ASSESSMENT OF THE DEMERSAL SHELF ROCKFISH STOCK COMPLEX IN THE SOUTHEAST OUTSIDE SUBDISTRICT OF THE GULF OF ALASKA:

A NEW STATE-SPACE SURPLUS PRODUCTION MODEL

Phil Joy, ADF&G – Commercial Fisheries Division Jane Sullivan, NOAA – Alaska Fisheries Science Center Rhea Ehresmann, ADF&G – Commercial Fisheries Division Mike Jaenicke, ADF&G – Sport Fish Division

GOA Southeast Alaska Outside (SEO) Demersal Shelf Rockfish (DSR)

- DSR Complex: Yelloweye, quillback, copper, rosethorn, China, canary and tiger
 - Yelloweye: Tier 4
 - Other DSR: Tier 6
- Yelloweye > 95% DSR catch
- Managed by state of Alaska
- Management based on biomass estimates of yelloweye rockfish
- Directed commercial fishing closed since 2020
- Sport fishing restrictions since 2020

Current Management

- Submersible/ROV surveys = Yelloweye density at management area level (1 area/ year)
- Biomass = Density*Weight*Habitat(km²)
- SEO Biomass = Σ (most recent density estimates*updated weight data*Habitat)
- Assumed natural mortality M

- $F_{OFL} = M = 0.032$
- Max $F_{ABC} = M = 0.026$
- Rec $F_{ABC} = M = 0.02$

* Lower 90% Confidence Interval

Southeast outside (SEO) issues

- High variability at management unit and SEO scale
- Significant uncertainty in harvest reconstruction
 - →Unreported discards and bycatch
 - →Species ID and changing species assemblages

- Uncertainty in calculations?
- Amount of habitat
- Application of density to areas

SEO DSR Assessment History

- Status-quo methods for over a decade
 - Yearly justification of using lower 90% CI to establish targets
- Age-structured assessment attempted in 2015
 - Issues with fit, stability and uncertainty
 - High sensitivity to M
 - Lack of recruitment signals
- Random effects model in 2013 and 2015
 - Still aimed to use lower 90% Cl
 - Greater uncertainty and lower targets than status-quo
 - Models rejected

Why a State-Space Surplus Production Model?

• Age-structured assessments are great!

- Used for some Pacific rockfish
- West coast yelloweye ->
 - Sparse and poorly informed data
 - Lack of recruitment signals
 - Sensitivity to steepness of productivity curve
 - Sensitivity to uncertainty in magnitude of catch
- Similar issues in SEO
- SS-SPM: much simpler
 - Biomass = Biomass yesterday + increase in biomass (production curve) - catch

Why a State-Space Surplus Production Model?

- SS-SPM... they've come a long way!
- Process and observation error
- Bayesian methods
 - Propagate and incorporate uncertainty in data and parameters
 - Minimize assumptions
 - Relatively unbiased and precise
 - Probabilistic population projections and risk analysis
- Better than random effects models
 - Population vs. statistical model
 - Incorporates catch data
 - Biological reference points (MSY, B_{MSY}, F_{MSY})

Why a State-Space Surplus Production Model?

 Applicable to long lived, slow growing animals

- Minimal process error

- Lack of recruitment signals in yelloweye

 Simplicity of SPM reflects those dynamics
 Lack of recruitment signal challenge for ASA
- Lots of uncertainty in catch history of yelloweye
 - Bycatch in halibut and other fisheries
 - Lack of accurate species identification/ recording

Model	Data	Estimated Parameters	Benefits
Status-quo	Density Estimates Fish weights	None	
Random effects model (REMA)	Biomass est. + CV IPHC survey CPUE + CV	 Process error Additional observation error 	 Simple Increased stability in biomass estimates More consistent apportionment by area
SS-SPM	Biomass est. + CV IPHC survey CPUE + CV Catch data + CV Discard Estimates + CV	 R, K, φ, etc. (model parameters) MSY B_{MSY} F_{MSY} 	 Increased stability in biomass estimates More consistent apportionment by area <i>Population dynamics</i> Biological reference points Population projections Risk analysis

