# 2021 Stock Assessment and Fishery Evaluation Report for the Pribilof Islands Blue King Crab Fisheries of the Bering Sea and Aleutian Islands Regions 

William T. Stockhausen (AFSC, NMFS)

07 May, 2021

## Contents

Executive Summary ..... 5
A. Summary of Major Changes: ..... 8

1. Management ..... 8
2. Input data ..... 8
3. Assessment methodology ..... 8
4. Assessment results ..... 9
B. Responses to SSC and CPT Comments ..... 9
C. Introduction ..... 11
5. Stock ..... 11
6. Distribution ..... 11
7. Stock structure ..... 11
8. Life History ..... 12
9. Management history ..... 13
D. Data ..... 14
10. Summary of new information ..... 14
11. Fishery data ..... 14
12. Survey data ..... 16
E. Analytic Approach ..... 18
13. History of modeling approaches ..... 18
14. Model Description ..... 19
15. Model Selection and Evaluation ..... 20
16. Results ..... 20
F. Calculation of the OFL ..... 20
17. Tier Level: ..... 20
18. Parameters and stock sizes ..... 20
19. OFL specification ..... 20
G. Calculation of the ABC ..... 25
20. Specification of the probability distribution of the OFL used in the ABC ..... 25
21. List of variables related to scientific uncertainty considered in the OFL probability distribution ..... 25
22. List of additional uncertainties considered for alternative $\sigma_{b}$ applications to the ABC ..... 25
23. Recommendations: ..... 26
H. Rebuilding Analyses ..... 26
I. Data Gaps and Research Priorities ..... 27
Literature Cited ..... 28
Tables ..... 32
Figures ..... 61
```
## Loading required package: magrittr
## Loading required package: dplyr
##
## Attaching package: 'dplyr'
## The following object is masked _by_ '.GlobalEnv':
##
## last
## The following objects are masked from 'package:stats':
##
## filter, lag
## The following objects are masked from 'package:base':
##
## intersect, setdiff, setequal, union
```


## List of Tables

1 Management performance, all units in metric tons. The OFL is a total catch OFL for each year. ..... 6
2 Management performance, all units in the table are million pounds. ..... 6
3 Basis for the OFL. All units in metric tons. 'M' is the assumed rate of natural mortality. ..... 7
4 Basis for the OFL. All units in millions of lbs. ' M ' is the assumed rate of natural mortality. ..... 7
6 Basis for the OFL. All units in t. 'M' is the assumed rate of natural mortality. ..... 24
7 Basis for the OFL. All units in millions of lbs. 'M' is the assumed rate of natural mortality. ..... 24
8 Management performance, all units in the table are in metric tons ..... 26
9 Management performance, all units in the table are in millions of lbs. ..... 26
10 Retained catch and average CPUE (number of legal males/pot lift) of PIBKC in the directed pot fishery, 1973-1998/99. The directed fishery has been closed since the 1999/2000 fishing season. NA: not applicable (no directed fishery) ..... 32
11 Bycatch catch of PIBKC in the directed and other crab fisheries, as estimated from crab observer data. A discard mortality rate of 0.2 was applied to obtain discard mortalities. Units are $t$. ..... 33
12 Bycatch of PIBKC in the groundfish fisheries, by gear type. Biomass and (discard) mortality are in kilograms.Discard mortality rates of 0.2 and 0.8 for fixed and trawl gear, respectively, were applied to obtain discard mortalities. ..... 34
13 Bycatch in numbers of PIBKC in the groundfish fisheries, by target type. ..... 35
14 Bycatch in biomass (kg) of PIBKC in the groundfish fisheries, by target type. ..... 36
15 Discard mortality, in kg, of PIBKC in the groundfish fisheries, by target type.Discard mortality rates of 0.2 and 0.8 for fixed and trawl gear, respectively, were applied to obtain discard mortalities. ..... 37
16 Size groups for various male components of the PIBKC stock used here. Female maturity is based on abdominal flap morphology and egg presence. ..... 38
17 Sample sizes (number of survey hauls, number hauls where crab were caught, number of crab caught) for male population components in the NMFS EBS trawl survey in the Pribilof District. ..... 39
18 Sample sizes (number of survey hauls, number hauls where crab were caught, number of crab caught) for female population components in the NMFS EBS trawl survey in the Pribilof District. ..... 41
19 Summary statistics for trawl survey abundance by decade, in millions. ..... 43
20 Summary statistics for trawl survey biomass by decade, in 1,000 's t . ..... 44
21 Estimated annual abundance (millions of crab) of male PIBKC population components from the NMFS EBS trawl survey. ..... 45
22 Estimated annual abundance (millions of crab) of female PIBKC population compo- nents from the NMFS EBS trawl survey. ..... 47
23 Estimated annual biomass (1000's t) of male PIBKC population components from the NMFS EBS trawl survey. ..... 49
24 Estimated annual biomass (1000's t) of female PIBKC population components from the NMFS EBS trawl survey. ..... 51
25 Results from fitting random effects model to male survey MMB data ..... 53
26 A comparison of estimates for MMB (in t) at the time of the survey. Note that the survey was not conducted in 2020 and has not yet been conducted in 2021 so the 'raw' values are unavailable and the smoothed values are 1-step and 2-step ahead predictions. ..... 54
27 A comparison of estimates for MMB (in t) at the time of the survey, fishery, and mating. Note that, for the 2021 assessment year, the survey has not yet been conducted since 2019, so the value of MMB at the time of the survey for 2021 is a 2-step ahead prediction. The value of MMB-at-mating for the assessment year cannot be determined until $B_{M S Y_{\text {proxy }}}$ has been determined. ..... 56
28 Estimated current MMB at the time of the survey and $B_{M S Y_{p r o x y}}$ using the RE- smoothed survey data. ..... 58
29 Estimated value for the $\theta$ coefficient. ..... 59
30 Results from the OFL determination. $R M_{O F L}=$ retained catch portion of the OFL, $D M_{O F L}=$ discard mortality portion of the OFL used to determine $B$ ('current' MMB-at-mating for 2021/22) ..... 60

## List of Figures

1 Distribution of blue king crab, Paralithodesplatypus, in Alaskan waters.
2 Map of the ADFG King Crab Registration Area Q (Bering Sea), showing (among others) the Pribilof District, which constitutes the stock boundary for PIBKC. The figure also indicates NMFS EBS Shelf survey grid (squares and circles), the original area used to calculate survey biomass and fishery catch data (shded in grey) in the Pribilof District, and the additional 20 nm strip (red dotted line) added in 2013.
3 The shaded area shows the Pribilof Islands Habitat Conservation Zone (PIHCZ). Trawl fishing is prohibited year-round in this zone (as of 1995), as is pot fishing for Pacific cod (as of 2015). Also shown is a portion of the NMFS annual EBS bottom trawl survey grid (squares and circles).
4 Retained catch and discard mortality, in t , for PIBKC in the crab fisheries. A discard mortality rate of 0.2 was used to convert bycatch biomass to mortality. The lower plot shows discard mortality in the crab fiheries on an expanded y scale to show annual details.
5 Upper plot: Bycatch of PIBKC in the groundfish fisheries since 2009 by gear type (no mortality applied). Lower plot: Discard mortality of PIBKC in the groundfish fisheries since 2009 by gear type. Gear-specific discard mortality rates of 0.2 and 0.8 were applied to bycatch from fixed and trawl gear, respectively
6 Upper plot: Bycatch of PIBKC in the groundfish fisheries, by target type since 2009. Lower plot: Discard mortality of PIBKC in the groundfish fisheries, by target type since 2009.Gear-specific discard mortality rates of 0.2 and 0.8 were applied to bycatch from fixed and trawl gear, respectively
7 Estimated bycatch of PIBKC, by ADFG stat area, in the fixed gear groundfish fisheries, expanded from groundfish observer reports. (1 of 2).
8 Estimated bycatch of PIBKC, by ADFG stat area, in the fixed gear groundfish fisheries, expanded from groundfish observer reports. (2 of 2).68

9 Estimated bycatch of PIBKC, by ADFG stat area, in the trawl gear groundfish
fisheries, expanded from groundfish observer reports. (1 of 2). ..... 69
10 Estimated bycatch of PIBKC, by ADFG stat area, in the trawl gear groundfish fisheries, expanded from groundfish observer reports. (2 of 2). ..... 70

11 NMFS EBS Shelf Survey stations in the Pribilof District (large dots), the survey station grid (thin black lines), and the Pribilof Islands Habitat Conservation Zone (orange outline).
12 NMFS survey abundance time series for male PIBKC. The upper plot shows the entire time series, the lower plot is since 2001. The $y$-axis scale on the upper plot is capped at 25 million crab to show variability across most years. The y-axis scale on the lower plot is capped at 2.5 million.
13 NMFS survey abundance time series for female PIBKC. The upper plot shows the entire time series, the lower plot is since 2001. The y-axis scale on the upper plot is capped at 25 million crab to show variability across most years; the abundance for mature females in 1980 is 182 million. The y-axis scale on the lower plot is capped at 2.5 million.

14 NMFS survey biomass time series for male PIBKC. The upper plot shows the entire time series, the lower plot is since 2001. The y-axis scale on the upper plot is capped at $25,000 \mathrm{t}$ to show variability across most years. The y -axis scale on the lower plot is capped at $2,500 \mathrm{t}$.

15 NMFS survey biomass time series for female PIBKC. The upper plot shows the entire time series, the lower plot is since 2001. The y-axis scale on the upper plot is capped at $25,000 \mathrm{t}$ to show variability across most years. The y -axis scale on the lower plot is capped at $2,500 \mathrm{t}$.
16 Annual size compositions for PIBKC in the NMFS EBS trawl survey, by sex, over the entire survey period.
17 Annual size compositions for PIBKC in the NMFS EBS trawl survey, by sex, over the entire survey period, except that females in 1980 have been removed to show detail. 77
18 Annual size compositions for PIBKC in the NMFS EBS trawl survey, by sex, since 2005.

19 Survey CPUE ( $t / n m i^{2}$ ) for PIBKC males. Page 1 of 1. . . . . . . . . . . . . . . . . 79

21 Time series of PIBKC bycatch mortality in the crab and groundfish fisheries. Upper plot: full time series. Lower plot: recent time period. Discard mortality rates of 0.2 and 0.8 were applied to bycatch by pot and trawl gear, respectively.
22 Diagnostic plots for the random effects model, based on 7 MCMC chains run using the R package adnuts (Monahan, 2018; Monahan and Kristensen, 2018). Shown are plots for the ln -scale process error standard deviation ('logSdLam'). Top row: trace plot; upper middle: autocorrelation plot; lower middle: histogram (across all chains); bottom plot: density plots. The vertical black line in the lower two plots represents the converged model parameter estimate.
23 'Raw' and smoothed survey MMB time series. Confidence intervals shown are $80 \%$ CIs, assuming lognormal error distributions. The two final smoothed values are 1and 2-step predictions. Upper plot: arithmetic scale, full time series. Middle plot: arithmetic scale, recent time period. Lower plot: ln-scale.
24 Estimated time series for MMB using the RE method at the time of the survey (the random effects model time series), at the time of the fishery, and at the time of mating. The value for MMB at the time of the survey in this assessment year is a 2 -step ahead prediction because the survey was not conducted in 2020 and has not yet been conducted this year. Values for MMB at the time of the fishery and the time of mating are unavailable (projected values for these quantities in the assessment year are determined as part of the OFL calculation).
$25 \quad F_{O F L}$ Control Rule for Tier 4 stocks under Amendment 24 to the BSAI King and Tanner Crabs fishery management plan. Directed fishing mortality is set to 0 below $\beta$ ( $=0.25$ ).

## Executive Summary

1. Stock: Pribilof Islands blue king crab (PIBKC), Paralithodes platypus.
2. Catches: Retained catches have not occurred since 1998/1999. Bycatch has been relatively small in recent years. To date, bycatch mortality in the crab (e.g., Tanner crab, snow crab) fisheries that incidentally take PIBKC was $0 t$ in 2020/21; the average discard mortality over the past five years in these fisheries was 0.0066 t . Most bycatch mortality for PIBKC occurs in the BSAI groundfish fixed gear (pot and hook-and-line) fisheries (5-year average: 0.00421 t ) and trawl fisheries (5-year average: 0.291 t ). In 2020/21, the estimated PIBKC bycatch mortality was $0 t$ in the groundfish fixed gear fisheries and $0 t$ in the groundfish trawl fisheries. Total fishing mortality in 2020/21 was 0 t , while the 5 -year average was 0.302 t .

Note, however, that fishery information regarding the current crab fishing year, which ends June 30, is incomplete at the time of this assessment.
3. Stock biomass: Based on 5-year running average results from the NMFS EBS Shelf Survey (the time series for PIBKC starts in 1975), stock biomass was largest in the late 1970s (73.4 t), decreased by an order of magnitude by 2000 (to 3.94 t ), and decreased by another order of magnitude by 2017 ( 0.627 t ). It continues to fluctuate at low abundances in all size classes; any short-term trends are questionable because the survey estimates exhibit large uncertainties due to the patchiness of catches.
4. Recruitment: Recruitment indices are not well understood for Pribilof Islands blue king crab. Pre-recruits may not be well-assessed by the survey due to their use of untrawlable habitat, but abundance in the survey has remained consistently low over at least the past 10 years.
5. Management performance: The stock is below MSST and consequently is overfished. Overfishing will be evaluated in September when a complete characterization of bycatch in the crab and groundfish fisheries will be available, but overfishing was not occurring as of April 8,2021 . The following results are based on determining $B_{M S Y}$ and MSST by averaging the MMB-at-mating time series based on survey biomass trends smoothed using random effects model; the current (2021/22) MMB-at-mating is also based on the smoothed survey data.

