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GOA Southeast Alaska Outside
(SEOQ) Demersal Shelf Rockfish
(DSR)

DSR Complex: Yelloweye, quillback,
copper, rosethorn, China, canary and tiger

* Yelloweye: Tier 4
e Other DSR: Tier 6

e Yelloweye > 95% DSR catch
e Managed by state of Alaska

e Management based on biomass
estimates of yelloweye rockfish

e Directed commercial fishing closed since
2020

e Sport fishing restrictions since 2020
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Current Management

e Submersible/ROV surveys =
Yelloweye density at management
area level (1 area/ year)

* Biomass =
Density*Weight*Habitat(km?)
e SEO Biomass =X (most recent

density estimates*updated weight
data*Habitat)

e Assumed natural mortality M

* For =M =0.032
* MaxF,sc=M=0.026 * Lower 90% Confidence Interval
e RecFpge=M =0.02



Southeast - etod
outside (SEO)
Issues

=== revised status quo

e High variability at
management unit and
SEO scale
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e Significant uncertainty in 1995 2000 2005 2010 2015 2020
harvest reconstruction Year
U ted di d d : : :
eb;lcr:tiﬁr =0 GSEares af e Uncertainty in calculations?
—>Species ID and changing * Amount of habitat

species assemblages e Application of density to areas



SEO DSR Assessment History

e Status-quo methods for over a decade

— Yearly justification of using lower 90% Cl to
establish targets

e Age-structured assessment attempted in
2015
— Issues with fit, stability and uncertainty
— High sensitivity to M
— Lack of recruitment signals

e Random effects model in 2013 and 2015

— Still aimed to use lower 90% Cl

— Greater uncertainty and lower targets than
status-quo

— Models rejected




Why a State-Space Surplus
Production Model?

e Age-structured assessments are great!
— Used for some Pacific rockfish
— West coast yelloweye ->
e Sparse and poorly informed data
e Lack of recruitment signals

e Sensitivity to steepness of productivity
curve

e Sensitivity to uncertainty in magnitude
of catch

— Similar issues in SEO

e SS-SPM: much simpler

— Biomass = Biomass yesterday + increase in
biomass (production curve) - catch




Why a State-Space Surplus
Production Model?

SS-SPM... they’ve come a long way!

Process and observation error

Bayesian methods

— Propagate and incorporate uncertainty in data
and parameters

* Minimize assumptions
— Relatively unbiased and precise

— Probabilistic population projections and risk
analysis

Better than random effects models
— Population vs. statistical model
— Incorporates catch data
— Biological reference points (MSY, Bysy, Fusy)




Why a State-Space Surplus
Production Model?

e Applicable to long lived, slow growing
animals

— Minimal process error

e Lack of recruitment signals in yelloweye
— Simplicity of SPM reflects those dynamics
— Lack of recruitment signal challenge for ASA

e Lots of uncertainty in catch history of
velloweye
— Bycatch in halibut and other fisheries

— Lack of accurate species identification/
recording Bt




Model

Status-quo

Random
effects
model
(REMA)

SS-SPM

Data

Density Estimates
Fish weights

Biomass est. + CV
IPHC survey CPUE + CV

Biomass est. + CV

IPHC survey CPUE + CV
Catch data + CV
Discard Estimates + CV

Estimated
Parameters

None

* Process error

e Additional
observation
error

e R, K, ¢, etc.
(model
parameters)

e MSY

BMSY
I:MSY

Benefits

e Simple

* Increased stability in
biomass estimates

e More consistent
apportionment by area

* Increased stability in
biomass estimates

* More consistent
apportionment by area

* Population dynamics

e Biological reference
points

* Population projections

e Risk analysis

e Uses more data




Production Models

Pella-Tomlinson B; = B;_{ +— Bt 1 (1 — (Bt 1/1{) ) r—1

* B, =B, (p=0.18815)
= intrinsic rate of increase
e K = carrying capacity/ virgin biomass




Production Models

Pella-Tomlinson By = B;_1 + %Bt_l (1 — (Bt‘l/K)p) — Ci_q

* By = Byo (p=0.18815)

e r = intrinsic rate of increase

e K = carrying capacity/ virgin biomass
Bayesian state-space model

e Accommodates missing data

2
Oproc
* Process error: (model)egt_( /2); £t~N(O, aﬁroc)
* Propagate and incorporate uncertainty (observation error)
 Risk analysis with population projections



Production Models

Pella-Tomlinson B; = B;_1 + %Bt_l (1 — (Bt‘l/K)p) — Ci_q

* B,,sy = B, (p =0.18815)

e r = intrinsic rate of increase

e K = carrying capacity/ virgin biomass
Biological Reference Points:

