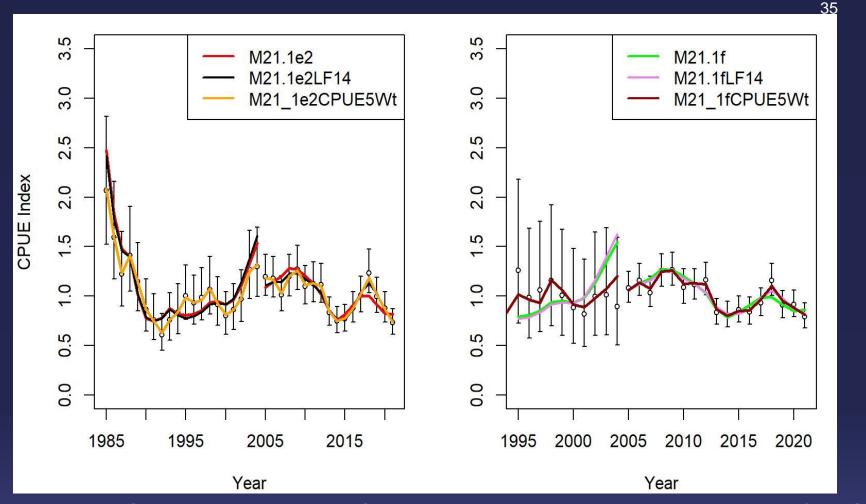
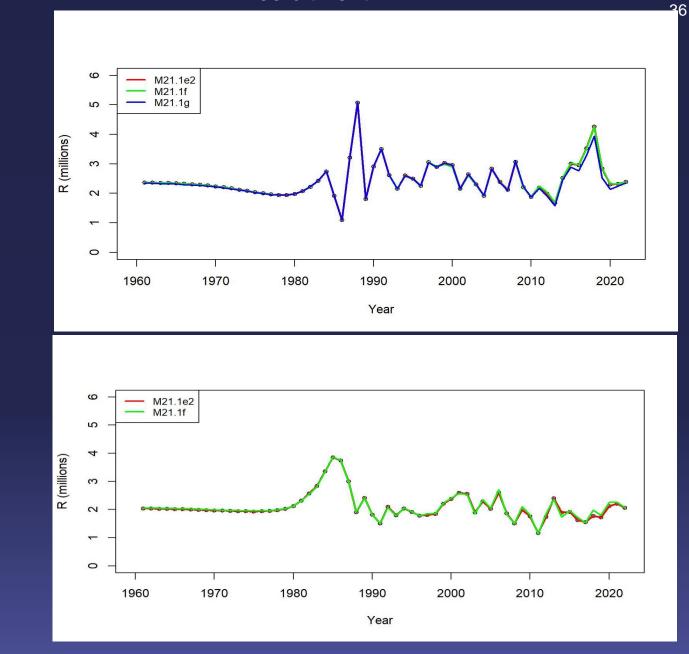




Figure 17. Comparison of input CPUE indices [black open circles with +/- 2 SE for model 21.1e2 (left) and model 21.1f (right)] with predicted CPUE indices (colored solid lines) for models 21.1e2, 21.1e2LF14, 21.1e2CPUE5Wt, 21.1f, 21.1fLF14, and 21.1f CPUE5Wt fits to WAG golden king crab data, 1985/86–2021/22. Model estimated additional standard error was added to each input standard error.

#### Recruitment

EAG Fig. 8



WAG Fig. 18

#### Catch & Bycath

**Total Catch Retained Catch** M21.1e2 M21.1f Retained Catch (t) M21.1g Total Catch (t) Year Year **Groundfish Bycatch** Groundfish Bycatch (t) Year

Figure 9. Observed (open circle) vs. predicted (solid line) retained catch (top left), total catch (top right), and groundfish bycatch (bottom left) of golden king crab for models 21.1e2, 21.1f, and 21.1g fits to EAG data, 1981/82–2021/22.