Table 1: Management performance, all units in metric tons. The OFL is a total catch OFL for each year.

| year | MSST | MMB at <br> mating | TAC | Retained <br> catch | Total catch <br> mortality | OFL | ABC |
| :--- | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| $2017 / 18$ | 2,053 | 230 | 0 | 0 | 0.33 | 1.16 | 0.87 |
| $2018 / 19$ | 2,053 | 230 | 0 | 0 | 0.41 | 1.16 | 0.87 |
| $2019 / 20$ | 2,049 | 180 | 0 | 0 | 0.42 | 1.16 | 0.87 |
| $2020 / 21$ | 2,049 | 181 | 0 | 0 | 0.00 | 1.16 | 0.87 |
| $2021 / 22$ | - | 180 | - | - | - | 1.16 | 0.87 |
| $2022 / 23$ | - | 180 | - | - | - | 1.16 | 0.87 |

Table 2: Management performance, all units in the table are million pounds.

| year | MSST | MMB at <br> mating | TAC | Retained <br> catch | Total catch <br> mortality | OFL | ABC |
| :--- | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| $2017 / 18$ | 4.526 | 0.507 | 0 | 0 | 0.0007 | 0.0026 | 0.0019 |
| $2018 / 19$ | 4.526 | 0.507 | 0 | 0 | 0.0009 | 0.0026 | 0.0019 |
| $2019 / 20$ | 4.518 | 0.398 | 0 | 0 | 0.0009 | 0.0026 | 0.0019 |
| $2020 / 21$ | 4.518 | 0.398 | 0 | 0 | 0.0000 | 0.0026 | 0.0019 |
| $2021 / 22$ | - | 0.398 | - | - | - | 0.0026 | 0.0019 |
| $2022 / 23$ | - | 0.398 | - | - | - | 0.0026 | 0.0019 |

Notes: Based on data available to the Crab Plan Team at the time of the assessment for the crab fishing year.
6. Basis for the 2021/22 OFL: The value of $B_{M S Y}$ used to determine stock status is based on Tier 4 considerations. Here, the average estimated MMB-at-mating over a specified time period as a proxy for $B_{M S Y}$. The annual MMB-at-mating time series is estimated using a
random effects model to reduce the inter-annual variability and large uncertainties associated with "raw" estimates of MMB at the time of the survey. Subsequently, the smoothed time series is projected forward to the time at which mating occurs (Feb. 15, by convention) while taking into account intervening natural and fishing mortality. Using this approach, the $B_{M S Y}$ proxy was determined to be $4,099 \mathrm{t}$. The estimated MMB-at-mating for $2021 / 22$ is 180 t , projected from the random effects model-estimate of 2021 survey MMB to time of mating based on natural mortality, assumptions regarding discard mortality in 2021/22, and the $F_{O F L}$ control rule. The ratio of MMB-at-mating for $2021 / 22$ to $B_{M S Y}$ is less than $\beta$ (0.25) for the $F_{\text {OFL }}$ Control Rule, so directed fishing is not allowed. As per the rebuilding plan (NPFMC, 2014a), the OFL is based on a Tier 5 calculation of average bycatch mortalities between 1999/2000 and 2005/06, which is a time period thought to adequately reflect the conservation needs associated with this stock and to acknowledge existing non-directed catch mortality. Using this approach, the OFL was determined to be 1.16 t for 2021/22.

Table 3: Basis for the OFL. All units in metric tons. 'M' is the assumed rate of natural mortality.

| year | Tier | MMB at <br> mating | $B / B_{M S Y}$ | $\gamma$ | Years to define $B_{M S Y}$ | M <br> $y r^{-1}$ | $\mathrm{P}^{*}$ |
| :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- |
| $2017 / 18$ | 4 c | 230 | 0.06 | 1 | $1980 / 81-1984 / 85 \& 1990 / 91-1997 / 98$ | 0.18 | $25 \%$ buffer |
| $2018 / 19$ | 4 c | 230 | 0.06 | 1 | $1980 / 81-1984 / 85 \& 1990 / 91-1997 / 98$ | 0.18 | $25 \%$ buffer |
| $2019 / 20$ | 4 c | 175 | 0.04 | 1 | $1980 / 81-1984 / 85 \& 1990 / 91-1997 / 98$ | 0.18 | $25 \%$ buffer |
| $2020 / 21$ | 4 c | 175 | 0.04 | 1 | $1980 / 81-1984 / 85 \& 1990 / 91-1997 / 98$ | 0.18 | $25 \%$ buffer |
| $2021 / 22$ | 4 c | 180 | 0.04 | 1 | $1980 / 81-1984 / 85 \& 1990 / 91-1997 / 98$ | 0.18 | $25 \%$ buffer |
| $2022 / 23$ | 4 c | 180 | 0.04 | 1 | $1980 / 81-1984 / 85 \& 1990 / 91-1997 / 98$ | 0.18 | $25 \%$ buffer |

Table 4: Basis for the OFL. All units in millions of lbs. 'M' is the assumed rate of natural mortality.

| year | Tier | MMB at <br> mating | $B / B_{M S Y}$ | $\gamma$ | Years to define $B_{M S Y}$ | M <br> $y r^{-1}$ | $\mathrm{P}^{*}$ |
| :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- |
| $2017 / 18$ | 4 c | 0.507 | 0.06 | 1 | $1980 / 81-1984 / 85 \& 1990 / 91-1997 / 98$ | 0.18 | $25 \%$ buffer |
| $2018 / 19$ | 4 c | 0.507 | 0.06 | 1 | $1980 / 81-1984 / 85 \& 1990 / 91-1997 / 98$ | 0.18 | $25 \%$ buffer |
| $2019 / 20$ | 4 c | 0.385 | 0.04 | 1 | $1980 / 81-1984 / 85 \& 1990 / 91-1997 / 98$ | 0.18 | $25 \%$ buffer |
| $2020 / 21$ | 4 c | 0.385 | 0.04 | 1 | $1980 / 81-1984 / 85 \& 1990 / 91-1997 / 98$ | 0.18 | $25 \%$ buffer |
| $2021 / 22$ | 4 c | 0.398 | 0.04 | 1 | $1980 / 81-1984 / 85 \& 1990 / 91-1997 / 98$ | 0.18 | $25 \%$ buffer |
| $2022 / 23$ | 4 c | 0.398 | 0.04 | 1 | $1980 / 81-1984 / 85 \& 1990 / 91-1997 / 98$ | 0.18 | $25 \%$ buffer |

7. Probability density function for the OFL: Not applicable for this stock.
8. $A B C$ : The ABC was calculated using a $25 \%$ buffer on the OFL, as in the previous assessments since 2015. The ABC is thus $0.87 \mathrm{t}(=0.25 \times 1.16 \mathrm{t})$.
9. Rebuilding analyses results summary: In 2009, NMFS determined that the PIBKC stock was not rebuilding in a timely manner and would not meet a rebuilding horizon of 2014. A preliminary assessment model developed by NMFS (not used in this assessment) suggested that rebuilding could occur within 50 years due to random recruitment (NPFMC, 2014a). Although the directed fishery is closed and non-pelagic trawl gear and Oacific cod pot gear are excluded from the Pribilof Islands Habitat Conservation Zone, the stock exhibits no progress towards the rebuilding target.

## A. Summary of Major Changes:

## 1. Management

In 2002, NMFS notified the NPFMC that the PIBKC stock was overfished. A rebuilding plan was implemented in 2003 that included the closure of the stock to directed fishing until the stock was rebuilt. In 2009, NMFS determined that the PIBKC stock was not rebuilding in a timely manner and would not meet the rebuilding horizon of 2014. Subsequently, Amendment 43 to the Crab FMP and Amendment 103 to the BSAI Groundfish FMP to rebuild the PIBKC stock were adopted by the Council in 2012 and approved by the Secretary of Commerce in early 2015. Amendment 103 closed the Pribilof Islands Habitat Conservation Zone (PIHCZ) to pot fishing for Pacific cod to promote bycatch reduction on PIBKC. Amendment 43 amended the prior rebuilding plan to incorporate new information on the likely rebuilding timeframe for the stock, taking into account environmental conditions and the status and population biology of the stock. No pot fishing for Pacific cod has occurred within the PIHCZ since 2015/16.

## 2. Input data

Retained and discard catch time series were updated with finalized data from the crab and groundfish fisheries for 2018/19 and 2019/20, and with estimates of catch in 2020/21 (data for the latter is incomplete at the time of the assessment in May). Abundance and biomass for PIBKC in the annual summer NMFS EBS bottom trawl survey were added for the 2019 NMFS EBS Shelf Survey. The survey was not conducted in 2020 due to concerns related to the COVID-19 global pandemic. At the time of this assessment, the survey in 2021 had not yet been conducted.

## 3. Assessment methodology

With the 2017 assessment, PIBKC was moved to a triennial schedule for full assessments following stock prioritization (CPT, 2017). Thus, only a partial assessment was conducted in 2018 (Stockhausen, 2018). However, the NMFS Alaska Regional Office noted that there was a biennial requirement to review the rebuilding status for PIBKC and that it was sensible to have the assessment and report on the same biennial basis. Consequently, the 2019 assessment was a full assessment, as is this (2021) assessment. In addition, the timing for the 2019 full assessment (and subsequent ones) was changed from September to May. This change in timing requires the use of several estimates for quantities used in the assessment model. These include survey MMB in the year of the assessment, as well as retained catch and bycatch quantities in the fishery year prior to the assessment. The NMFS EBS Shelf Survey is typically conducted on an annual basis in June-August, so biomass estimates from the survey in the year of the assessment are no longer available for the assessment, and a value projected by the random effects model used to smooth survey MMB is used as a substitute to calculate MMB-at-mating for the assessment year. As a further complication this year, the 2020 NMFS EBS Shelf Survey was not conducted due to the COVID-19 global pandemic, so the most recent survey data available is from the 2019 NMFS EBS Shelf Survey. Additionally, because the crab fishery year runs (by convention) from July 1 to June 30, estimates of retained catch in the directed fishery and bycatch in the directed and other crab and groundfish fisheries are incomplete at the time of the May assessment. For 2021, the directed fishery was closed and thus there will be no retained catch or bycatch in the directed fishery for 2020/21. As of April 8, 2021, no PIBKC bycatch in the Tanner crab, snow crab, and groundfish fisheries had occurred (based on in-season bycatch records available at that time; snow and Tanner crab: Ben Daly, ADFG, pers. comm.; groundfish fisheries: AKFIN Answers databases). In the 2019 assessment, the values for
bycatch obtained prior to the May assessment were used as estimates for the current year-end values to determine MMB-at-mating for the current crab year. This approach was also followed this year, although these values are likely underestimates of the final values. However, given the overall small scale of bycatch in recent years, this approximation is likely to have no effect on the determination of "overfished"" status while the determination of "overfishing" will be revisited by the NPFMC Crab Plan Team and Science and Statistical Committee in September with the end-of-year bycatch numbers for 2020/21.

Otherwise, the methodology is the same as in the 2019 assessment. The Tier 4 approach used in this assessment for status determination, based on smoothing the raw survey biomass time series using a random effects model, is identical to that adopted by the CPT and SSC in 2015 and used in subsequent assessments (Stockhausen, 2015, 2016, 2017, 2019).

## 4. Assessment results

Total catch mortality in $2020 / 21$ was 0 t , which did not exceed the OFL (1.16 t). Consequently, overfishing did not occur in 2020/21 (this will be updated in September with a year-end bycatch report). The projected MMB-at-mating for 2021/22 (180 t) decreased slightly from that in 2020/21 (181 t), but remained well below the MSST (2,049 t). Consequently, the stock remains overfished and a directed fishery is prohibited in $2021 / 22$. The OFL, based on average catch, and ABC are identical to last year's values ( 1.16 t and 0.87 t , respectively).

## B. Responses to SSC and CPT Comments

CPT comments May 2019: Specific remarks pertinent to this assessment
Remark: Incorporate information regarding the model used for status determination criteria (now in Appendix C of the document) into the main assessment document.

Response: This information is now incorporated into the main assessment document.
Remark: Include the parameter table in the main assessment document.
Response: The parameter table (Table 25) has now been included in the main assessment document.
Remark: Include an evaluation of progress towards rebuilding.
Response: The status of rebuilding is discussed in Section H. The only source of evidence towards rebuilding for this stock is the NMFS EBS Shelf Survey. This was last conducted in 2019. Based on the lack of a trend in recent MMB , as well as the absence of any recruitment signal in recent survey size compositions, there is no evidence for progress toward rebuilding.

SSC comments June 2019: Specific remarks pertinent to this assessment Remark: The SSC noted that the document was very large (in storage) and the authors should consider switching from vector graphics to raster graphics. In addition, much of the critical data and figures are repeated from the main documents into the appendices multiple times. The SSC appreciates the authors' use of RMarkdown, but would like to see the appendices integrated into the main SAFE for the next full assessment.

Response: The appendices have been incorporated into the main assessment document. The duplication of tables and figures has been eliminated. The size of the complete document (i.e.,
including the original appendices) has been reduced from $\sim 390 \mathrm{MB}$ to $\sim 90 \mathrm{MB}$. This was not a trivial nor quick exercise. Making major modifications to RMarkdown documents that include results, tables, and figures can (and did) involve a lot more work than simply cutting and pasting text, tables, and figures in a Word document-it can (and did) involve creating an entirely new workflow, although many elements of that workflow were available in one form or another from the previous approach using Appendices. That said, the workflow that has been developed should simplify making changes in the future.

Remark: The SSC also encourages that the stock structure template used for groundfish be considered for either PIBKC specifically or blue king crab in general within the next 2 years.

Response: The author has begun to address this request, and anticipates a draft version will be available for review by the CPT and SSC in September.

CPT comments September 2019: No specific remarks pertinent to this assessment

SSC comments October 2019: No specific remarks pertinent to this assessment

CPT comments May 2020: No specific remarks pertinent to this assessment
SSC comments June 2020: No specific remarks pertinent to this assessment

CPT comments September 2020: No specific remarks pertinent to this assessment
SSC comments October 2020: No specific remarks pertinent to this assessment

## C. Introduction

## 1. Stock

Pribilof Islands blue king crab (PIBKC), Paralithodes platypus.

## 2. Distribution

Blue king crab are anomurans in the family Lithodidae, which also includes the red king crab (Paralithodes camtschaticus) and golden or brown king crab (Lithodes aequispinus) in Alaska. Blue king crabs are found in widely-separated populations across the North Pacific (Figure 1). In the western Pacific, blue king crabs occur off Hokkaido in Japan and isolated populations have been observed in the Sea of Okhotsk and along the Siberian coast to the Bering Straits. In North America, they are found in the Diomede Islands, Point Hope, outer Kotzebue Sound, King Island, and the outer parts of Norton Sound. In the remainder of the Bering Sea, they are found in the waters off St. Matthew Island and the Pribilof Islands. In more southerly areas, blue king crabs are found in the Gulf of Alaska in widely-separated populations that are frequently associated with fjord-like bays (Figure 1). The insular distribution of blue king crab relative to the similar but more broadly distributed red king crab is likely the result of post-glacial-period increases in water temperature that have limited the distribution of this cold-water adapted species (Somerton 1985). Factors that may be directly responsible for limiting the distribution include the physiological requirements for reproduction, competition with the more warm-water adapted red king crab, exclusion by warm-water predators, or habitat requirements for settlement of larvae (Armstrong et al 1985, 1987; Somerton, 1985).

## 3. Stock structure

Stock structure of blue king crab in the North Pacific is largely unknown. Stoutamore (2014) found significant genetic divergence between all sites comparing genetic samples collected from sites in Southeast Alaska, the Pribilof Islands, St. Matthew Island, Little Diomede, Chaunskaya Bay, Shelikhov Gulf, and the western Bering Sea, with Southeast Alaska exhibiting the highest divergence from the other sites. Allele frequencies from the Pribilofs and St. Matthew (and Little Diomede) grouped together more closely than with other sites based on Principal Components Analysis. Temporal changes were significant between samples collected in the Pribilofs and at St. Matthew in the early 1990s and ones collected 2006-2011, although there was no evidence these changes were due to recent population bottlenecks. Stoutamore (2014) suggested that this apparent genetic drift could be a consequence of the large decreases in abundance at these locations since the early 1980s.