B,,cy = 0.4*K

p+1/
p
(p+ 1)( ) Frsy = MSY/Bysy

12



Production Model Data

BIOMASS INDICES
e ADF&G Submersible/ROV surveys
- Sporadic; 1994 to present
- Management area spatial scale
- Absolute biomass
e |[PHC longline survey CPUE (1998-pres.)
- Numbers-per-hook
- Management area spatial scale




Production Model Data

CATCH DATA

e Known Catches (1980-2022)

e Bycatch estimates in halibut fishery (1880 — 2022)
e Estimates of Foreign Fleet removals (1960-1982)
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Halibut fishery became full retention in 2000 in state waters
and 2005 in federal waters

Expected bycatch in halibut fishery modelled using IPHC
longline survey (1998-present) = WCPUE rate

Use WCPUE to model unobserved discards
*B;= Bi4 + TBt—1(1 — Bt_l/K)

e Known catches + unobserved discards

Unreported discards in halibut fishery likely to be lafge
source of historical removals

15



Unobserved discard model - 48

——

Total catches: C; = CKX + D, Known Catches + Dlscér .,

Known Catches: CX = CKecct

Landed Bycatch: /andBy, (modelled without error)

Expected bycatch fit to IPHC derived

estimate : EBy, = EBy e EByt

->IPHC longline survey #)yelloweye & kg legal halibut (1998-2021)

—>WCPUE at each survey station = est. |kg|

yelloweye/ kg legal halibut

—>WCPUE in management area = mean of stations (cv from bootstrap of stations)

— EBy,; = Halibut harvest * WCPUE (variance propagated)

— pre-1998: applied long term mean and max cv from 1998-2021 data

Discards D; = max(EBy, — landBy,, min(D;))
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WCPUE vs. NOAA CAS

(Catch accounting system)

| 4 WCPUE (IPHC survey)
*+ Observed bycatch rate (NOAA)

IPHC Survey WCPUE = NOAA CAS
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colour =e= expected bycatch =e= landed bycatch

CSEO EYKT

full retention full retention

SSEO

Not perfect,
i but captures | e

trends and :

magnitude.;.
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3 Stage Model Strategy

o

Different spatial scales to deal with
— 1980 — now: 4 management areas
—> Pre-1980: SEO level catch data
e Halibut harvests
 Foreign removals
— Stage 1 and 2 used to produce informative priors for Stage 3
Stage-1: Spatially stratified 1980 — 2022
- Uninformative priors
— Posterior estimates of SEO biomass for Stage-2
Stage-2: Unstratified SPM on entire SEO 1880 — 2022
— Virgin biomass in 1880
— Uninformative priors
— Produce priors on K and ¢ for Stage-3
Stage-3: Spatially stratified 1980 — 2022 with original data
—> Informed prior on SEO K and ¢ -> Management area K, and ¢,

20



Production Models

* First year biomass, Bggy = 9K - Absolute biomass

* Submersible/ROV surveys, B.obs; = B,eSt
. {Egt}~N(0, OF opst); 05 = ln((CV(B. obs;))* + 1)
e Submersible surveys 1994-2011:
e CV(Sy) = JCV(Bops)? + 72 — Extra variance
e ROV surveys 2012 — 2022
* CV(Sp) = {CV(Bops)® =~
e IPHC Survey RPN (CPUE), I, = qB,elc  'ndex
* {€1,}~N(0,07); afy = In((CV(I))* +1)
* CV(Iy) = \/CV(Bops)? + T2 « Extra variance

— No extra variance




Production Models

e Halibut fishery changed from derby style to IFQ in 1995
—>Were bycatch rates different?

e Extra variance in pre-IFQ halibut fishery
—>Multiplicative lognormal error:

D

>Discards, D, = ms,te‘fs,t‘(aéerby f2) landBys,; €2;~N(0, 04,rpy)
> with 04eppy = 0.1
e Risk Analysis: Expected bycatch rate biased high or low
relative to “true” bycatch in pre-IFQ halibut fishery
—>Biased low: ££t~N (0.3, aﬁerby)
—Biased high: €£t~N (—0.3, Géerby)



Stage-1 priors

—_—

e R~ beta(l, 1)
e r.~ beta (rB1, rB2) T(0.0001, 0.2)
—rB1 =R*n
—rB2 = (1-R)*n
—Log(n) ~ logis(log(100), 1)
* In K_~ unif (7, 11.5) — Uninformative
e 9.~ beta (1, 1)
e 7.~ unif (0.01,1)
e 7, ~ unif (0.01,1) Constrained
* In (q,) ~ unif (-10, 20) . _— Maxo, =0.22

e |[n (process error variance) ~ unif (-10, -3)




