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Still don’t have a great answer



Still don’t have a great answer 

but I’ve learned some things



Here’s a reminder of what I did last time…



How have mortality and catchability varied over time?

What drives variability in mortality and catchability?



Estimate maturity and year-specific mortality and catchability

Correlate changes in estimated mortality and catchability with 
potentially related phenomena



Data



Population dynamics model
Goal: explain the observed changes in immature and mature male 
abundance by estimating recruitment, mortality, and catchability

Details

• Spans 1989 to 2021 (survey coverage consistent then)

• Male only

• Sizes 30-95mm carapace width, 5 mm size bins

• Fit to immature and mature indices of abundance (not biomass) + size composition data

• Estimated parameters
• Initial numbers for immature and mature males
• Mean mortality for immature and mature males
• Yearly deviations for mortality and survey catchability by maturity state (why?)
• Yearly recruitment
• Proportion of recruitment falling in the first size bins (size bin 2 gets 1-p)

• Input processes
• Growth 
• Survey selectivity derived from BSFRF data
• Yearly probability of having undergone terminal molt data

• Rationale discussed



Likelihood Form Weighting

Abundance Lognormal CV (0.11,0.41)

Size composition Multinomial 50

Prior on average M Normal Mean=0.271, 
Sigma=0.10

Penalty on M devs Normal Sigma = 0.10

Smoothness penalty on M Second difference 1

Smoothness penalty on q Second difference 1



Model process Status quo Simplified

Time span 1982-2021 1989-2021

Data sources fit NMFS and BSFRF MMB, FMB, Survey size 
composition, retained catch, discard, and 
bycatch

NMFS immature and mature male abundance and 
size composition

Size range 30-135 mm carapace width 30-95 mm carapace width

Recruitment First 5 size bins, proportions fixed First 2 size bins, proportions estimated

Mortality Natural and fishing mortality split out; 4 
natural mortality parameters estimated (sex 
and maturity state)

Total mortality estimated yearly by maturity state

Growth Specified based on growth increment data; 
discretized and renormalized gamma 
function for variance around mean increment

Specified based on growth increment data; 
discretized and renormalized normal distribution 
function for variance around mean increment

Sexes Male and female Male

Maturity Average probability of having undergone 
terminal molt estimated

Yearly probability of having undergone terminal molt 
input; average used when data unavailable

Survey catchability Two eras estimated informed by BSFRF data Yearly parameter estimated by sex

Survey selectivity Logistic, two eras Non-parametric, one era



Growth, selectivity, and maturity
• Growth increments based on 

all available growth data

• Crab can ‘outgrow’ the 
model—some of the sums of 
the rows of the transition 
matrix equal less than 1.

• Discretized and renormalized 
normal distributions used for 
the variance around size 
increment.



Growth, selectivity, and maturity
• Survey selectivity based on a 

GAM fit to the BSFRF data at 
size

• Estimated yearly catchability 
scales this curve up and 
down

• Vertical line is the end point 
of the crab in the model



Growth, selectivity, and maturity
• Chela height measurements 

used to calculate the 
proportion of new shell 
males having undergone 
terminal molt

• Changes over time

• Status quo assessment 
estimates the average ogive, 
but here they are input as 
data
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for(int year=styr;year<endyr;year++)

{

// mortality

for (int size=1;size<=size_n;size++) 

{temp_imm(size) = imm_n_size_pred(year,size) * exp(-1*0.5*exp( nat_m(year,size)));

temp_mat(size) = mat_n_size_pred(year,size) * exp(-1*0.5*exp( nat_m_mat(year,size)));}

// growth

trans_imm = size_trans * temp_imm;

// recruitment

trans_imm(1) += exp(log_recruits(year))*prop_rec(year);

trans_imm(2) += exp(log_recruits(year))*(1-prop_rec(year));

// maturity and mortality

for (int size=1;size<=size_n;size++) 

{imm_n_size_pred(year+1,size) = (trans_imm(size) * (1-prop_term_molt(year,size))) *  exp(-1*0.5*exp( nat_m(year,size)));

mat_n_size_pred(year+1,size) = (trans_imm(size) * prop_term_molt(year,size) + temp_mat(size)) *  exp(-1*0.5*exp(nat_m_mat(year,size)));}

}

MORTALITY

GROWTH

RECRUITMENT

MATURITY



Model fits

• No evidence for non-convergence 
(max gradient component < -0.009, 
positive-definite hessian)



Recruitment occurs in the first two size bins.

Sometimes to fit the size composition in the 
following year(s), more crab need to be 
deposited in the first two bins than 

This probably could maybe be addressed by 
fiddling with survey selectivity and the number 
of bins into which recruits fall.



“Why would you think you can estimate these 
processes together at all?!”



Recruitment: new small crab

Mortality: changes in 
abundance are permanent

Catchability: changes are 
‘reversible’…but also 
confounded with ‘observation 
error’

This unfortunately makes it 
difficult to know what cause 
changes in the terminal 
year…but preserves the 
possibility that historical 
catchability and mortality could 
be estimated.