The potential for species interactions between blue king crab and red king crab as a cause for PIBKC shifts in abundance and distribution were addressed in a previous assessment (Foy, 2013). Foy (2013) compared the spatial extent of both speices in the Pribilof Islands from 1975 to 2009 and found that, in the early 1980's when red king crab first became abundant, blue king crab males and females dominated the stations (between 1 and 7) where the species co-occurred in the Pribilof Islands District. Spatially, the stations with co-occurrence were broadly distributed around the Pribilof Islands. In the 1990's, the red king crab population increased substantially as the blue king crab population decreased. During this time period, the number of stations with co-occurance remained around a maximum of 8 , but they were equally dominated by both blue king crab and red king crab-suggesting a direct overlap in distribution at the scale of a survey station. During this
time period, the stations dominated by red king crab were dispersed around the Pribilof Islands. Between 2001 and 2009 the blue king crab population decreased dramatically while the red king crab population fluctuated. The number of stations dominated by blue king crab in 2001-2009 was similar to that for stations dominated by red king crab for both males and females, suggesting continued competition for similar habitat. The only stations dominated by blue king crab in the latter period were to the north and east of St. Paul Island. Although blue king crab protection measures also afford protection for the red king crab in this region, red king crab stocks continue to fluctuate (more so than simply accounted for by the uncertainty in the survey).

During the years when the fishery was active (1973-1989, 1995-1999), the Pribilof Islands blue king crab (PIBKC) were managed by ADFG under the Bering Sea king crab Registration Area Q Pribilof District (ADF\&G 2008; Figure 2). In the Pribilof District, blue king crab occupy the waters adjacent to and northeast of the Pribilof Islands (Armstrong et al. 1987). For assessment purposes, the Pribilof District is defined in Figure 2, with the addition of a 20 nm mile strip to the east of the District (bounded by the dotted red line in Figure 2), is considered to define the stock boundary for PIBKC.

## 4. Life History

Blue king crab are similar in size and appearance, except for color, to the more widespread red king crab, but are typically biennial spawners with lesser fecundity and somewhat larger sized (ca. 1.2 mm ) eggs (Somerton and Macintosh 1983; 1985; Jensen et al. 1985; Jensen and Armstrong 1989; Selin and Fedotov 1996). Blue king crab fecundity increases with size, from approximately 100,000 embryos for a $100-110 \mathrm{~mm}$ CL female to approximately 200,000 for a female $>140-\mathrm{mm}$ CL (Somerton and MacIntosh 1985). Blue king crab have a biennial ovarian cycle with embryos developing over a 12 or 13 -month period depending on whether or not the female is primiparous or multiparous, respectively (Stevens 2006a). Armstrong et al. (1985, 1987), however, estimated the embryonic period for Pribilof blue king crab at 11-12 months, regardless of previous reproductive history. Somerton and MacIntosh (1985) placed development at 14-15 months. It may not be possible for large female blue king crabs to support the energy requirements for annual ovary development, growth, and egg extrusion due to limitations imposed by their habitat, such as poor quality or low abundance of food or reduced feeding activity due to cold water (Armstrong et al. 1987; Jensen and Armstrong 1989). Both the large size reached by Pribilof Islands blue king crab and the generally high productivity of the Pribilof area, however, argue against such environmental constraints. Stoutamore (2014) found no genetic evidence to support an hypothesis for two genetically-distinct strains extruding and hatching eggs on alternate years. Development of the fertilized embryos occurs in the egg cases attached to the pleopods beneath the abdomen of the female crab and hatching occurs February through April (Stevens 2006b). After larvae are released, large female Pribilof blue king crab will molt, mate, and extrude their clutches the following year in late March through mid April (Armstrong et al. 1987). Stoutamore (2014) found strong genetic evidence for a single-paternity mating system.

Female crabs require an average of 29 days to release larvae, and release an average of 110,033 larvae (Stevens 2006b). Larvae are pelagic and pass through four zoeal larval stages which last about 10 days each, with length of time being dependent on temperature: the colder the temperature the slower the development and vice versa (Stevens et al. 2008). Stage I zoeae must find food within 60 hours as starvation reduces their ability to capture prey (Paul and Paul 1980) and successfully molt. Zoeae consume phytoplankton, the diatom Thalassiosira spp. in particular, and zooplankton. The fifth larval stage is the non-feeding (Stevens et al. 2008) and transitional glaucothoe stage in which
the larvae take on the shape of a small benthic crab but retain the ability to swim by using their extended abdomen as a tail. This is the stage at which the larvae searches for appropriate settling substrate and, upon finding it, molts to the first juvenile stage and henceforth remains benthic. The larval stage is estimated to last for 2.5 to 4 months and larvae metamorphose and settle during July through early September (Armstrong et al. 1987; Stevens et al. 2008).

Blue king crab molt frequently as juveniles, growing a few mm in size with each molt. Unlike red king crab juveniles, blue king crab juveniles are not known to form pods. Female king crabs typically reach sexual maturity at approximately five years of age while males may reach maturity at six years of age (NPFMC 2003). Female size at $50 \%$ maturity for Pribilof blue king crab is estimated to be $96-\mathrm{mm}$ carapace length (CL) and size at maturity for males, estimated from chela height relative to CL, is estimated to be $108-\mathrm{mm}$ CL (Somerton and MacIntosh 1983). Skip molting occurs with increasing probability for those males larger than 100 mm CL (NMFS 2005).

Longevity is unknown for this species due to the absence of hard parts retained through molts with which to age crabs. Estimates of 20 to 30 years in age have been suggested (Blau 1997). Natural mortality for male Pribilof blue king crabs has been estimated at $0.34-0.94$ with a mean of 0.79 (Otto and Cummiskey 1990) and a range of 0.16 to 0.35 for Pribilof and St. Matthew Island stocks combined (Zheng et al. 1997). An annual natural mortality of $0.2 \mathrm{yr}^{-1}$ for all king crab species was originally adopted in the federal crab fishery management plan for the BSAI areas (Siddeek et al. 2002). This was subsequently revised and a rate of $0.18 \mathrm{yr}^{-1}$ is currently used for PIBKC.

## 5. Management history

The blue king crab stock in the Pribilof District is currently overfished and the directed fishery has been closed since 1999/2000 (Bowers et al. 2011; NPFMC 2014a; Stockhausen 2019). Bottom trawl gear and pot fishing for Pacific cod are currently excluded from the Pribilof Islands Habitat Conservation Zone (PIHCZ, Figure 3) to minimze bycatch of PIBKC in the groundfish fisheries. Fishing for Tanner crab and snow crab is also prohibited within annual area closures implemented by ADFG that generally incorporate the PIHCZ.

The blue king crab fishery in the Pribilof District began in 1973 with a reported catch of 590 t by eight vessels (Table 10; Figure 4). Landings increased during the 1970s and peaked at a harvest of $5,000 \mathrm{t}$ in the 1980/81 season (Table 10; Figure 4), with an associated increase in effort to 110 vessels (ADFG 2008). The fishery occurred September through January, but usually lasted less than 6 weeks (Otto and Cummiskey 1990; ADFG 2008). The fishery was male only, and legal size was $>165 \mathrm{~mm}$ carapace width (NPFMC 1994). Guideline harvest levels (GHL) were 10 percent of the estmiated abundance of mature males or 20 percent of the estimated number of legal males (ADFG 2006).

PIBKC occasionally occur as bycatch in the eastern Bering Sea snow crab (Chionoecetes opilio) fishery, the western Bering Sea Tanner crab (Chionoecetes bairdi) fishery, the Bering Sea hair crab (Erimacrus isenbeckii) fishery, and the Pribilof red and blue king crab fisheries (Tables 11). In addition, blue king crab are taken as bycatch in groundfish fisheries by both fixed and trawl gear, primarily those targeting Pacific cod, flathead sole and yellowfin sole (Tables 12-15).
Amendment 21a to the BSAI Groundfish FMP prohibits the use of non-pelagic trawl gear in the Pribilof Islands Habitat Conservation Area (subsequently renamed the Pribilof Islands Habitat Conservation Zone in Amendment 43; Figure 3), which the amendment also established (NPFMC 1994). The amendment went into effect January 20, 1995 and protects the majority of crab habitat
in the Pribilof Islands area from the impact from bottom contact trawl gear.
Declines in the PIBKC stock after 1995 resulted in a closure of directed fishing from 1999 to the present. The stock was declared overfished in September 2002, and ADFG developed a rebuilding harvest strategy as part of the NPFMC comprehensive rebuilding plan for the stock. The rebuilding plan also included the closure of the stock to directed fishing until it was rebuilt. In 2009, NMFS determined that the PIBKC stock was not rebuilding in a timely manner and would not meet the rebuilding horizon of 2014. Subsequently, Amendment 43 to the King and Tanner Crab Fishery Management Plan (FMP) and Amendment 103 to the BSAI Groundfish FMP to rebuild the PIBKC stock were adopted by the Council in 2012 and approved by the Secretary of Commerce in early 2015. Amendment 103 closes the Pribilof Islands Habitat Conservation Zone (Figure 3) to pot fishing for Pacific cod to promote bycatch reduction on PIBKC. Amendment 43 amends the prior rebuilding plan to incorporate new information on the likely rebuilding timeframe for the stock ( $>$ 50 years), taking into account environmental conditions and the status and population biology of the stock (NPFMC 2014a).

## D. Data

## 1. Summary of new information

The time series of retained and discarded catch in the crab fisheries was updated for 2020/21 from ADFG data (no retained catch, no bycatch mortality; Tables 10 and 11). The time series of discards in the groundfish pot and trawl fisheries (Tables 12) were updated for 2009/10-2020/21 using NMFS Alaska Regional Office (AKRO) estimates obtained from the AKFIN database (accessed on April 8, 2021). Results from the 2019 NMFS EBS bottom trawl survey were added to the assessment (Tables 17-24).

## 2. Fishery data

## 2.a. Retained catch

The directed fishery has been closed since 1999/2000. Historical retention data (including deadloss; Table 10, Figure 4) were obtained from Bowers et al. (2011). Retained catch data start in 1973, reaching a maximum of $4,976 \mathrm{t}$ in 1980/1981 before dropping precipitously. In the 1995/96 to 1998/99 seasons, blue king crab and red king crab were fished under the same Guideline Harvest Level (GHL). Total allowable catch (TAC) for the directed fishery has been set at zero since 1999/2000; there will be no retained catch in the 2020/21 crab fishing season.

## 2.b. Bycatch and discards:

## Crab pot fisheries

Estimated annual bycatch data on PIBKC in the crab fisheries is provided by ADFG for sublegal males ( $<138 \mathrm{~mm}$ CL), legal males ( $\geq 138 \mathrm{~mm} \mathrm{CL}$ ), and females based on data collected by onboard observers in the snow crab and Tanner crab fisheries (aggregated across fisheries in Table 11 and Figure 4). Catch weight was calculated by first determining the mean weight (in grams) for crabs in each of three categories: legal non-retained, sublegal, and female. The average weight for each category was then calculated from length frequency tables, where the carapace length ( $z$; in mm ) was converted to weight ( $w$; in g ) using the following equation:

$$
\begin{equation*}
w=\alpha \cdot z^{\beta} \tag{1}
\end{equation*}
$$

Values for the length-to-weight conversion parameters $\alpha$ and $\beta$ were applied across the time period (males: $\alpha=0.000508, \beta=3.106409$; females: $\alpha=0.02065, \beta=2.27$; Daly et al. 2014). Average weights ( $\bar{W}$ ) for each category were calculated using the following equation:

$$
\begin{equation*}
\bar{W}=\frac{\sum w_{z} \cdot n_{z}}{\sum n_{z}} \tag{2}
\end{equation*}
$$

where $w_{z}$ is crab weight-at-size $z$ (i.e., carapace length) using Equation 1, and $n_{z}$ is the number of crabs observed at that size in the category. Finally, estimated total non-retained weights for each crab fishery were the product of average weight ( $\bar{W}$ ), CPUE (numbers/observed pot) based on observer data, and total effort (pot lifts) in each crab fishery.

Historical discard catch data are available from 1996/97 to present from the snow crab general, snow crab CDQ, and Tanner crab fisheries (Table 11), although data may be incomplete for some of these fisheries. Prior to 1998/99, limited observer data exists (only for catcher-processor vessels), so discarded catch before this date is not included here. For this assessment, a $20 \%$ handling mortality rate was applied to the bycatch estimates to calculate discard mortality on PIBKC in these pot fisheries (Table 11; Figure 5). In assessments prior to 2017, a handling mortality rate of $50 \%$ was applied to bycatch in the pot fisheries. The revised value used here is now consistent with the rates used in other king crab assessments (e.g., Zheng et al., 2016).

As of March 31, 2021, no bycatch mortality in the crab fisheries had been oserved.

## Groundfish fisheries

The AKRO estimates of PIBKC bycatch in all groundfish fisheries in 2020/21, as available through the AKFIN database (accessed April 8, 2021), are included in this report (Tables 12-15, Figures $5-6)$. Updated estimates for 2009/10-2020/21 were obtained through the AKFIN database.

Bycatch data in the groundfish fisheries are available for PIBKC from 1997/98 to present. Between 1997 and December 2001, bycatch was estimated using the "blend method." From January 2003 to December 2007, bycatch was estimated using the Catch Accounting System (CAS), based on substantially different methods from those used for the "blend." Starting in January 2008, the groundfish observer program changed the method in which they speciate crab to better reflect their hierarchical sampling method and to account for broken crab that in the past were only identified to genus. In addition, the haul-level weights collected by observers were used to estimate the crab weights through CAS instead of applying an annual (global) weight factor to convert numbers to biomass. Spatial resolution using the CAS was at the NMFS statistical area. Beginning in January 2009, ADFG statistical areas ( $1^{\circ}$ longitude x $0.5^{\circ}$ latitude) were included in groundfish production reports and allowed an increase in the spatial resolution of bycatch estimates from the NMFS statistical areas to the state statistical areas. These "Catch-in-Areas" (CIA) bycatch estimates (2009-present) were first provided in the 2013 assessment, and improved methods for aggregating observer data were used in the 2014 and 2015 assessments (see Stockhausen, 2015). In 2019, the algorithm used by AKFIN to expand observer data was changed from one based on retained groundfish catch weight to the one currently used by AKRO, which is based on total groundfish catch weight. This was applied retroactively to data from calendar year 2017 forward,
affecting estimates for crab starting in crab year 2016. As of April 8, 2021, no bycatch of PIBKC had been reported in the groundfish fisheries during 2020/21.