Stage-2 priors

e R~ beta (1, 1)

e In K~ unif (7, 11.5) Uninformative

* Bggp=

e Two levels of process error:
—>Moderate process error models: unif (-10, -3), max ¢, = 0.22
—>Minimal process error models: unif (-10, -5), max o,... = 0.08

proc

e Run under different assumptions about how true bycatch
in halibut fishery related to WCPUE estimates

—>Different priors for Stage-3 and risk analysis



Stage-3 priors

R~ beta (1,1) + Informed priors from Leslie matrix projection
r.~ beta (rB1, rB2) T(0.0001, 0.2)
—rB1 = R*n
—>rB2 = (1-R)*n
—Log(n) ~ logis(log(100), 1)
K~ Inorm : : :
K. = K*pi ) Hyper priors from Stage-2; varies with
s S

> pi. ~ Dirichlet(1, 1, 1, 1) derby bias and process error

1

e p)~norm( )

@, ~ norm (@, invtau)
—invtau ~ gamma (1, 1)

T, ~ unif (0.01,1); t, ~ unif (0.01,1)
In (g,) ~ unif (-10, 20)
In (process error variance) ~ unif (-10, -3) OR unif (-10, -5)



Production Models

Run in jags; 3 Chaines

e Stage-1: 500k burnin, 900k chain, thinned every 900
e Stage-2: 640k burnin, 960k chain, thinned every 960
e Stage-3: 500k burnin, 1m chain, thinned every 1000

* Goodness-of-fit:
—Posterior predictive checks P ~ 0.5
—Systematic discrepancies between observed and predicted

e Convergence checks
—Gelman-Rubin statistics < 1.01
—Traceplots
—Autocorrelation plots



Stage—l (Goal: SEO biomass for Stage-2)
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uncertainty
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on posteriors
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Stage—l (Goal: SEO biomass for Stage-2)

Posterior predictive check for submersible/ROV biomass
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Stage—l (Goal: SEO biomass for Stage-2)

Total removals

Known catches
Expected bycatch (IPHC)
Landed Bycatch
Discards
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Stage—l (Goal: SEO biomass for Stage-2)

SEO total biomass

For Stage-2

From
Management
Area biomass to
SEO biomass




Catch Data Fit

Known Catches

Known catches (t)
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Known catches (t)
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Stage—Z (Goal: priors of K and f for Stage-3)

yelloweye biomass
posterior biomass est. from stage 1 model
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Stage-2 results: Kand ¢ priors

phi (B1980/K)

max sigma = 0.22 rr]'ax sigma = 0.22
ax sigma = 0.08 ' n1ax sigma = 0.08

I

I

I

I

wcpue ~ pre-IFQ \i/cpue ~ pre-IFQ
wcpue < pre-IFQ ' wcpue < pre-IFQ
cpue > pre-IFQ \fycpue > pre-IFQ

l




OIS
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Stage-3 Results

NSEO

posterior est.
+ observed ROV/sub
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Stage-3 Results

mod sig, unif R prior-
mod sig, narrow R prior-
mod sig, mod R prior-
DIC rankings:
mod sig, broad R prior-
min sig, unif R prior-
min sig, narrow R prior-

min sig, mod R prior-

min sig, broad R prior-

2023 projected biomass (t)



Stage-3 Results

mod sig, unif R prior-
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Stage-3 Results
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mod sig, narrow R prior-
meod sig, mod R prior -
mod sig, broad R prior-
min sig, unif R prior-
min sig, narrow R prior-
min sig, mod R prior -
min sig, broad R prior-

mod sig, unif R prior-
mod sig, narrow R prior-
mod sig, mod R prior-
mod sig, broad R prior-
min sig, unif R prior -
min sig, narrow R prior -
min sig, mod R prior-
min sig, broad R prior-

mod sig, unif R prior -
mod sig, narrow R prior-
mod sig, mod R prior-
mod sig, broad R prior-
min sig, unif R prior-
min sig, narrow R prior -
min sig, mod R prior -
min sig, broad R prior-

mod sig, unif R prior -
mod sig, narrow R prior-
meod sig, mod R prior -
mod sig, broad R prior-
min sig, unif R prior-
min sig, narrow R prior-
min sig, mod R prior -
min sig, broad R prior-




Stage-3 Results
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Stage-3 Results
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Stage-3 Results: By,cy (B,g)
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Stage-3 Results: Stock Status B,,,: B,,

mod sig, unif R prior-
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KRNI S
Stock Status (B2022:B40)