• Uses more data

Pella-Tomlinson $B_t = B_{t-1} + \frac{r}{p} B_{t-1} \left(1 - \left(\frac{B_{t-1}}{K} \right)^p \right) - C_{t-1}$

- $B_{msy} = B_{40} (p = 0.18815)$
- *r* = intrinsic rate of increase
- *K* = carrying capacity/ virgin biomass

Pella-Tomlinson $B_t = B_{t-1} + \frac{r}{p} B_{t-1} \left(1 - \left(\frac{B_{t-1}}{K} \right)^p \right) - C_{t-1}$

- $B_{msy} = B_{40} (p = 0.18815)$
- *r* = intrinsic rate of increase
- *K* = carrying capacity/ virgin biomass

Bayesian state-space model

- Accommodates missing data
- Process error: (model) $e^{\varepsilon_t (\sigma_{proc}^2/2)}$; $\varepsilon_t \sim N(0, \sigma_{proc}^2)$
- Propagate and incorporate uncertainty (observation error)
- Risk analysis with population projections

Pella-Tomlinson $B_t = B_{t-1} + \frac{r}{p} B_{t-1} \left(1 - \left(\frac{B_{t-1}}{K} \right)^p \right) - C_{t-1}$

- $B_{MSY} = B_{40} (p = 0.18815)$
- *r* = intrinsic rate of increase
- *K* = carrying capacity/ virgin biomass

Biological Reference Points:

 $F_{MSY} \approx M$ $F_{OFL} = F_{MSY}$ (shortraker rockfish SPM; Spencer and Reuter 2008)

$$MSY = {r * K / (p+1)^{(p+1/p)}}$$

$$B_{MSY} = 0.4 * K$$

 $\Gamma_{MSY} - IVIJI/D_{MSY}$

Production Model Data

BIOMASS INDICES

- ADF&G Submersible/ROV surveys
 - Sporadic; 1994 to present
 - Management area spatial scale
 - Absolute biomass
- IPHC longline survey CPUE (1998-pres.)
 - Numbers-per-hook
 - Management area spatial scale

Production Model Data

CATCH DATA

- Known Catches (1980-2022)
- Bycatch estimates in halibut fishery (1880 2022)
- Estimates of Foreign Fleet removals (1960-1982)

Unobserved discard model

- Unreported discards in halibut fishery likely to be large source of historical removals
- Halibut fishery became full retention in 2000 in state waters and 2005 in federal waters
- Expected bycatch in halibut fishery modelled using IPHC longline survey (1998-present) = WCPUE rate
- Use WCPUE to model unobserved discards

•
$$B_t = B_{t-1} + rB_{t-1} (1 - \frac{B_{t-1}}{K}) - C_t$$

• Known catches + unobserved discards

Unobserved discard model

- Total catches: $C_t = \hat{C}_t^K + \hat{D}_t$ Known Catches + Discards
- Known Catches: $\hat{C}_t^K = C_t^K e^{\epsilon_{Ct}}$
- Landed Bycatch: *landBy_t* (modelled without error)
- Expected bycatch fit to IPHC derived estimate : EBy_t = EBy_te[€]EByt
 →IPHC longline survey #yelloweye & kg legal halibut (1998-2021)
 →WCPUE at each survey station = est. kg yelloweye/ kg legal halibut
 →WCPUE in management area = mean of stations (cv from bootstrap of stations)
 →EBy_t = Halibut harvest * WCPUE (variance propagated)
 → pre-1998: applied long term mean and max cv from 1998-2021 data
- Discards $\widehat{D}_t = \max(\widehat{EBy}_t landBy_t, \min(D_t))$

WCPUE bycatch

WCPUE vs. NOAA CAS

(Catch accounting system)