To assess crab mortality in the groundfish fisheries, a $80 \%$ discard mortality rate was applied to estimates of bycatch in fisheries using trawl gear while a $20 \%$ discard mortality rate was applied to fisheries using fixed gear (pots or hook and line gear; Tables 12 and 15; Figure 5). Since 2009/10, the maximum annual bycatch of PIBKC in the groundfish fisheries was 1.55 t in 2015/16, while the maximum total discard mortality was 0.795 t in 2015/16. In contrast, the average annual bycatch over the past 5 years was 0.4 t , while the average discard mortality was 0.256 t . In general, trawl gear takes more PIBKC than fixed gear, and with higher mortality, although exceptions are fairly common (e.g., 2011/12, 2013/14, 2015/16).

PIBKC is primarily taken as bycatch in fisheries targeting flathead sole, yellowfin sole, northern rock sole, and Pacific cod (Tables 13-15; Figure 6). Although the Pacific cod fishery accounted for the highest bycatch of PIBKC (in 2016) across the time series, it generally ranks below the other fisheries as a source of mortality because its bycatch occurs primarily with fixed gear.

Bycatch taken by fixed gear is typically dispersed along the shelf edge (Figures 7 and 8), although it was concentrated within and near the Habitat Conservation Zone in 2015/16. In contrast, bycatch taken with trawl gear tends to be concentrated along and to the northeast of the eastern boundary of the Habitat Conservation Zone (non-pelagic trawl gear is excluded from the Zone; Figures 9 and 10), although 2012 was an exception in which bycatch was concentrated along the western edge of the Zone.

## 2.c. Catch-at-length

Not applicable.

## 3. Survey data

Time series of annual estimates of area-swept abundance and biomass, as well as size composition data, are available for PIBKC from the summer NMFS EBS Shelf Bottom Trawl Survey based on the stock area first defined in the 2013 assessment (Foy, 2013), which includes the Pribilof District and a 20 nm strip adjacent to the eastern edge of the District (Figure 2). The adjacent area was defined as a result of the 2015 rebuilding plan and the concern that crab outside the Pribilof District were not being accounted for in the assessment. The survey has been conducted annually since 1975, with the exception of 2020 . In 2020, the survey was not conducted due to issues associated with the global COVID-19 pandemic.

The standardized EBS bottom trawl survey is based on a systematic design with a fixed sampling station at the center of each $37.04 \times 37.04 \mathrm{~km}(20 \times 20$ nautical mile) grid square (Lauth and Nichol, 2013). In the area surrounding the Pribilof Islands, high-density "corner stations" are sampled to better assess local blue king crab concentrations (Figure 11). Since 1982, the survey has used standard 83-112 Eastern otter trawls, which have $25.3-\mathrm{m}$ ( 83 ft ) headropes and $34.1-\mathrm{m}$ $(112 \mathrm{ft})$ footropes, to sample crab and groundfish species at 77 stations within the Pribilof District, augmented by a column of 9 stations to the east of the District (indicated by the dashed red line in Figure 2) to better encompass the stock limits. The standard tow is nominally 30 minutes on bottom at a tow speed of 3 knots ( $\sim 1.5 \mathrm{nmi}$ distance), but net mensuration gear is used to more accurately assess time and distance "on bottom" as well as net width to provide a precise estimate of area swept. The net mensuration gear also allows the collection of depth and temperature data.

Details of the NMFS bottom trawl protocols established by the National Oceanic and Atmospheric Administration can be found in Stauffer (2004).

For each tow, all crab were removed from the catch, sorted by species and sex, and a total catch weight was obtained for each species (Zacher et al., 2020). All blue king crab were sampled for biological characteristics, including sex, carapace length (to 0.1 mm ), weight, shell condition, and egg color, egg condition, and clutch size for females. Male crab were characterized as immature, mature, sublegal, and legal based on the size categories in Table 16. Females were characterized as immature or mature based on abdominal flap morphology and egg presence (Zacher et al., 2020).

Biomass estimates were calculated using the number of individual male and female crab at each 1 mm size category, using weight-size relationships developed by the AFSC's Kodiak Laboratory (the same as those applied to fishery data, Equation 1; Zacher et al., 2020). Weights were calculated for each 1 mm size bin and summed within the legal male, sublegal male, mature, and immature size categories for each sex caught at a station. Total biomass was estimated by averaging crab density (biomass /area swept) from all stations within the augmented District, and multiplying by its total area (Zacher et al., 2020).

45 stations were included in survey strata for PIBKC in 1975, increasing to 86 by 1983 and remaining essentially constant since then (Tables 2 and 3 ). In the early 1980s, males were found at up to 38 of these stations and females were found at up to 24 . This decreased in the 1990s when males occurred in a maximum of 22 stations, with females occurring at a maximum of 15 stations. Since 2010, the maximum number of stations at which males were caught is 9 , with a median of 5 , while females were caught at a maximum of 8 stations, with a median of 4 . In similar fashion, the number of males caught declined from a maximum of 858 in 1975 to a since-2010 maximum of 22 ; for females, the corresponding numbers are 343 (in 1981) and 24 . In most years, more mature crab were caught than immature, although there were exceptions to this (e.g., 1989 for both sexes). In 2019, a total of 11 males and 11 females were caught at 6 and 2 stations, respectively, all in the high-density sampling area (Tables 17 and 18).

Annual survey abundance and biomass for PIBKC have declined precipitously over the course of the 45 year time series (Tables 19-24 and Figures 12-15). On decadal scales, mean survey abundance and biomass have declined for males from 13.1 million crab and 29.5 thousands t in the 1970s to 0.224 million crab and 0.402 thousands t in the 2010s. Similarly, mean survey abundance and biomass have declined for females from 8.86 million crab and 8.08 thousands $t$ in the 1970s to 0.255 million crab and 0.23 thousands t in the 2010s. Dampened oscillations in survey abundance and biomass have occurred on roughly decadal scales for this stock, with maxima exhibited at the start of the time series for males, followed by a decline to low values in the mid-to-late 1980s, an increase to a relative maximum in the early 1990's, followed by a decline to consistent low values since 1999 (a "blip" with large confidence intervals in 2005 being the exception). Females show a similar pattern, but lagged perhaps 5 years or so (without a large "blip" in 2005). In 2019, apparent increases observed in mature and legal male biomass estimates relative to 2018 were attributed primarily to an abbreviated, but "still valid", tow which may have had the effect of artificially increasing the CPUE calculated for the affected station (Zacher et al., 2020).

One feature that characterizes survey-based estimates of abundance and biomass for PIBKC is the large uncertainty (cv's on the order of $0.5-1$ ) associated with the estimates, which complicates the interpretation of sometimes large interannual swings in estimates of abundance (Tables 21 and 22, Figures 12-13) and biomass ((Tables 23 and 24, Figures 14-15). Estimated total abundance of male PIBKC from the NMFS EBS bottom trawl survey declined from $\sim 24$ million crab in 1975, the first
year of the "standardized" survey, to $\sim 150,000$ in 2016 (the lowest estimated abundance since 2004, which was the minimum for the time series. Following a general decline to a low-point in 1985 ( $\sim 500,000$ males), abundance increased by a factor of 10 in the early 1990s, then generally declined (with small-amplitude oscillations superimposed) to the present. Estimated female abundance generally followed a similar trend. It spiked at 180 million crab in 1980 , from $\sim 13$ million crab in 1975 and only $\sim 1$ million in 1979, then returned to more typical levels in 1981 ( $\sim 6$ million crab). More recently, abundance has fluctuated around 200,000 females. Estimated biomass for both males and females have followed trends similar to those in abundance.

Size frequencies across the entire time series are shown by sex in Figures 16-18. Based on patterns for crab $>50 \mathrm{~mm}$ CL, a single recruitment event starting in 1988 is evident in 17, with a second possible event starting in 2005. However, these plots provide little evidence of recent recruitment.

The small numbers of crab caught in recent surveys make it difficult to draw firm conclusions regarding spatial patterns (Figures 19 and 20). That said, the spatial pattern of PIBKC abundance in recent surveys is generally centered fairly compactly within the Pribilof District to the east of St. Paul Island (although 2015 is an exception) and north of St. George Island, within a 60 nm radius of St. Paul.

## E. Analytic Approach

## 1. History of modeling approaches

A catch survey analysis has been used for assessing the stock in the past, although it is not currently in use. In October 2013, the SSC concurred with the CPT that the PIBKC stock falls under Tier 4 for status determination. For Tier 4 stocks, it is not possible to determine $B_{M S Y}$ and MSST directly. Instead, time-averaged mature male biomass (MMB) at the time of mating ("MMB at mating"") is used as a proxy for $B_{M S Y}$, where the averaging is over some time period assumed to be representative of the stock being fished at an average rate near $F_{M S Y}$ such that the stock is fluctuating around $B_{M S Y}$. However, MMB-at-mating (by convention, MMB on Feb 15) is not directly observed. Instead, estimates of MMB at the time of the NMFS EBS Shelf Survey are available, as are estimates of natural mortality $(M)$, and mortality due to fishing (retained catch mortality, $R M$ and discard catch mortality, $M D$ ). The current modeling approach uses $M$ for king crab (0.18), and annual estimates of $R M$ and $D M$ to project estimates of MMB at the time of the survey (July 1, by convention) forward to the time of mating.

Because the interannual variability associated with the annual survey biomass estimates is extremely large, different approaches have been used to provide a "smoothed" version of MMB at the time of the survey from which to project forward to estimate MMB-at-mating. In the 2013 and 2014 assessments (Foy 2013; Stockhausen 2014), inverse-variance (IV) averaging was used to smooth the annual survey biomass estimates. In the 2015 assessment (Stockhausen, 2015), an alternative approach to smoothing based on a random effects (RE) model was presented and subsequently adopted by the CPT and SSC to use in estimating $B_{M S Y}$. One advantage to the RE approach over the IV approach is that it provides an estimate of process error in the MMB time series. Other advantages are that it can handle missing data and it can project uncertainty forward in a consistent fashion. The RE model is used in this assessment to obtain smooth "raw" estimates of annual survey MMB prior to calculating MMB-at-mating.

Since the 2017 assessment, assessments for PIBKC have been moved to an odd-year biennial schedule. The timing of the assessment was also moved from September to May, which has required that several
data inputs to the model (assessment year MMB at the time of the survey and retained catch and bycatch values from the crab fishery year prior to the assessment year) be estimated in some fashion. MMB at the time of the survey (July 1) in the year of the assessment can ordinarily be estimated from the observed time series using the RE model to provide a 1 -step ahead prediction-(n.b.: it is the same value as that for the previous year, but the uncertainty is larger). Additionally, values for bycatch in the crab and groundfish fisheries are incomplete at the time of the assessment, so these must be estimated as well. Because the directed fishery is closed, retained catch and bycatch in the directed fishery is necessarily be zero.

## 2. Model Description

MMB at the time of the survey in year $y, M M B_{s_{y}}$, is calculated from survey data using:

$$
M M B_{s_{y}}=\sum_{z} w_{z} \cdot P_{z} \cdot n_{z, y}
$$

where $w_{z}$ is male weight at size $z(\mathrm{~mm} \mathrm{CL}), P_{z}$ is the probability of maturity at size $z$, and $n_{z, y}$ is survey-estimated male abundance at size $z$ in year $y$. For PIBKC, $P_{z}$ is a knife-edge function, with all males larger than 119 mm CL being mature (Table 16).

A random effects (RE) model is used to reduce survey sampling "noise" and obtain more smoothlyvarying estimates of MMB at the time of the survey. This is a statistical approach which models annual $\log$-scale changes in "true" survey MMB as a random walk process using

$$
<\ln \left(M M B_{s}\right)>_{y}=<\ln \left(M M B_{s}\right)>_{y-1}+\epsilon_{y}, \text { where } \epsilon_{y} \sim N\left(0, \phi^{2}\right)
$$

as the state (or process) equation and

$$
\ln \left(M M B_{s_{y}}\right)=<\ln \left(M M B_{s}\right)>_{y}+\eta_{y}, \text { where } \eta_{y} \sim N\left(0, \sigma_{s_{y}}^{2}\right)
$$

as the observation equation, where $<\ln \left(M M B_{s}\right)>_{y}$ is the estimated "true" log-scale survey MMB in year $y, \epsilon_{y}$ represents normally-distributed process error in year $y$ with standard deviation $\phi, M M B_{s_{y}}$ is the observed survey MMB in year $y, \eta_{y}$ represents normally-distributed $\ln$-scale observation error, and $\sigma_{s y}$ is the log-scale survey MMB standard deviation in year $y$. The $M M B_{s}$ 's and $\sigma_{s}$ 's are observed quantities from the "raw" survey data, the $<\ln \left(M M B_{s}\right)>$ 's and $\phi$ are estimated parameters, and the $\epsilon$ 's are random effects representing a random walk from one time step to the next (essentially nuisance parameters).

Parameter estimates are obtained by minimizing the joint objective function

$$
\Lambda=\sum_{y}\left[\ln (2 \pi \phi)+\left(\frac{<\ln \left(M M B_{s}\right)>_{y}-<\ln \left(M M B_{s}\right)>_{y-1}}{\phi}\right)^{2}\right]+\sum_{y}\left(\frac{\ln \left(M M B_{s_{y}}\right)-<\ln \left(M M B_{s}\right)>_{y}}{\sigma_{s_{y}}}\right)^{2}
$$

The current model code is based on code developed by Jim Ianelli (NOAA/NMFS/AFSC). It uses AD Model Builder C++ libraries (Fournier et al., 2012) to minimize the objective function with respect to $\phi$ while integrating out the random effects.

Given a smoothed estimate, $\{\mathrm{MMB}\} \_\left\{\mathrm{s} \_y\right\}$, of MMB at the time of the survey in year $y$, MMB-atmating ( $M M B_{m_{y}}$ ) is calculated using

1. $M M B_{f_{y}}=M M B_{s_{y}} \cdot e^{-M \cdot t_{s f}}$
2. $M M B_{m_{y}}=\left[M M B_{f_{y}}-R M_{y}-D M_{y}\right] \cdot e^{-M \cdot t_{f m}}$
where $M M B_{f_{y}}$ is the MMB in year $y$ just prior to the fishery, $M$ is natural mortality, $R M_{y}$ is retained mortality on MMB in the directed fishery in year $y, D M_{y}$ is discard mortality on MMB (not on all crab) in all fisheries in year $y$, $t_{s f}$ is the time between the survey and the fishery, and $t_{f m}$ is the time between the fishery and mating. The fisheries (directed and bycatch) are assumed to act as "pulse" fisheries just prior to mating.