#### Catch & Bycath

38

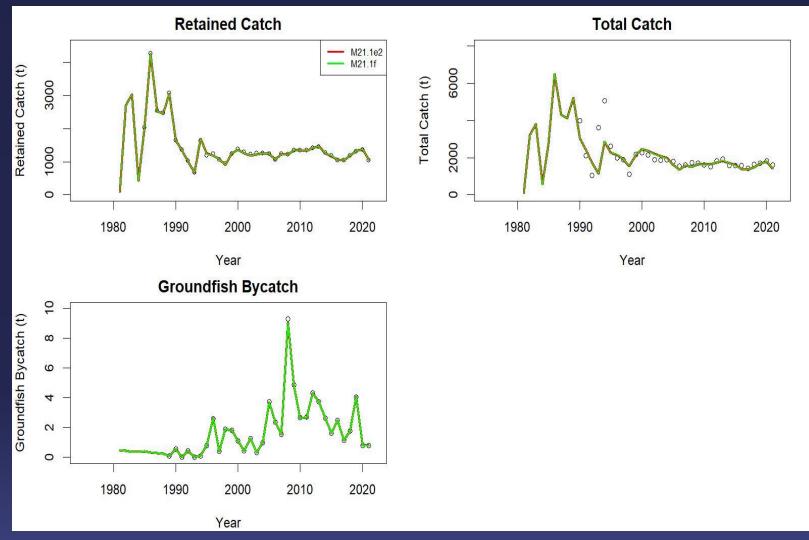



Figure 19. Observed (open circle) vs. predicted (solid line) retained catch (top left), total catch (top right), and groundfish bycatch (bottom left) of golden king crab for models 21.1e2 and 21.1f fits to WAG data, 1981/82–2021/22.

#### Fishing mortality

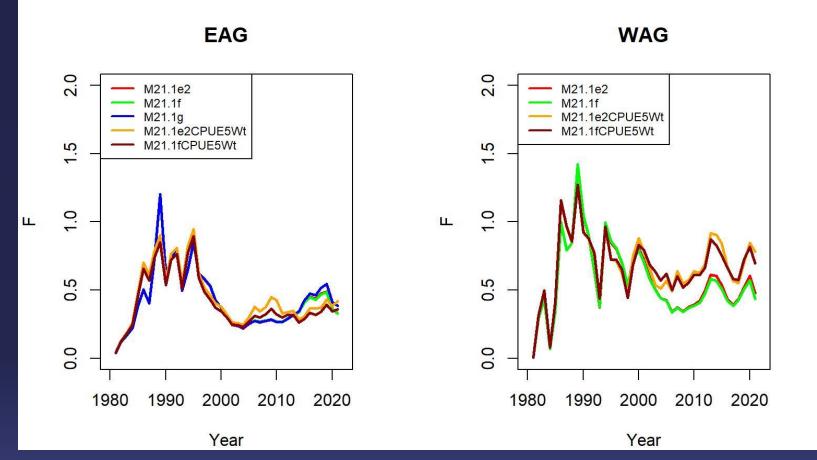



Figure 11. Trends in pot fishery full selection total fishing mortality of golden king crab for models 21.1e2, 21.1f, , 21.1g, 21.1e2CPUE5Wt, and 21.1fCPUE5Wt fits to EAG (left) and for models 21.1e2, 21.1f, 21.1e2CPUE5Wt, and 21.1fCPUE5Wt fits to WAG (right) data, 1981/82–2021/22.

MMB

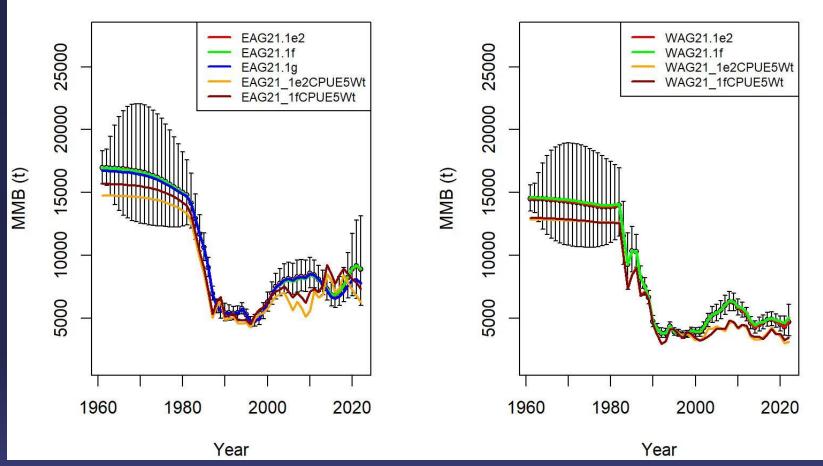



Figure 12. Trends in golden king crab mature male biomass for models 21.1e2, 21.1f, 21.1g, 21.1e2CPUE5Wt, and 21.1fCPUE5Wt fits to EAG (left) and for models 21.1e2, 21.1f, 21.1e2CPUE5Wt, and 21.1fCPUE5Wt fits to WAG (right) data, 1960/61–2021/22. Model21.1e2 estimate has two standard error confidence limits.