To do list 
• Sensitivity analyses for assumptions, priors, and penalties (e.g. smaller sigmas for prior on M 

to see if discrepancy between immature and mature mortality can be shrunk)

• Simulation to see if time-varying q and M can be estimated with these data

• Think about model selection

• Methods for selecting smoothness penalties

• Methods for incorporating variance into the inference model

• Test ‘covariates as fleet’ model

• Do all of this again, but estimating size and year specific m and q…
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Sensitivity analysis

Input parameter Input values

Size composition weight 25, 50, 100

Prior on average M 0.2, 0.3, 0.45

Sigma on the variability in M 0.01, 0.1, 0.2

Smoothness penalty on M 0.01, 01, 0,5, 1

• Fit the model 108 time with different values for 
poorly known inputs

• Fits were similar regardless of sensitivity



Sensitivity analysis
• Fit the model 108 time with different values for 

poorly known inputs
• Fits were similar regardless of sensitivity
• Estimated processes, however, varied more widely
• Smoothness on time-variation in M was one of the 

largest drivers of differences



Simulation 

• Simulated 100 populations for six scenarios
• Operating model was the fitted model M & q vary
• Estimation models 

• Estimate time-varying M & q
• Estimate time-varying M

• Coefficient of variation on indices of abundance
• “Perfect info” CV = 0.01
• “Similar to EBS snow” CV = 0.2
• “Similar to PIRKC” CV = 0.35

• Mature mortality for only time-varying M better, but 
both were fairly well estimated
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Simulation 

• Simulated 100 populations for six scenarios
• Operating model was the fitted model M & q vary
• Estimation models 

• Estimate time-varying M & q
• Estimate time-varying M

• Coefficient of variation on indices of abundance
• “Perfect info” CV = 0.01
• “Similar to EBS snow” CV = 0.2
• “Similar to PIRKC” CV = 0.35

• Mature mortality for only time-varying M better, but both 
were fairly well estimated

• Immature M for ‘M & q’ had a large peak in 2016; immature 
M for ‘M vary’ more variable during the low period

• Estimating q generally difficult; confounded with observation 
error

• Scale is hard to estimate appropriately; all models 
overestimated recruitment, but ‘M vary’ was closer

Inability to capture scale underscores the use of correlative models instead of inputting the covariates 
as drivers in the models.



Covariates
• Bycatch & discards were in numbers at size

• Divided these numbers at size by the predicted numbers at size from the population 
dynamics model to make it more comparable with the estimated mortality rates

• Retained catch not included: very little and also highly correlated with discards

• Cannibalism
• Proportion of the density of small crab overlapping with predator times
• Density of large crab in the overlapping area

• Disease
• Prevalence (i.e. number of crab visually identified as infected)

• Predation
• Tons consumed per day
• Divided this by the biomass (check this) at size predicted at size from the population 

dynamics model

• Temperature
• Average temperature occupied by size



What size of crab were missing?

1. Start with 2018 numbers at 
size

2. Project forward removing 
catch, implementing growth 
and average natural mortality

3. Subtract the projected from 
the observed

4. Repeat starting with 2019 
data and projecting 2 years



Disease prevalence
• Explosion of disease in 2015 and 2016
• Spatial extent of disease was maintained 

into 2019, but the intensity declined 
rapidly

• 1996/1997 are the only comparable years, 
but interestingly those followed a large 
peak in immature males seen in the 1993-
1995 surveys

• The 2015/2016 ‘explosion’ preceded the 
large immature male survey numbers in 
2017-2018
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Bycatch
• Declining trend since observer data started
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Bycatch
• Declining trend since observer data started
• Spatial extent went farther north in 2018 

than any other year
• That said, we need to be careful with logs







Mortality = s(Temp) + s(Disease) + s(Discards) + s(Bycatch) + s(Cannibalism) + s(Predation)

Catchability = s(Temp) + s(Longitude) + s(Latitude)



Model stress testing

• Leave one out cross-validation

• Three year out prediction

• Randomization (does the model fit just because of the degrees of freedom given to the GAM?)

Mortality = s(Temp) + s(Disease) + s(Discards) + s(Bycatch) + s(Cannibalism) + s(Predation)

Catchability = s(Temp) + s(Longitude) + s(Latitude)



LOOCV

Leave one out cross validation
1. Exclude a year of data
2. Fit the model
3. Record deviance explained
4. Record important variables
5. Repeat for all years of data
6. Check if changes in data 

availability change inference



Prediction

MATURE IMMATURE



Randomization

1. Randomize the covariates
2. Fit the model
3. Record deviance explained
4. Do 1-3 1000 times
5. Find the 95th quantile of deviance explained
6. If ‘real’ model exceeds that, the ‘significance’ of the model fit 

is not just a result of the flexibility given to the model by the 
number of smooths and degrees of freedom



New problems

• Should I use estimates from just M-varying or M & q-varying models?
• M was better estimated by the just M-varying models, somewhat surprisingly

• ‘time-varying q’ is another way of saying ‘observation error’

• What values should I use for the sensitivity parameters?
• Use them all and fit models to all the time series to see what is a consistently 

important covariate?



What should M be in rebuilding projections?



?