WCPUE vs. landed bycatch

3 Stage Model Strategy

- \rightarrow 1980 now: 4 management areas
- \rightarrow Pre-1980: SEO level catch data
 - Halibut harvests
 - Foreign removals
- \rightarrow Stage 1 and 2 used to produce informative priors for Stage 3
- Stage-1: Spatially stratified 1980 2022
 - \rightarrow Uninformative priors
 - \rightarrow Posterior estimates of SEO biomass for Stage-2
- Stage-2: Unstratified SPM on entire SEO 1880 2022
 - \rightarrow Virgin biomass in 1880
 - \rightarrow Uninformative priors
 - $\rightarrow\,$ Produce priors on K and ϕ for Stage-3
- Stage-3: Spatially stratified 1980 2022 with original data
 - \rightarrow Informed prior on SEO K and ϕ -> Management area K_s and ϕ_s

- First year biomass, $B_{1980} = \phi K$
- Submersible/ROV surveys, $B.obs_t = B_t e^{\epsilon_{S_t}}$
 - $\{\epsilon_{S_t}\} \sim N(0, \sigma_{B.obst}^2); \ \sigma_{St}^2 = \ln((CV(B.obs_t))^2 + 1)$
 - Submersible surveys 1994-2011:
 - $CV(S_t) = \sqrt{CV(B_{obs})^2 + \tau^2}$ Extra variance Less Weight
 - ROV surveys 2012 2022
 - $CV(S_t) = \sqrt{CV(B_{obs})^2}$ No extra variance More Weight
- IPHC Survey RPN (CPUE), $I_t = q B_t e^{\epsilon_{I_t}}$ Index

•
$$\{\epsilon_{I_t}\} \sim N(0, \sigma_{I_t}^2); \ \sigma_{I_t}^2 = \ln((CV(I_t))^2 + 1)$$

Absolute biomass

- Halibut fishery changed from derby style to IFQ in 1995
 →Were bycatch rates different?
- Extra variance in pre-IFQ halibut fishery
 →Multiplicative lognormal error:
 Directory for a state of the state of

 $\rightarrow \text{Discards}, D_{s,t} = \widehat{EBy}_{s,t} e^{\varepsilon_{s,t}^D - \left(\frac{\sigma_{derby}^2}{2}\right)} - landBy_{s,t}; \ \varepsilon_{s,t}^D \sim N\left(0, \sigma_{derby}^2\right)$ $\rightarrow \text{ with } \sigma_{derby}^2 = 0.1$

 Risk Analysis: Expected bycatch rate biased high or low relative to "true" bycatch in pre-IFQ halibut fishery

→Biased low: $\varepsilon_{s,t}^D \sim N\left(0.3, \sigma_{derby}^2\right)$ →Biased high: $\varepsilon_{s,t}^D \sim N\left(-0.3, \sigma_{derby}^2\right)$

Stage-1 priors

Stage-2 priors

- *R* ~ beta (1, 1)
- *In K* ~ unif (7, 11.5)
- $B_{1880} = K$
- Two levels of process error:

→Moderate process error models: unif (-10, -3), max $\sigma_{\text{proc}} = 0.22$ →Minimal process error models: unif (-10, -5), max $\sigma_{\text{proc}} = 0.08$

Uninformative

 Run under different assumptions about how true bycatch in halibut fishery related to WCPUE estimates
 →Different priors for Stage-3 and risk analysis

Stage-3 priors

- R ~ beta (1, 1) + Informed priors from Leslie matrix projection
- *r_s* ~ beta (rB1, rB2) T(0.0001, 0.2)
 - \rightarrow rB1 = R* η
 - →rB2 = (1-R)*η
 - \rightarrow Log(η) ~ logis(log(100), 1)
- *K* ~ Inorm (X, X)
- $K_s = K^* pi_s$ $\rightarrow pi_s \sim Dirichlet(1, 1, 1, 1)$