|               |      |        | Current | MMB/               |      |                  | M(yr <sup>-1</sup> ) | OFL   | MaxABC    | ABC        | 41 |
|---------------|------|--------|---------|--------------------|------|------------------|----------------------|-------|-----------|------------|----|
| Model         | Tier | MMB35% | ММВ     | MMB <sub>35%</sub> | FOE  | F <sub>35%</sub> |                      |       | (P*=0.49) | (0.75*OFL) |    |
| 21.1e2        | 3a   | 6,524  | 7,545   | 1.16               | 0.56 | 0.56             | 0.22                 | 2,898 | 2,884     | 2,174      |    |
| 21.1f         | 3a   | 6,523  | 7,591   | 1.16               | 0.56 | 0.56             | 0.22                 | 2,918 | 2,904     | 2,188      |    |
| 21.1g         | 3a   | 6,471  | 6,824   | 1.05               | 0.56 | 0.56             | 0.22                 | 2,506 | 2,490     | 1,880      |    |
| 21.1e2Q       | 3b   | 6,462  | 6,442   | 0.997              | 0.55 | 0.56             | 0.22                 | 2,311 | 2,286     | 1,733      |    |
| 21.1e2 LF14   | 3a   | 6,903  | 7,699   | 1.12               | 0.58 | 0.58             | 0.22                 | 3,052 | 3,039     | 2,289      |    |
| 21.1f LF14    | 3a   | 6,758  | 7,532   | 1.11               | 0.57 | 0.57             | 0.22                 | 2,897 | 2,886     | 2,173      |    |
| 21.1e2CPUE5Wt | 3b   | 6,166  | 5,806   | 0.942              | 0.47 | 0.50             | 0.22                 | 1,888 | 1,879     | 1,416      |    |
| 21.1fCPUE5Wt  | 3a   | 6,340  | 6,446   | 1.017              | 0.51 | 0.51             | 0.22                 | 2,369 | 2,364     | 1,777      |    |

|               |      |        | Current        |                            |      |                  | M(yr⁻¹) | OFL   | MaxABC    | ABC        |
|---------------|------|--------|----------------|----------------------------|------|------------------|---------|-------|-----------|------------|
| Model         | Tier | MMB35% | Current<br>MMB | MMB/<br>MMB <sub>35%</sub> | FOR  | F <sub>35%</sub> |         |       | (P*=0.49) | (0.75*OFL) |
| 21.1e2        | 3a   | 4,905  | 4,911          | 1.00                       | 0.54 | 0.54             | 0.22    | 1,340 | 1,335     | 1,005      |
| 21.1f         | 3a   | 4,911  | 5,175          | 1.05                       | 0.54 | 0.54             | 0.22    | 1,452 | 1,447     | 1,089      |
| 21.1e2 LF14   | 3b   | 4,976  | 4,817          | 0.97                       | 0.50 | 0.52             | 0.22    | 1,288 | 1,279     | 966        |
| 21.1f LF14    | 3a   | 5,009  | 5,195          | 1.04                       | 0.52 | 0.52             | 0.22    | 1,519 | 1,514     | 1,139      |
| 21.1e2CPUE5Wt | 3b   | 4,558  | 3,792          | 0.832                      | 0.45 | 0.55             | 0.22    | 730   | 726       | 547        |
| 21.1fCPUE5Wt  | 3b   | 4,549  | 4,036          | 0.887                      | 0.48 | 0.55             | 0.22    | 875   | 870       | 656        |

| Model         | OFL   | MaxABC<br>(P*=0.49) | ABC (0.75*OFL) |
|---------------|-------|---------------------|----------------|
| 21.1e2        | 4,238 | 4,219               | 3,179          |
| 21.1f         | 4,370 | 4,351               | 3,277          |
| 21.1e2 LF14   | 4,340 | 4,318               | 3,255          |
| 21.1f LF14    | 4,416 | 4,400               | 3,312          |
| 21.1e2CPUE5Wt | 2,618 | 2,605               | 1,963          |
| 21.1fCPUE5Wt  | 3,244 | 3,234               | 2,433          |

WAG