## 3. Model Selection and Evaluation

No other models were considered. Based on Table 25 and Figure 22, the RE model appears to have satisfactorily converged to a (presumably) global minimum. The only non-RE parameter estimated is $p h i$, the $\ln$-scale estimate of the process error. The maximum gradient at the final model iteration is acceptably small ( $<10^{-7}$; theoretically, it should be 0 but this is numerically unrealistic). In addition, the model hessian was invertible and the standard deviation of the estimated $\ln$-scale process error (0.17984) appears reasonable. Results from Markov Chain Monte Carlo (MCMC) sampling of the posterior distribution using the R package adnuts (Monahan, 2018; Monahan and Kristiensen, 2018) also do not indicate any problems with the model: the histogram and density plots (lower two plots in Figure 22) are approximately normal and the mode of each agrees with the estimated value for $p h i$ (referred to as "logSdLam" in the Figure).

## 4. Results

The estimate for the ln-scale process error, $\phi$, is $-0.836474 \pm 0.17984$. The RE model appears to have satisfactorily reduced the interannual variability and uncertainty in the "raw" survey MMB time series (Table 26 and Figure 23). The estimated current (2021) MMB at the time of the survey from the RE-smoothed results is 201 t .

## F. Calculation of the OFL

## 1. Tier Level:

Based on available data, the CPT and SSC determined in 2013 that this stock is in Tier 4 for status determination as defined by Amendment 24 to the Fishery Management Plan for the Bering Sea/Aleutian Islands King and Tanner Crabs (NPFMC 2008a). The assessment author has no recommendation to change this classification.

## 2. Parameters and stock sizes

- $M=0.18 y r^{-1}$
- $\phi=-0.836474 \pm 0.17984$
- $M M B_{s, 2021}=206 \pm 124.4 \mathrm{t}$


## 3. OFL specification

## 3.a. Stock status level

For Tier 4 stocks, a minimum stock size threshold (MSST) is specified as $0.5 \cdot B_{M S Y}$ (or a proxy thereof, $\left.B_{M S Y_{\text {proxy }}}\right)$. If $B$ drops below the MSST, the stock is considered to be overfished. The
stock status level is based on the ratio of "current" spawning stock biomass ( $B$ ) to $B_{M S Y}$. MSY (maximum sustained yield) is the largest long-term average catch or yield that can be taken from a stock or stock complex under prevailing ecological and environmental conditions. The fishing mortality that, if applied over the long-term, would result in MSY is $F_{M S Y} . B_{M S Y}$ is the long-term average stock size when fished at $F_{M S Y}$, and is based on mature male biomass at the time of mating ( $M M B_{\text {mating }}$ ), which serves as an approximation for egg production. $M M B_{\text {mating }}$ is used as a basis for $B_{M S Y}$ because of the complicated female crab life history, unknown sex ratios, and male only fishery.

Although $B_{M S Y}$ cannot be calculated for a Tier 4 stock, a proxy value ( $B_{M S Y_{p r o x y}}$ is defined as the average biomass over a specified time period that satisfies the conditions under which $B_{M S Y}$ would occur (i.e., equilibrium biomass yielding MSY under an applied $F_{M S Y}$ ). The time period for establishing $B_{M S Y_{\text {proxy }}}$ is assumed to be representative of the stock being fished at an average rate near $F_{M S Y}$ and fluctuating around $B_{M S Y}$. The SSC has previously endorsed using the time periods 1980-84 and 1990-97 to calculate $B_{M S Y_{p r o x y}}$ for PIBKC to avoid time periods of low abundance possibly caused by high fishing pressure. Alternative time periods (e.g., 1975 to 1979) have also been considered but rejected (Foy 2013). Considerations for choosing the current time periods included the following:

## A. Production potential

1) Between 2006 and 2013 the stock appeared to be below a threshold for responding to increased production based on the lack of response of the adult stock biomass to slight fluctuations in recruitment (male crab 120-134 mm) (Figure 20 in Foy 2013).
2) An estimate of surplus production using the equation

$$
A S P_{t}=M M B_{t+1}-M M B_{t}+C_{t}
$$

where $C_{t}$ denotes total catch mortality in year $t$ suggested that meaningful surplus production existed only in the late 1970s and early 1980s while minor surplus production in the early 1990s may have led to the increases in biomass observed in the late 1990s.
3) Although climate regime shifts where temperature and current patterns change are likely to impact blue king crab larval dispersal and subsequent juvenile crab distribution, no apparent trends in production before or after 1978 were observed (Foy 2013). There are few empirical data to identify trends that may indicate a production shift.

## B. Exploitation rates

Exploitation rates fluctuated during the open fishery periods from 1975 to 1987 and 1995 to 1998 (Figure 20 in Foy 2013) while total catch increased until 1980, then decreased until the fishery was closed in 1987 (Figure 3). Following the re-opening of the fishery in 1995, total catch declined annually until the fishery was closed again in 1999 (Figure 3). The current $F_{M S Y_{\text {proxy }}}=M$ is $0.18 \mathrm{yr}^{-1}$, so time periods with greater exploitation rates should not be considered to represent periods with average rates of fishery removals.

## C. Recruitment

Subsequent to increases in exploitation rates in the late 1980s and 1990s, the quantity $\ln \left(\right.$ recruits $/ \mathrm{MMB}$ ) dropped, suggesting that exploitation rates at the levels of $F_{M S Y_{p r o x y}}=$
$M$ were not sustainable.
In Tier 4, the "total catch OFL" and the "retained catch OFL" are calculated by applying the $F_{O F L}$ to all crab at the time of the fishery (total catch OFL) or to the legal portion of the stock (retained catch OFL). The stock status level (a, b or c) is based on the ratio of $B$ to $B_{M S Y_{p r o x y}}$, and determines the $F_{O F L}$ based on the Tier $4 F_{O F L}$ Control Rule (Figure 25) as described in the following table:

| Level | $B / B_{M S Y_{\text {proxy }}}$ | $F_{O F L}$ |
| :--- | :--- | :--- |
| a. | $B / B_{M S Y_{\text {proxy }}}>1.0$ | $F_{O F L}=\gamma \cdot M$ |
| b. | $\beta<B / B_{M S Y_{\text {proxy }}} \leq 1.0$ | $F_{O F L}=\gamma \cdot M\left[\left(B / B_{M S Y_{\text {proxy }}}-\alpha\right) /(1-\alpha)\right]$ |
| c. | $B / B_{M S Y_{\text {proxy }}} \leq \beta$ | $F_{\text {directed }}=0, F_{O F L} \leq F_{M S Y}$ |

When $\mathrm{B} / B_{M S Y_{p r o x y}}$ is greater than 1 (Stock Status Level a), $F_{O F L_{p r o x y}}$ is given by the product of a scalar ( $\gamma=1.0$, nominally) and $M$. When $B / B_{M S Y_{\text {proxy }}}$ is less than 1 and greater than the critical threshold $\beta(=0.25)$ (Stock Status Level b), the scalar $\alpha(=0.1)$ determines the slope of the non-constant portion of the control rule for $F_{O F L_{p r o x y}}$. When the ratio $B / B_{M S Y_{p r o x y}}$ drops below $\beta$ (Stock Status Level c), directed fishing mortality is set to zero. Values for $\alpha$ and $\beta$ ( 0.1 and 0.25 , respectively) are based on a sensitivity analysis of the effects on $B / B_{M S Y_{\text {proxy }}}$ (NPFMC 2008a). Thus, $B / B_{M S Y_{\text {proxy }}} \leq \beta$ corresponds to $B<$ MSST and the stock is considered overfished.
In this assessment, $B_{M S Y_{\text {proxy }}}$ is the average of $M M B_{\text {mating }}$ for the years 1980/81-1984/85 and 1990/91-1997/98 (Table 27), i.e. 4,099 t. "current B" $(B)$ is $M M B_{\text {mating }}$ for the assessment year, taking into account projected natural and fishing mortality to the time of mating (Feb. 15, by convention). For the assessment year, the fishery has not yet occurred so $R M$ and $D M$ are unknown. The amount of fishing mortality presumably depends on the (as yet-to-be-determined) overfishing limit, so an iterative procedure is used to estimate MMB-at-mating. This procedure involves:

1. "guess" a value for $F_{O F L}$, the directed fishing mortality rate that yields OFL $\left(F_{O F L_{\text {max }}}=\gamma \cdot M\right.$ is used)
2. determine the OFL corresponding to fishing at $F_{O F L}$ using the following equations:

- $M M B_{f}=M M B_{s} \cdot e^{-M \cdot t_{s f}}$
- $R M_{O F L}=\left(1-e^{-F_{O F L}}\right) \cdot M M B_{s} \cdot e^{-M \cdot t_{s f}}$
- $D M_{O F L}=\theta \cdot \frac{M M B_{f}}{p_{\text {male }}}$
- $O F L=R M_{O F L}+D M_{O F L}$

3. project MMB-at-mating from the "current" survey MMB and the OFL:

$$
\text { - } M M B_{m}=\left[M M B_{f_{y}}-\left(R M_{O F L}+p_{\text {male }} \cdot D M_{O F L}\right)\right] \cdot e^{-M \cdot t_{f m}}
$$

4. use the harvest control rule to determine the $F_{O F L}$ corresponding to the projected MMB-atmating.
5. update the "guess" in 1 . for the result in 4.
6. repeat steps $2-5$ until the process has converged, yielding self-consistent values for $F_{O F L}$ and $B$.

In this procedure, $p_{\text {male }}$ is the fraction of discard mortality on males (taken to be 0.5 ). Note that
this procedure determines the OFL for the assessment year as well as the current MMB-at-mating, $B$. Also note that, while the retained mortality $R M_{O F L}$ is based on the $F_{O F L}$, the discard mortality $D M_{O F L}$ is assumed to be proportional to the MMB at the time of the fishery, with proportionality constant $\frac{\theta}{p_{\text {male }}}$. The constant $\theta$ is determined by the average ratio of discard mortality on MMB $\left(D M_{M M B}\right)$ to MMB at the time of the fishery $\left(M M B_{f}\right)$ over a recent time interval:

$$
\theta=\frac{1}{N} \sum_{y} \frac{D M_{M M B_{y}}}{M M B_{f_{y}}}
$$

where the sum is over the last N years. The value for $\theta$ used for this assessment is $6.946244 \times 10^{-4}$, based on averaging over the last three years (Table 29).

Calculating the OFL for the upcoming 2021/22 fishing year requires a value of survey biomass for 2021. The annual NMFS EBS Bottom Trawl Survey is conducted June-August but, starting in 2019, the timing of this assessment was moved from September (after the NMFS EBS Bottom Trawl Survey) to May (before the survey) so the value for the current-year survey biomass is now generally based on a 1-step projection from the RE-smoothed time series. For the random-walk random effects model used here, the best 1-step projection for the current-year survey biomass is simply the RE-estimated survey biomass for the previous year, although the uncertainty of the predicted current-year value is inflated over that for the previous year-reflecting the accumulated process error associated with projecting the estimate forward in time without additional data. The 2020 NMFS EBS Shelf Survey, however, was not conducted due to complications associated with the COVID-19 global pandemic. Consequently, a 2-step projection is required for the 2021 (current year) survey biomass, because the last year in which the survey was conducted is 2019. This estimate will also be the RE-estimated 2019 survey biomass (because no information exists to update the model) with uncertainty further inflated for the two-year projection interval.

The results of the Tier 4 OFL calculation are given in Table 30. "Current" $B$ for crab fishery year $2021 / 22$ is 180 t . Because $B / B_{M S Y}$ is $0.044<\beta$, the stock is in Tier 4c and directed fishing is prohibited. Furthermore, the stock is overfished because $B \leq$ MSST.

## 3.b. Basis for MMB-at-mating

The basis for projecting MMB from the survey to the time of mating for years prior to the assessment year is discussed in detail the Model Description section above.

## 3.c. Specification of $F_{O F L}$, OFL and other applicable measures

The following tables summarize the basis for the OFL (repeating Tables 3 and 4).

Table 6: Basis for the OFL. All units in t. 'M' is the assumed rate of natural mortality.

| year | Tier | MMB at <br> mating | $B / B_{M S Y}$ | $\gamma$ | Years to define $B_{M S Y}$ | M <br> $y r^{-1}$ | $\mathrm{P}^{*}$ |
| :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- |
| $2017 / 18$ | 4 c | 230 | 0.06 | 1 | $1980 / 81-1984 / 85 \& 1990 / 91-1997 / 98$ | 0.18 | $25 \%$ buffer |
| $2018 / 19$ | 4 c | 230 | 0.06 | 1 | $1980 / 81-1984 / 85 \& 1990 / 91-1997 / 98$ | 0.18 | $25 \%$ buffer |
| $2019 / 20$ | 4 c | 175 | 0.04 | 1 | $1980 / 81-1984 / 85 \& 1990 / 91-1997 / 98$ | 0.18 | $25 \%$ buffer |
| $2020 / 21$ | 4 c | 175 | 0.04 | 1 | $1980 / 81-1984 / 85 \& 1990 / 91-1997 / 98$ | 0.18 | $25 \%$ buffer |
| $2021 / 22$ | 4 c | 180 | 0.04 | 1 | $1980 / 81-1984 / 85 \& 1990 / 91-1997 / 98$ | 0.18 | $25 \%$ buffer |
| $2022 / 23$ | 4 c | 180 | 0.04 | 1 | $1980 / 81-1984 / 85 \& 1990 / 91-1997 / 98$ | 0.18 | $25 \%$ buffer |

Table 7: Basis for the OFL. All units in millions of lbs. 'M' is the assumed rate of natural mortality.

| year | Tier | MMB at <br> mating | $B / B_{M S Y}$ | $\gamma$ | Years to define $B_{M S Y}$ | M <br> $y r^{-1}$ | $\mathrm{P}^{*}$ |
| :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- |
| $2017 / 18$ | 4 c | 0.507 | 0.06 | 1 | $1980 / 81-1984 / 85 \& 1990 / 91-1997 / 98$ | 0.18 | $25 \%$ buffer |
| $2018 / 19$ | 4 c | 0.507 | 0.06 | 1 | $1980 / 81-1984 / 85 \& 1990 / 91-1997 / 98$ | 0.18 | $25 \%$ buffer |
| $2019 / 20$ | 4 c | 0.385 | 0.04 | 1 | $1980 / 81-1984 / 85 \& 1990 / 91-1997 / 98$ | 0.18 | $25 \%$ buffer |
| $2020 / 21$ | 4 c | 0.385 | 0.04 | 1 | $1980 / 81-1984 / 85 \& 1990 / 91-1997 / 98$ | 0.18 | $25 \%$ buffer |
| $2021 / 22$ | 4 c | 0.398 | 0.04 | 1 | $1980 / 81-1984 / 85 \& 1990 / 91-1997 / 98$ | 0.18 | $25 \%$ buffer |
| $2022 / 23$ | 4 c | 0.398 | 0.04 | 1 | $1980 / 81-1984 / 85 \& 1990 / 91-1997 / 98$ | 0.18 | $25 \%$ buffer |

## 4. Specification of the retained catch portion of the total catch OFL

The retained portion of the catch for this stock is zero ( 0 t ).