Hyper priors from Stage-2; varies with derby bias and process error

- $\phi \sim \text{norm} (X, X)$
- $\phi_s \sim \text{norm} (\phi, invtau)$ $\rightarrow \text{invtau} \sim \text{gamma} (1, 1)$
- τ_s ~ unif (0.01,1); τ_l ~ unif (0.01,1)
- In (q_s) ~ unif (-10, 20)
- In (process error variance) ~ unif (-10, -3) OR unif (-10, -5)

Run in jags; 3 Chaines

- Stage-1: 500k burnin, 900k chain, thinned every 900
- Stage-2: 640k burnin, 960k chain, thinned every 960
- Stage-3: 500k burnin, 1m chain, thinned every 1000
- Goodness-of-fit:
 - —Posterior predictive checks P \sim 0.5
 - -Systematic discrepancies between observed and predicted
- Convergence checks
 - —Gelman-Rubin statistics < 1.01
 - -Traceplots
 - -Autocorrelation plots

 → IPHC CPUE ~ Biomass ests.
 → A lot of uncertainty
 → Minor convergence issues – no effect on posteriors

 From Management Area biomass to SEO biomass

Stage-2 (Goal: priors of K and f for Stage-3)

Year

Stage-2 results: K and ϕ priors

Stage-3: some new R priors

Informed Priors for R: projected Leslie matrix using Bayesian methods (McAllister et al. 2001)

36

EYKT

NSEO

Stage-3 Results: B_{MSY} (B₄₀)

Stage-3 Results: Stock Status B₂₀₂₂: B₄₀

Stage-3 Results: F_{MSY}

- → Higher F_{msy} with model 1
- → But, model 1
 also showed
 lower stock
 status
- → Ultimately, lots
 of overlap in
 posterior
 distributions

Stage-3 Results: Model Comparisons

SEO Biomass

Risk Analysis

- Population projected forward using posterior estimates of r, K, ϕ , etc.
 - i.e., each Bayesian iteration that comprises the posterior projected forward (3000 iterations in total)
 - Includes alternate states of nature regarding bycatch rates in pre-IFQ halibut fishery
- F_{MSY} from median of posterior distribution (skew)
 - $F_{OFL} = F_{MSY}$
 - Max $F_{ABC} = 0.75 * F_{OFL}$

SPM used for shortraker rockfish in 2008

- Recommended F_{ABC} of 10 and 25% reductions from max F_{ABC}
- Status-quo method for setting F_{ABC} (0.02 * biomass low 90% CI)
- Harvests set specific to management area (spatially explicit)
- Fixed harvest for 50-year projection
 - Metric: Probability that population is over B₄₀ in 50 years

Risk Analysis

As estimated or recommended this year for:Image: Constant of the sector of t		La Yea	st ar:*	Statu (Mode	s-quo el 21.1)		
Quantity 2021 2022 2023 2023 M (natural 0.02 0.02 0.02 0.02		As esti or <i>recomn</i> this ye	mated r <i>nended</i> ar for:	mean	lower 90% CI	+	
M (natural 0.02 0.02 0.02	Quantity	2021	2022	2023	2023		
mortality) 0.02 0.02 0.02 0.02	<i>M</i> (natural mortality)	0.02	0.02	0.02	0.02		
Tier 4 4 4 4	Tier	4	4	4	4		
Yelloweye Biomass (t) 12,388 18,471 12,135	Yelloweye Biomass (t)	12,388		18,471	12,135		
$F_{OFL} = F_{35\%}$ 0.032 0.032 0.032 0.032	$F_{OFL} = F_{35\%}$	0.032	0.032	0.032	0.032		
$maxF_{ABC}$ 0.026 0.026 0.026 0.026	maxF _{ABC}	0.026	0.026	0.026	0.026		
F_{ABC} 0.020 0.020 0.020 0.020	FABC	0.020	0.020	0.020	0.020		
DSR OFL (t) 422 422 591 388	DSR OFL (t)	422	422	591	388		
DSR max ABC (t) 342 342 480 316	DSR max ABC (t)	342	342	480	316		
Recommended 268 268 369 243	Recommended ABC (t)	268	268	369	243		
Status As determined	Status	As dete	rmined				
this year for:	Status	this ye	ar for:				
2020 2021		2020	2021				
Overfishing No n/a	Overfishing	No	n/a				