Stage-3 Results: Fy,qy

mod sig, unif R prior-

mod sig, narrow R prior-
— Higher F_, with

mod sig, mod R prior- = avilel] 71
. . — But, model 1
© mod sig, broad R prior- ’
% o P also showed
=  min sig, unif R prior- lower stock
status
min sig, narrow R prior- — Ultimately, lots
of overlap in
min sig, mod R prior- : posterior

distributions

min sig, broad R prior-




Stage-3 Results

Fysy_ 2023 bio  OFL
/A 0.019 18,258t 347 t

mod sig, unif R prior-
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= min sig, unif R prior-
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Stage-3 Results

Fysy_ 2023 bio  OFL
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Stage-3 Results: Model Comparisons

SEO Biomass

= Status quo

b — Model 21.1

w

@ IRVINSEE Random effect

£ ~  Model 22.2

S Model 293 Random effect
Surplus
production

REMA: statistical model
SS-SPM: population model
(dynamics)




Risk Analysis

* Population projected forward using posterior estimates of r, K, ¢, etc.
— i.e., each Bayesian iteration that comprises the posterior projected
forward (3000 iterations in total)
— Includes alternate states of nature regarding bycatch rates in pre-IFQ
halibut fishery
Fuisy from median of posterior distribution (skew)

For = Fusy SPM used for shortraker rockfish in 2008
— Max Fyge = 0.75%F 4,

— Recommended F,g of 10 and 25% reductions from max F,gc
— Status-quo method for setting F,z (0.02 * biomass low 90% Cl)
— Harvests set specific to management area (spatially explicit)
e Fixed harvest for 50-year projection
— Metric: Probability that population is over B,,in 50 years



Risk Analysis

Last Status-quo
Year:” (Model 21.1)

As estimated @ %

or mean 90%
recommended ClI

this year for:
Quantity 2021 2022 2023 2023

M (natyral 002 002 0.02 0.02
mortality)

Tier 4 4 4 4
Yelloweye Biomass

12,388 18,471 12,135

ForL =F3s5% 0.032 0.032 0.032 0.032
maxFaec 0.026 0.026 0.026 0.026
Fasc 0.020 0.020 0.020 0.020
DSR OFL (1) 422 422 591 388
DSR max ABC (t) = 342 342 480 316

Recommended 268 268 369 243

As determined
this year for:
2020 2021

Overfishing No n/a

*Lower 90% Cl rejected by SSC in 2022

Status




R I S k Ta b I e * Pre-1FQ bycatch rate relative to WCPUE \(

est. Overall
Probability

*No, not that risk table... Management
Area

Pre-1FQ m ‘
Probability- 0.2 0.4 0.4 1.0

EYKT 76% 71% 63% 68.5%
NSEO 47% 44% 34% 40.6%

Zggsibg 'ty/gm 1S CSEO 68% 63% 52% 59.5%
msy’ 240 SSEO 86% 83% 76% 80.5%

All SEO 4% 65% 48% 59.9%

30% lower same 30% higher

-



Conclusions

e —— _.q‘:r‘ .’1-_-.‘-' -

* Alot of uncertainty, but an honest accounting ...
— Risk analysis encompasses that uncertainty
 Improving discard model?
— No perfect way to handle this issue
— More refined estimates based on halibut fleet behavior
= Spatial profile
= Depth profile
= Derby vs. IFQ fisheries
— Is more refined approach possible for historical bycatch?
— |Incorporate uncertainty in assessment...

52



Conclusions

T—— B —

* Population in the vicinity of B,
* Uncertainty in F,,., but estimates well below 0.02 applied in status-
gquo methods
—> Why so much lower than M values in the literature and usually
applied to establish OFL and ABC (0.03-0.06)?
e Future model development:
— Simulations
- By = B, (Schaefer), or estimated in the model
— Is biomass being over or underestimated?
— Censoring early biomass data
e Lack of belly cam before 1995
e Imprecise transect lengths in pre-2003 submersible surveys




Conclusions

- e g

E—

 Not as informed as an age-structured assessment -
— Explicitly incorporates uncertainty in catch data
— Lack of recruitment signals in yelloweye suggests SPM
capturing population dynamics
* Incorporates more data than status-quo and random effect
models
— Biological reference points for management decisions
— Risk analysis
e |f age-structured assessment developed SS-SPM can help
— Inform catch history
— Provide baseline estimates of stock status
— Source of contrast to ASA



Questions and feedback?

 |[f accepted, ADF&G solicits advice
on setting OFL and ABC

e How does SS-SPM fit into Tier rules?




End
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