## 5. Recommendations:

For 2021/22, $B_{M S Y_{\text {proxy }}}=4,099 \mathrm{t}$, derived as the mean $M M B_{\text {mating }}$ from 1980/81 to 1984/85 and 1990/91 to 1997/98 using the random effects model-smoothed survey time series. The stock demonstrated highly variable levels of MMB during both of these periods, likely leading to uncertain approximations for $B_{M S Y}$. Crabs were highly concentrated during the EBS bottom trawl surveys and male biomass estimates were characterized by poor precision due to limited numbers of tows with crab catches.
$M M B_{\text {mating }}$ for $2021 / 22$ was estimated at 180 t . The $B / B_{M S Y_{p r o x y}}$ ratio corresponding to the biomass reference is 0.044. $B / B_{M S Y_{\text {proxy }}}$ is $<\beta$, therefore the stock status level is $\mathrm{c}, F_{\text {directed }}=0$, and $F_{O F L} \leq F_{M S Y}$ (as determined in the Pribilof Islands District blue king crab rebuilding plan). Total catch OFL calculations were explored in 2008 to adequately reflect the conservation needs with this stock and to acknowledge the existing non-directed catch mortality (NPFMC 2008a). The preferred method was a total catch OFL equivalent to the average catch mortalities between $1999 / 2000$ and 2005/06. This period was after the targeted fishery was closed and did not include recent changes to the groundfish fishery that led to increased blue king crab bycatch. The OFL for $2021 / 22$, based on average catch mortality over the period specified, is 1.16 t .

Based on fishery data available at the time of the assessment, total fishing mortality on PIBKC in 2020/21 was 0 t , below the OFL of 1.16 t , suggesting that overfishing is not occurring in 2020/21. This will be revisited in September.

## G. Calculation of the ABC

To calculate an Annual Catch Limit (ACL) to account for scientific uncertainty in the OFL, an acceptable biological catch (ABC) control rule was developed such that ACL=ABC. For Tier 3 and 4 stocks, the ABC is set below the OFL by a proportion based a predetermined probability that the ABC would exceed the OFL $\left(\mathrm{P}^{*}\right)$. Currently, $\mathrm{P}^{*}$ is set at 0.49 and represents a proportion of the OFL distribution that accounts for within-assessment uncertainty $\left(\sigma_{w}\right)$ in the OFL to establish the maximum permissible $\mathrm{ABC}\left(\mathrm{ABC}_{\text {max }}\right)$. Any additional uncertainty to account for uncertainty outside of the assessment methods ( $\sigma_{b}$ ) is considered as a recommended ABC below $\mathrm{ABC}_{\text {max }}$. Additional uncertainty is included in the application of the ABC by adding the uncertainty components as $\sigma_{t o t a l}=\sqrt{\sigma_{w}^{2}+\sigma_{b}^{2}}$. For the PIBKC stock, the CPT has recommended, and the SSC has approved, a constant buffer of $25 \%$ to the OFL (NPFMC, 2014b).

## 1. Specification of the probability distribution of the OFL used in the ABC

The OFL was set based on a Tier 5 calculation of average catch mortalities between 1999/2000 and 2005/06 to adequately reflect the conservation needs with this stock and to acknowledge the existing non-directed catch mortality. As such, the OFL does not have an associated probability distribution.

## 2. List of variables related to scientific uncertainty considered in the OFL probability distribution

None. The OFL is based on a Tier 5 calculation and does not have an associated probability distribution. However, compared to other BSAI crab stocks, the uncertainty associated with the estimates of stock size and OFL for Pribilof Islands blue king crab is very high due to insufficient data and the small spatial extent of the stock relative to the survey sampling density. The coefficient of variation for the estimate of mature male biomass from the surveys for the most recent year (2019) is 0.6039959 , and has ranged between 0.17 and 1.00 since the 1980 peak in biomass.

## 3. List of additional uncertainties considered for alternative $\sigma_{b}$ applications to the ABC

Several sources of uncertainty are not included in the measures of uncertainty reported as part of the stock assessment:

- Survey catchability and natural mortality uncertainties are not estimated but rather are prespecified.
- $F_{M S Y}$ is assumed to be equal to $\gamma \cdot M$ when applying the OFL control rule, where the proportionality constant $\gamma$ is assumed to be equal to 1 and $M$ is assumed to be known.
- The coefficients of variation for the survey estimates of abundance for this stock are very high.
- $B_{M S Y}$ is assumed to be equivalent to average mature male biomass. However, stock biomass has fluctuated greatly and targeted fisheries only occurred from 1973-1987 and 1995-1998 so considerable uncertainty exists with this estimate of $B_{M S Y}$.


## 4. Recommendations:

For $2021 / 22, F_{\text {directed }}=0$ and the total catch OFL is based on catch biomass would maintain the conservation needs with this stock and acknowledge the existing non-directed catch mortality. In this case, the $A B C$ based on a $25 \%$ buffer of the average catch between 1999/2000 and 2005/2006 would be 0.87 t . The following tables repeat the information in Tables 1 and 2 .

Table 8: Management performance, all units in the table are in metric tons.

| year | MSST | MMB at <br> mating | TAC | Retained <br> catch | Total catch <br> mortality | OFL | ABC |
| :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- |
| $2017 / 18$ | 2,053 | 230 | 0 | 0 | 0.33 | 1.16 | 0.87 |
| $2018 / 19$ | 2,053 | 230 | 0 | 0 | 0.41 | 1.16 | 0.87 |
| $2019 / 20$ | 2,049 | 180 | 0 | 0 | 0.42 | 1.16 | 0.87 |
| $2020 / 21$ | 2,049 | 181 | 0 | 0 | 0.00 | 1.16 | 0.87 |
| $2021 / 22$ | - | 180 | - | - | - | 1.16 | 0.87 |
| $2022 / 23$ | - | 180 | - | - | - | 1.16 | 0.87 |

Table 9: Management performance, all units in the table are in millions of lbs.

|  | MSST | MMB at <br> mating | TAC | Retained <br> catch | Total catch <br> mortality | OFL | ABC |
| :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- |
| year |  | $017 / 18$ | 4.526 | 0.507 | 0 | 0 | 0.0007 |
| $2018 / 19$ | 4.526 | 0.507 | 0 | 0 | 0.0009 | 0.0026 | 0.0019 |
| $2019 / 20$ | 4.518 | 0.398 | 0 | 0 | 0.0009 | 0.0026 | 0.0019 |
| $2020 / 21$ | 4.518 | 0.398 | 0 | 0 | 0.0000 | 0.0026 | 0.0019 |
| $2021 / 22$ | - | 0.398 | - | - | - | 0.0026 | 0.0019 |
| $2022 / 23$ | - | 0.398 | - | - | - | 0.0026 | 0.0019 |

Notes: Based on data available to the Crab Plan Team at the time of the assessment for the crab fishing year.

## H. Rebuilding Analyses

Rebuilding analyses results summary: A revised rebuilding plan analysis was submitted to the U.S. Secretary of Commerce in 2014 because NMFS determined that the stock was not rebuilding in a timely manner and would not meet the rebuilding horizon of 2014. The Secretary approved the plan in 2015, as well as the two amendments that implement it (Amendment 43 to the King and Tanner Crab Fishery Management Plan and Amendment 103 to the BSAI Groundfish Fishery Management Plan). These amendments impose a closure to all fishing for Pacific cod with pot gear in the Pribilof Islands Habitat Conservation Zone. This measure was designed to protect the main concentration of the stock from the fishery with the highest observed rates of bycatch (NPFMC, 2014a). The area has been closed to trawling since 1995.

Jonathan Reum (AFSC) and colleagues have developed a qualitative network model that describes important biological interactions that may influence the productivity of PIBKC (Reum et al., 2019). The purpose was to explore the potential efficacy of different management interventions in the context of predicted future climate change, including new policies on fisheries that target the predators/competitors of PIBKC, as well as out-stocking of benthic PIBKC juveniles assuming
implementation of a hatchery program,. Under a scenario of no climate change, predicted increases in BKC were reliable only when stock enhancement was implemented in a BKC hatchery-program scenario. However, when climate change was accounted for, stock enhancement could not counteract the adverse impacts of climate, which had an overall negative effect on BKC. Thus, a stock enhancement program for PIBKC may be a necessary, but not sufficient, requirement for rebuilding to occur.

The recent trajectory of the time series of MMB-at-survey time does not show evidence of an increasing trend. Further, survey size compositions provide no evidence for recent recruitment to the stock. Based on the available data, it appears there has been no real progress towards rebuilding the stock.

## I. Data Gaps and Research Priorities

Given the large CVs associated with the survey abundance and biomass estimates for the Pribilof Islands blue king crab stock, assessment of this species might benefit from additional surveys using alternative gear at finer spatial resolution. Other data gaps include stock-specific natural mortality rates and a lack of understanding regarding processes apparently preventing successful recruitment to the Pribilof District.

Jared Weems, a PhD student at University of Alaska, Fairbanks, has conducted research on alternative survey designs, including visual censuses, drop camera, and collector traps to better quantify PIBKC in a study funded by NPRB. He presented results from his study to the CPT in September 2020. The objectives of the project were to 1) quantify supply and abundance of early juvenile stages of blue king crab and red king crab, 2) assess habitat availability in nearshore St. Paul Island areas relative to historical survey sites, and 3) identify juvenile king crab predators and predation potential. To assess abundance, Weems compared historical (a 1980s habitat study) bottom trawl and rock dredge young-of-the-year (YOY) crab abundance data to current abundance levels via settlement collector bags and scuba diver visual surveys. Historical results showed YOY BKC occurred at relatively high abundance levels in St Paul Island nearshore areas ( $\mathrm{N}=514$ YOY), whereas current abundance levels were low ( $\mathrm{N}=8$ YOY). Historical bottom trawl and rock dredge benthic habitat data were compared to current habitat assessed via scuba diver and drop camera surveys. Benthic habitat complexity matched in $87 \%$ of the locations that were sampled in both time periods, so there was little suggestion of habitat degradation with time. In the current study, though, no PIBKC were found in shellhash substrate, an important settlement and nursery habitat for juvenile PIBKC, which occurred in relatively high density on the east and southern sides of St. Paul Island. Overall, with respect to PIBKC recruitment limitation in the Pribilof Islands, this study suggested that 1) BKC abundance is limiting but that 2) benthic habitat is non-limiting and relatively unchanged over time.

Jonathan Reum (AFSC) and colleagues have developed a qualitative network model that describes important biological interactions that may influence the productivity of PIBKC (Reum et al., 2019). The purpose was to explore the potential efficacy of different management interventions that include new policies on fisheries that target the predators/competitors of PIBKC, as well as out-stocking of benthic PIBKC juveniles assuming implementation of a hatchery program, in the context of predicted future climate change. Under a scenario of no climate change, predicted increases in BKC were reliable only when stock enhancement was implemented in a BKC hatchery-program scenario. However, when climate change was accounted for, stock enhancement could not counteract the adverse impacts of climate, which had an overall negative effect on BKC. Other management
scenarios considered related to changes in fishing effort on BKC predators. For those scenarios, BKC outcomes were unreliable, but climate change further decreased the probability of observing recovery. The study concluded that the largest gains in prediction precision would be made by reducing uncertainty associated with ecological interactions between adult blue and red king crab.

Given these studies, it may be worthwhile to: 1) develop a program to better identify critical nursery habitat within the Pribilof Islands and to characterize postlarval supply to, and settlemnt abundance in, these areas for both blue and red king crab, and 2) better characterize ecological interactions between adult blue and red king crab.

## Literature Cited

ADF\&G. 2006. 2006-2008 commercial king and tanner crab fishing regulations. Alaska Department of Fish and Game, Juneau, AK. 160 pp.

ADF\&G. 2008. Annual Management Report for the Commercial and Subsistence Shellfish Fisheries of the Aleutian Islands, Bering Sea and the Westward Region's Shellfish Observer Program, 2006/07. Alaska Department of Fish and Game, Division of Sport Fish and Commercial Fisheries, Fishery Management Report 08-02, Kodiak.

Armstrong, D.A., J.L. Armstrong, G. Jensen, R. Palacios, and G. Williams. 1987. Distribution, abundance, and biology of blue king and Korean hair crabs around the Pribilof Islands. U.S. Dep. Commer., NOAA, OCSEAP Final Rep. 67:1-278.

Armstrong, D.A., J.L. Armstrong, R. Palacios, G. Jensen, and G. Williams. 1985. Early life history of juvenile blue king crab, Paralithodes platypus, around the Pribilof Islands. Pp. 211-229 in: Proceedings of the International King Crab Symposium, Alaska Sea Grant Report No 85-12, University of Alaska, Fairbanks.

Bowers, F., M. Schwenzfeier, K. Herring, M. Salmon, H. Fitch, J. Alas, B. Baechler. 2011. Annual management report for the commercial and subsistence shellfish fisheries of the Aluetian Islands, Bering Sea, and the Westward Region's Shellfish Observer Program, 2009/2010.

Blau, F. S. 1997. Alaska king crabs: wildlife notebook series. Alaska Department of Fish and Game. http://www.adfg.state.ak.us/pubs/notebook/shellfsh/kingcrab.php, last accessed April 8, 2008.

CPT. 2015. Introduction. In: Stock Assessment and Fishery Evaluation Report for the KING AND TANNER CRAB FISHERIES of the Bering Sea and Aleutian Islands Regions 2015 Final Crab SAFE. North Pacific Fishery Management Council, 605 W. 4th Avenue, \#306, Anchorage, AK 99501. 35 pp .

CPT, 2017. C7 Crab PT Report: Crab Plan Team Meeting; May 2-5, 2017; Juneau, AK. North Pacific Fishery Management Council, 605 W 4th Avenue, Suite 306, Anchorage, AK 99501. 19 pp. ht tp://npfmc.legistar.com/gateway.aspx?M=F\&ID=569a4c57-d994-4b26-b389-c80743ed0c08.pdf

Daly, B., C. Armistead and R. Foy. 2014. The 2014 Eastern Bering Sea Continental Shelf Bottom Trawl Survey: Results for Commercial Crab Species. NOAA Technical Memorandum NMFS-AFSC282172 p.

Fournier, D.A., H.J. Skaug, J. Ancheta, J. Ianelli, A. Magnusson, M.N. Maunder, A. Nielsen, and J. Sibert. 2012. AD Model Builder: using automatic differentiation for statistical inference of highly parameterized complex nonlinear models. Optim. Methods Softw. 27:233-249.

Foy, R.J. 2013. 2013 Stock Assessment and Fishery Evaluation Report for the Pribilof Islands Blue King Crab Fisheries of the Bering Sea and Aleutian Islands. North Pacific Fishery Management Council, 605 W. 4th Aveneue, Suite 306, Anchorage, AK 99501-2252.