*Lower 90% CI rejected by SSC in 2022

5

Big reductions from status-quo

Risk	Table*		Pre-IFQ byca	tch rate relati est.	ive to WCPUE	Overall	_
*No, not	<i>that</i> risk table	Management Area	30% lower	same	30% higher	Probability	
<u>,</u>	Pre-IFQ Probability:	DIC	0.2	0.4	0.4	1.0	
	Probability B_{2022} is above B_{msy}/B_{40}	EYKT	76%	71%	63%	68.5%	
Today Pro		NSEO	47%	44%	34%	40.6%	
		CSEO	68%	63%	52%	59.5%	
		SSEO	86%	83%	76%	80.5%	
		All SEO	74%	65%	48%	59.9%	

Future

51

Conclusions

- A lot of uncertainty, but an honest accounting ...
 → Risk analysis encompasses that uncertainty
- Improving discard model?
 - No perfect way to handle this issue
 - More refined estimates based on halibut fleet behavior
 - Spatial profile
 - Depth profile
 - Derby vs. IFQ fisheries
 - Is more refined approach possible for historical bycatch?
 - Incorporate uncertainty in assessment...

Conclusions

- Population in the vicinity of B₄₀
- Uncertainty in F_{MSY} but estimates <u>well below</u> 0.02 applied in statusquo methods
 - → Why so much lower than M values in the literature and usually applied to establish OFL and ABC (0.03-0.06)?
- Future model development:
 - \rightarrow Simulations
 - \rightarrow B_{MSY} = B₅₀ (Schaefer), or estimated in the model
 - \rightarrow Is biomass being over or underestimated?
 - \rightarrow Censoring early biomass data
 - Lack of belly cam before 1995
 - Imprecise transect lengths in pre-2003 submersible surveys

Conclusions

- Not as informed as an age-structured assessment
 - \rightarrow Explicitly incorporates uncertainty in catch data
 - → Lack of recruitment signals in yelloweye suggests SPM capturing population dynamics
- Incorporates more data than status-quo and random effect models
 - → Biological reference points for management decisions
 - \rightarrow Risk analysis
- If age-structured assessment developed SS-SPM can help
 - \rightarrow Inform catch history
 - ightarrow Provide baseline estimates of stock status
 - \rightarrow Source of contrast to ASA

Questions and feedback?

- If accepted, ADF&G solicits advice on setting OFL and ABC
- How does SS-SPM fit into Tier rules?

End

ASSESSMENT OF THE DEMERSAL SHELF ROCKFISH STOCK COMPLEX IN THE SOUTHEAST OUTSIDE SUBDISTRICT OF THE GULF OF ALASKA:

A NEW STATE-SPACE SURPLUS PRODUCTION MODEL

September 2022

Phil Joy, ADF&G – Commercial Fisheries Division Jane Sullivan, NOAA – Alaska Fisheries Science Center Rhea Ehresmann, ADF&G – Commercial Fisheries Division Mike Jaenicke, ADF&G – Sport Fish Division

ASSESSMENT OF THE DEMERSAL SHELF ROCKFISH STOCK COMPLEX IN THE SOUTHEAST OUTSIDE SUBDISTRICT OF THE GULF OF ALASKA September 2022

Phil Joy, ADF&G – Commercial Fisheries Division Jane Sullivan, NOAA – Alaska Fisheries Science Center Rhea Ehresmann, ADF&G – Commercial Fisheries Division Mike Jaenicke, ADF&G – Sport Fish Division

1000