Jensen, G.C., and D. A. Armstrong. 1989. Biennial reproductive cycle of blue king crab, Paralithodes platypus, at the Pribilof Islands, Alaska and comparison to a congener, P. catschatica. Can. J. Fish. Aquat. Sci., 46:932-940.

Jensen, G.C., D.A. Armstrong and G. Williams. 1985. Reproductive biology of the blue king crab, Paralithodes platypus, in the Pribilof Islands. Pp. 109-122 in: Proceedings of the International King Crab Symposium, Alaska Sea Grant Report No 85-12, University of Alaska, Fairbanks.

Monnahan C.C, Kristensen K. 2018. No-U-turn sampling for fast Bayesian inference in ADMB and TMB: Introducing the adnuts and tmbstan R packages. PLoS ONE 13(5): e0197954. https: //doi.org/10.1371/journal.pone. 0197954

Monnahan C.C. 2018. adnuts: No-U-Turn MCMC Sampling for 'ADMB' and 'TMB' Models. R package version 1.1.2.

NMFS. 2005. APPENDIX F.3. ESSENTIAL FISH HABITAT ASSESSMENT REPORT for the Bering Sea and Aleutian Islands King and Tanner Crabs. NOAA Fisheries, Juneau, AK. 35pp. NPFMC. 1994. Environmental Assessment/Regulatory Impact Review/Initial Regulatory Flexibility analysis for Amendment 21a to the Fishery Management Plan for Bering Sea and Aleutian Island Groundfish. NMFS Alaska Region, PO Box 21668, Juneau, AK 99802-1668.

NPFMC. 2003. Environmental assessment for amendment 17 to the fishery management plan for the king and tanner crab fisheries in the Bering Sea/Aleutian Islands a rebuilding plan for the Pribilof Islands blue king crab stock. North Pacific Fishery Management Council Anchorage, 101 pp.

NPFMC. 2008. Environmental Assessment for Amendment 24 to the Fishery Management Plan for the king and Tanner crab fisheries in the Bering Sea/Aleutian Islands: to revise overfishing definitions. Anchorage, Alaska 194 p.

NPFMC. 2008. Stock Assessment and Fishery Evaluation Report for the KING AND TANNER CRAB FISHERIES of the Bering Sea and Aleutian Islands Regions 2008 Crab SAFE. North Pacific Fishery Management Council Anchorage, 259 pp.

NPFMC. 2014a. Final Environmental Assessment for proposed amendment 43 to the Fishery Management Plan for Bering Sea/Aleutian Island King and Tanner Crabs and proposed amendment 103 to the Fishery Management Plan for Groundfish of the Bering Sea and Aleutian Island. North Pacific Fishery Management Council, 605 West 4th Ave, Anchorage, AK 99501. 190 pp.

NPFMC. 2014b. Stock Assessment and Fishery Evaluation Report for the King and Tanner Crab Fisheries of the Bering Sea and Aleutian Islands. 2014 Final Crab SAFE. North Pacific Fishery Management Council, 605 W. 4th Aveneue, Suite 306, Anchorage, AK 99501-2252.

Otto, R.S and P.A. Cummiskey. 1990. Growth of adult male blue king crab (Paralithodes platypus). pp 245-258 in: Proceeding of the the International Symposium on King and Tanner Crabs:, Alaska Sea Grant Report No 90-04, University of Alaska, Fairbanks, AK.

Paul, A. J. and J. M. Paul. 1980. The effect of early starvation on later feeding success of king crab zoeae. J. Exp. Mar. Bio. Ecol., 44: 247-251.

Reum, J.C.P., P.S. McDonald, W.C. Long, K.K. Holsman, L. Divine, D. Armstrong, and J. Armstrong. 2019. Rapid assessment of management options for promoting stock rebuilding in data-poor species under climate change. Conservation Biology. DOI: 10.1111/cobi. 13427

Selin, N.I., and Fedotov, P.A. 1996. Vertical distribution and some biological characteristics of the blue king crab Paralithodes platypus in the northwestern Bering Sea. Mar. Biol. 22: 386-390.

Siddeek, M.S.M., L.J. Watson, S.F. Blau, and H. Moore. 2002. Estimating natural mortality of king crabs from tag recapture data. pp 51-75 in: Crabs in cold water regions: biology, management, and economics. Alaska Sea Grant Report No 02-01, University of Alaska, Fairbanks, AK.

Somerton, D.A. 1985. The disjunct distribution of blue king crab, Paralithodes platypus, in Alaska: some hypotheses. Pp. 13-21 in: Proceedings of the International King Crab Symposium, Alaska Sea Grant Report No 85-12, University of Alaska, Fairbanks.

Somerton, D.A., and R. A. MacIntosh. 1983. The size at sexual maturity of blue king crab, Paralithodes platypus, in Alaska. Fishery Bulletin, 81(3):621-628.

Somerton, D.A., and R. A. MacIntosh. 1985. Reproductive biology of the female blue king crab Paralithodes platypus near the Pribilof Islands, Alaska. J. Crustacean Biology, 5(3): 365-376.

Stevens, B.S. 2006a. Embryo development and morphometry in the blue king crab Paralithodes platypus studied by using image and cluster analysis. J. Shellfish Res., 25(2):569-576.

Stevens, B.S. 2006b. Timing and duration of larval hatching for blue king crab Paralithodes platypus Brandt, 1850 held in the laboratory. J. Crustacean Biology, 26(4):495-502.

Stevens, B.S., S.L. Persselin and J.A. Matweyou. 2008. Survival of blue king crab Paralithodes platypus Brandt, 1850, larvae in cultivation: effects of diet, temperature and rearing density. Aquaculture Res., 39:390-397.

Stockhausen, W.T. 2014. 2014 Stock Assessment and Fishery Evaluation Report for the Pribilof Islands Blue King Crab Fisheries of the Bering Sea and Aleutian Islands. North Pacific Fishery Management Council, 605 W. 4th Avenue, Suite 306, Anchorage, AK 99501-2252.

Stockhausen, W.T. 2015. 2015 Stock Assessment and Fishery Evaluation Report for the Pribilof Islands Blue King Crab Fisheries of the Bering Sea and Aleutian Islands. North Pacific Fishery Management Council, 605 W. 4th Avenue, Suite 306, Anchorage, AK 99501-2252.

Stockhausen, W.T. 2016. 2016 Stock Assessment and Fishery Evaluation Report for the Pribilof Islands Blue King Crab Fisheries of the Bering Sea and Aleutian Islands. North Pacific Fishery Management Council, 605 W. 4th Avenue, Suite 306, Anchorage, AK 99501-2252.

Stockhausen, W.T. 2017. 2017 Stock Assessment and Fishery Evaluation Report for the Pribilof Islands Blue King Crab Fisheries of the Bering Sea and Aleutian Islands. North Pacific Fishery Management Council, 605 W. 4th Avenue, Suite 306, Anchorage, AK 99501-2252.

Stockhausen, W.T. 2019. 2019 Stock Assessment and Fishery Evaluation Report for the Pribilof Islands Blue King Crab Fisheries of the Bering Sea and Aleutian Islands. North Pacific Fishery Management Council, 605 W. 4th Avenue, Suite 306, Anchorage, AK. 99501-2252.

Stoutamore, J.L. 2014. Population genetics and mating structure of blue king crab (Paralithodes platypus). University of Alaska, Fairbanks, M.S. Thesis. http://hdl.handle.net/11122/4547

Zheng, J., M.C. Murphy and G.H. Kruse. 1997. Application of a catch-survey analysis to blue king crab stocks near Pribilof and St. Matthew Islands. Alaska Fish. Res. Bull. 4(1):62-74.

Zheng et al. 2016. 2016 Stock Assessment and Fishery Evaluation Report for the Bristol Bay Red King Crab Fisheries of the Bering Sea and Aleutian Islands. North Pacific Fishery Management Council, 605 W. 4th Avenue, Suite 306, Anchorage, AK 99501-2252.

## Tables

Table 10: Retained catch and average CPUE (number of legal males/pot lift) of PIBKC in the directed pot fishery, 1973-1998/99. The directed fishery has been closed since the 1999/2000 fishing season. NA: not applicable (no directed fishery)

| crab year | number | biomass <br> $(\mathrm{t})$ | avg. cpue <br> (num. legal crab/pot lift) |
| :--- | ---: | ---: | :---: |
| $1973 / 74$ | 174,420 | 579 | 26 |
| $1974 / 75$ | 908,072 | 3,224 | 20 |
| $1975 / 76$ | 314,931 | 1,104 | 19 |
| $1976 / 77$ | 855,505 | 2,999 | 12 |
| $1977 / 78$ | 807,092 | 2,929 | 8 |
| $1978 / 79$ | 797,364 | 2,901 | 8 |
| $1979 / 80$ | 815,557 | 2,719 | 10 |
| $1980 / 81$ | $1,497,101$ | 4,976 | 9 |
| $1981 / 82$ | $1,202,499$ | 4,119 | 7 |
| $1982 / 83$ | 587,908 | 1,998 | 5 |
| $1983 / 84$ | 276,364 | 995 | 3 |
| $1984 / 85$ | 40,427 | 139 | 3 |
| $1985 / 86$ | 76,945 | 240 | 3 |
| $1986 / 87$ | 36,988 | 117 | 2 |
| $1987 / 88$ | 95,130 | 318 | 2 |
| $1988 / 89$ | 0 | 0 | $N A$ |
| $1989 / 90$ | 0 | 0 | $N A$ |
| $1990 / 91$ | 0 | 0 | $N A$ |
| $1991 / 92$ | 0 | 0 | $N A$ |
| $1992 / 93$ | 0 | 0 | $N A$ |
| $1993 / 94$ | 0 | 0 | $N A$ |
| $1994 / 95$ | 0 | 0 | $N A$ |
| $1995 / 96$ | 190,951 | 628 | 5 |
| $1996 / 97$ | 127,712 | 425 | 4 |
| $1997 / 98$ | 68,603 | 232 | 3 |
| $1998 / 99$ | 68,419 | 234 | 3 |
| $1999 / 00$ | 0 | 0 | $N A$ |

Table 11: Bycatch catch of PIBKC in the directed and other crab fisheries, as estimated from crab observer data. A discard mortality rate of 0.2 was applied to obtain discard mortalities. Units are $t$.

|  | catch |  |  |  |  |
| :--- | :---: | :---: | :---: | :---: | :---: |
| crab year | females | sublegal males | legal males | total catch | dortality |
| $1996 / 97$ | 0.000 | 0.807 | 0.000 | 0.807 | 0.161 |
| $1997 / 98$ | 0.000 | 0.000 | 0.000 | 0.000 | 0.000 |
| $1998 / 99$ | 3.715 | 0.467 | 2.295 | 6.477 | 1.295 |
| $1999 / 00$ | 1.969 | 4.291 | 3.493 | 9.752 | 1.950 |
| $2000 / 01$ | 0.000 | 0.000 | 0.000 | 0.000 | 0.000 |
| $2001 / 02$ | 0.000 | 0.000 | 0.000 | 0.000 | 0.000 |
| $2002 / 03$ | 0.000 | 0.000 | 0.000 | 0.000 | 0.000 |
| $2003 / 04$ | 0.000 | 0.000 | 0.000 | 0.000 | 0.000 |
| $2004 / 05$ | 0.000 | 0.000 | 0.000 | 0.000 | 0.000 |
| $2005 / 06$ | 0.050 | 0.000 | 0.000 | 0.050 | 0.010 |
| $2006 / 07$ | 0.104 | 0.000 | 0.000 | 0.104 | 0.021 |
| $2007 / 08$ | 0.136 | 0.000 | 0.000 | 0.136 | 0.027 |
| $2008 / 09$ | 0.000 | 0.000 | 0.000 | 0.000 | 0.000 |
| $2009 / 10$ | 0.000 | 0.000 | 0.000 | 0.000 | 0.000 |
| $2010 / 11$ | 0.000 | 0.186 | 0.000 | 0.186 | 0.037 |
| $2011 / 12$ | 0.000 | 0.000 | 0.000 | 0.000 | 0.000 |
| $2012 / 13$ | 0.000 | 0.000 | 0.000 | 0.000 | 0.000 |
| $2013 / 14$ | 0.000 | 0.000 | 0.000 | 0.000 | 0.000 |
| $2014 / 15$ | 0.000 | 0.000 | 0.000 | 0.000 | 0.000 |
| $2015 / 16$ | 0.102 | 0.230 | 0.000 | 0.333 | 0.067 |
| $2016 / 17$ | 0.000 | 0.000 | 0.000 | 0.000 | 0.000 |
| $2017 / 18$ | 0.064 | 0.000 | 0.000 | 0.064 | 0.013 |
| $2018 / 19$ | 0.000 | 0.101 | 0.000 | 0.101 | 0.020 |
| $2019 / 20$ | 0.000 | 0.000 | 0.000 | 0.000 | 0.000 |
| $2020 / 21$ | 0.000 | 0.000 | 0.000 | 0.000 | 0.000 |

Table 12: Bycatch of PIBKC in the groundfish fisheries, by gear type. Biomass and (discard) mortality are in kilograms.Discard mortality rates of 0.2 and 0.8 for fixed and trawl gear, respectively, were applied to obtain discard mortalities.

|  | fixed |  |  |  | trawl |  |  |
| :--- | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| year | number | biomass | mortality | number | biomass | mortality |  |
| $2009 / 10$ | 87 | 216 | 43 | 193 | 207 | 165 |  |
| $2010 / 11$ | 16 | 44 | 9 | 35 | 56 | 45 |  |
| $2011 / 12$ | 54 | 112 | 22 | 8 | 7 | 6 |  |
| $2012 / 13$ | 72 | 170 | 34 | 340 | 669 | 535 |  |
| $2013 / 14$ | 41 | 65 | 13 | 0 | 0 | 0 |  |
| $2014 / 15$ | 65 | 144 | 29 | 0 | 0 | 0 |  |
| $2015 / 16$ | 352 | 744 | 149 | 257 | 808 | 646 |  |
| $2016 / 17$ | 49 | 77 | 15 | 524 | 455 | 364 |  |
| $2017 / 18$ | 0 | 0 | 0 | 265 | 378 | 303 |  |
| $2018 / 19$ | 14 | 20 | 4 | 398 | 466 | 373 |  |
| $2019 / 20$ | 5 | 9 | 2 | 226 | 518 | 415 |  |
| $2020 / 21$ | 0 | 0 | 0 | 0 | 0 | 0 |  |

Table 13: Bycatch in numbers of PIBKC in the groundfish fisheries, by target type.

| year | Flathead Sole <br> number | Pacific Cod <br> number | Pollock - bottom <br> number | Rock Sole - BSAI <br> number | Yellowfin Sole - BSAI <br> number |
| :--- | :---: | :---: | :---: | :---: | :---: |
| $2009 / 10$ | 54 | 87 | 20 | 0 | 119 |
| $2010 / 11$ | 35 | 14 | 0 | 0 | 0 |
| $2011 / 12$ | 0 | 62 | 0 | 0 | 0 |
| $2012 / 13$ | 12 | 72 | 0 | 0 | 328 |
| $2013 / 14$ | 0 | 41 | 0 | 0 | 0 |
| $2014 / 15$ | 0 | 64 | 0 | 0 | 0 |
| $2015 / 16$ | 58 | 351 | 0 | 0 | 199 |
| $2016 / 17$ | 0 | 48 | 0 | 432 | 92 |
| $2017 / 18$ | 95 | 0 | 0 | 0 | 170 |
| $2018 / 19$ | 0 | 14 | 97 | 0 | 300 |
| $2019 / 20$ | 0 | 5 | 0 | 55 | 170 |
| $2020 / 21$ | 0 | 0 | 0 | 0 | 0 |

Table 14: Bycatch in biomass (kg) of PIBKC in the groundfish fisheries, by target type.

| year | Flathead Sole <br> biomass | Pacific Cod <br> biomass | Pollock - bottom <br> biomass | Rock Sole - BSAI <br> biomass | Yellowfin Sole - BSAI <br> biomass |
| :--- | :---: | :---: | :---: | :---: | :---: |
| $2009 / 10$ | 71 | 216 | 7 | 0 | 129 |
| $2010 / 11$ | 56 | 42 | 0 | 0 | 0 |
| $2011 / 12$ | 0 | 119 | 0 | 0 | 0 |
| $2012 / 13$ | 24 | 170 | 0 | 0 | 645 |
| $2013 / 14$ | 0 | 64 | 0 | 0 | 0 |
| $2014 / 15$ | 0 | 143 | 0 | 0 | 0 |
| $2015 / 16$ | 147 | 742 | 0 | 0 | 661 |
| $2016 / 17$ | 0 | 75 | 0 | 368 | 87 |
| $2017 / 18$ | 227 | 0 | 0 | 0 | 151 |
| $2018 / 19$ | 0 | 20 | 23 | 0 | 442 |
| $2019 / 20$ | 0 | 9 | 0 | 188 | 330 |
| $2020 / 21$ | 0 | 0 | 0 | 0 | 0 |

Table 15: Discard mortality, in kg, of PIBKC in the groundfish fisheries, by target type.Discard mortality rates of 0.2 and 0.8 for fixed and trawl gear, respectively, were applied to obtain discard mortalities.

| year | Flathead Sole <br> mortality | Pacific Cod <br> mortality | Pollock - bottom <br> mortality | Rock Sole - BSAI <br> mortality | Yellowfin Sole - BSAI <br> mortality |
| :--- | :---: | :---: | :---: | :---: | :---: |
| $2009 / 10$ | 57 | 43 | 5 | 0 | 103 |
| $2010 / 11$ | 45 | 8 | 0 | 0 | 0 |
| $2011 / 12$ | 0 | 28 | 0 | 0 | 0 |
| $2012 / 13$ | 19 | 34 | 0 | 0 | 516 |
| $2013 / 14$ | 0 | 13 | 0 | 0 | 0 |
| $2014 / 15$ | 0 | 29 | 0 | 0 | 0 |
| $2015 / 16$ | 117 | 148 | 0 | 0 | 529 |
| $2016 / 17$ | 0 | 15 | 0 | 294 | 70 |
| $2017 / 18$ | 182 | 0 | 0 | 0 | 121 |
| $2018 / 19$ | 0 | 4 | 19 | 0 | 354 |
| $2019 / 20$ | 0 | 2 | 0 | 151 | 264 |
| $2020 / 21$ | 0 | 0 | 0 | 0 | 0 |

Table 16: Size groups for various male components of the PIBKC stock used here. Female maturity is based on abdominal flap morphology and egg presence.

| sex | size.range | category |
| :--- | :--- | :--- |
| male | $<120 \mathrm{~mm} \mathrm{CL}$ | immature male |
| male | $>119 \mathrm{~mm} \mathrm{CL}$ | mature male |
| male | $<135 \mathrm{~mm} \mathrm{CL}$ | sublegal male |
| male | $>134 \mathrm{~mm} \mathrm{CL}$ | legal male |

Table 17: Sample sizes (number of survey hauls, number hauls where crab were caught, number of crab caught) for male population components in the NMFS EBS trawl survey in the Pribilof District.

| year | survey number of hauls | immature males |  | mature males |  | sublegal males |  | legal males |  | all males |  |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
|  |  | non-0 <br> hauls | $\begin{gathered} \text { no. } \\ \text { crab } \end{gathered}$ | $\begin{aligned} & \text { non-0 } \\ & \text { hauls } \end{aligned}$ | $\begin{aligned} & \text { no. } \\ & \text { crab } \end{aligned}$ | $\begin{aligned} & \text { non-0 } \\ & \text { hauls } \end{aligned}$ | no. <br> crab | $\begin{aligned} & \text { non-0 } \\ & \text { hauls } \end{aligned}$ | $\begin{aligned} & \text { no. } \\ & \text { crab } \end{aligned}$ | $\begin{aligned} & \text { non-0 } \\ & \text { hauls } \end{aligned}$ | $\begin{gathered} \text { no. } \\ \text { crab } \end{gathered}$ |
| 1975 | 45 | 11 | 305 | 13 | 553 | 11 | 530 | 13 | 328 | 13 | 858 |
| 1976 | 59 | 3 | 105 | 11 | 91 | 9 | 122 | 10 | 74 | 12 | 196 |
| 1977 | 58 | 7 | 56 | 10 | 129 | 9 | 73 | 9 | 112 | 10 | 185 |
| 1978 | 58 | 8 | 60 | 11 | 130 | 10 | 112 | 10 | 78 | 12 | 190 |
| 1979 | 33 | 2 | 2 | 9 | 77 | 6 | 23 | 9 | 56 | 9 | 79 |
| 1980 | 70 | 10 | 41 | 21 | 133 | 12 | 64 | 21 | 110 | 21 | 174 |
| 1981 | 84 | 19 | 99 | 36 | 184 | 23 | 128 | 36 | 155 | 38 | 283 |
| 1982 | 84 | 19 | 70 | 35 | 114 | 21 | 84 | 31 | 100 | 38 | 184 |
| 1983 | 86 | 15 | 47 | 32 | 93 | 18 | 74 | 29 | 66 | 35 | 140 |
| 1984 | 86 | 10 | 27 | 20 | 37 | 17 | 37 | 16 | 27 | 25 | 64 |
| 1985 | 86 | 3 | 4 | 14 | 24 | 8 | 13 | 11 | 15 | 14 | 28 |
| 1986 | 86 | 1 | 1 | 13 | 26 | 2 | 2 | 13 | 25 | 13 | 27 |
| 1987 | 86 | 5 | 34 | 15 | 50 | 6 | 38 | 14 | 46 | 16 | 84 |
| 1988 | 85 | 5 | 52 | 5 | 12 | 5 | 52 | 5 | 12 | 9 | 64 |
| 1989 | 86 | 8 | 160 | 4 | 11 | 8 | 160 | 4 | 11 | 10 | 171 |
| 1990 | 86 | 8 | 90 | 10 | 59 | 11 | 126 | 7 | 23 | 14 | 149 |
| 1991 | 85 | 16 | 92 | 19 | 103 | 20 | 129 | 14 | 66 | 22 | 195 |
| 1992 | 86 | 12 | 89 | 14 | 73 | 13 | 119 | 12 | 43 | 17 | 162 |
| 1993 | 85 | 12 | 75 | 19 | 96 | 15 | 115 | 17 | 56 | 21 | 171 |
| 1994 | 86 | 8 | 32 | 18 | 68 | 12 | 51 | 18 | 49 | 19 | 100 |
| 1995 | 86 | 7 | 66 | 18 | 177 | 15 | 118 | 14 | 125 | 19 | 243 |
| 1996 | 86 | 7 | 32 | 19 | 87 | 11 | 54 | 19 | 65 | 20 | 119 |
| 1997 | 86 | 7 | 25 | 17 | 65 | 10 | 39 | 16 | 51 | 19 | 90 |
| 1998 | 85 | 12 | 56 | 20 | 56 | 15 | 66 | 17 | 46 | 21 | 112 |
| 1999 | 86 | 7 | 9 | 13 | 34 | 9 | 18 | 11 | 25 | 15 | 43 |
| 2000 | 85 | 4 | 9 | 16 | 40 | 9 | 20 | 13 | 29 | 16 | 49 |
| 2001 | 86 | 3 | 5 | 6 | 28 | 4 | 9 | 5 | 24 | 7 | 33 |
| 2002 | 86 | 0 | 0 | 6 | 12 | 1 | 1 | 6 | 11 | 6 | 12 |
| 2003 | 86 | 2 | 2 | 7 | 14 | 3 | 3 | 7 | 13 | 9 | 16 |
| 2004 | 85 | 3 | 5 | 3 | 3 | 5 | 7 | 1 | 1 | 6 | 8 |
| 2005 | 84 | 3 | 54 | 2 | 5 | 3 | 54 | 2 | 5 | 4 | 59 |
| 2006 | 86 | 4 | 7 | 3 | 3 | 4 | 8 | 2 | 2 | 6 | 10 |
| 2007 | 86 | 4 | 14 | 2 | 6 | 4 | 17 | 2 | 3 | 4 | 20 |
| 2008 | 86 | 2 | 13 | 1 | 1 | 2 | 13 | 1 | 1 | 3 | 14 |
| 2009 | 86 | 5 | 16 | 3 | 15 | 5 | 27 | 3 | 4 | 5 | 31 |
| 2010 | 86 | 2 | 6 | 5 | 8 | 3 | 10 | 4 | 4 | 5 | 14 |
| 2011 | 86 | 0 | 0 | 3 | 9 | 2 | 2 | 2 | 7 | 3 | 9 |
| 2012 | 86 | 1 | 9 | 4 | 13 | 1 | 14 | 4 | 8 | 4 | 22 |
| 2013 | 86 | 1 | 3 | 2 | 6 | 2 | 5 | 2 | 4 | 3 | 9 |
| 2014 | 86 | 3 | 5 | 2 | 5 | 3 | 5 | 2 | 5 | 4 | 10 |
| 2015 | 86 | 2 | 4 | 8 | 13 | 6 | 10 | 5 | 7 | 9 | 17 |


| 2016 | 86 | 4 | 5 | 3 | 3 | 5 | 7 | 1 | 1 | 5 | 8 |
| ---: | ---: | ---: | ---: | ---: | ---: | ---: | ---: | ---: | ---: | ---: | ---: |
| 2017 | 86 | 2 | 4 | 4 | 4 | 3 | 5 | 3 | 3 | 5 | 8 |
| 2018 | 86 | 4 | 6 | 3 | 3 | 4 | 6 | 3 | 3 | 5 | 9 |
| 2019 | 86 | 5 | 8 | 3 | 3 | 5 | 8 | 3 | 3 | 6 | 11 |

Table 18: Sample sizes (number of survey hauls, number hauls where crab were caught, number of crab caught) for female population components in the NMFS EBS trawl survey in the Pribilof District.

| year | survey number of hauls | immature females |  | mature females |  | all females |  |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
|  |  | $\begin{aligned} & \text { non-0 } \\ & \text { hauls } \end{aligned}$ | $\begin{gathered} \text { no. } \\ \text { crab } \end{gathered}$ | non-0 <br> hauls | no. <br> crab | non-0 <br> hauls | $\begin{aligned} & \text { no. } \\ & \text { crab } \end{aligned}$ |
| 1975 | 45 | 0 | 0 | 9 | 265 | 9 | 265 |
| 1976 | 59 | 3 | 81 | 4 | 11 | 5 | 92 |
| 1977 | 58 | 2 | 9 | 5 | 136 | 5 | 145 |
| 1978 | 58 | 1 | 1 | 8 | 107 | 8 | 108 |
| 1979 | 33 | 2 | 3 | 4 | 22 | 5 | 25 |
| 1980 | 70 | 3 | 6 | 11 | 337 | 11 | 343 |
| 1981 | 84 | 13 | 31 | 20 | 202 | 23 | 233 |
| 1982 | 84 | 5 | 35 | 23 | 264 | 24 | 299 |
| 1983 | 86 | 6 | 15 | 17 | 288 | 18 | 303 |
| 1984 | 86 | 6 | 24 | 14 | 145 | 15 | 169 |
| 1985 | 86 | 7 | 15 | 8 | 28 | 12 | 43 |
| 1986 | 86 | 2 | 2 | 8 | 106 | 10 | 108 |
| 1987 | 86 | 5 | 22 | 7 | 36 | 11 | 58 |
| 1988 | 85 | 5 | 38 | 8 | 20 | 9 | 58 |
| 1989 | 86 | 8 | 131 | 9 | 40 | 13 | 171 |
| 1990 | 86 | 5 | 75 | 9 | 90 | 10 | 165 |
| 1991 | 85 | 9 | 36 | 11 | 126 | 15 | 162 |
| 1992 | 86 | 4 | 66 | 9 | 76 | 11 | 142 |
| 1993 | 85 | 5 | 45 | 13 | 89 | 15 | 134 |
| 1994 | 86 | 3 | 8 | 12 | 271 | 13 | 279 |
| 1995 | 86 | 3 | 38 | 11 | 220 | 12 | 258 |
| 1996 | 86 | 7 | 13 | 10 | 213 | 12 | 226 |
| 1997 | 86 | 4 | 17 | 11 | 137 | 13 | 154 |
| 1998 | 85 | 8 | 29 | 11 | 107 | 15 | 136 |
| 1999 | 86 | 0 | 0 | 10 | 155 | 10 | 155 |
| 2000 | 85 | 0 | 0 | 13 | 74 | 13 | 74 |
| 2001 | 86 | 1 | 1 | 9 | 93 | 10 | 94 |
| 2002 | 86 | 1 | 1 | 6 | 66 | 7 | 67 |
| 2003 | 86 | 4 | 4 | 7 | 69 | 9 | 73 |
| 2004 | 85 | 3 | 5 | 3 | 4 | 5 | 9 |
| 2005 | 84 | 1 | 43 | 5 | 15 | 6 | 58 |
| 2006 | 86 | 4 | 6 | 3 | 22 | 6 | 28 |
| 2007 | 86 | 3 | 7 | 2 | 9 | 5 | 16 |
| 2008 | 86 | 3 | 19 | 4 | 24 | 6 | 43 |
| 2009 | 86 | 3 | 9 | 3 | 29 | 4 | 38 |
| 2010 | 86 | 5 | 9 | 4 | 15 | 7 | 24 |
| 2011 | 86 | 1 | 1 | 2 | 2 | 3 | 3 |
| 2012 | 86 | 1 | 1 | 5 | 15 | 6 | 16 |
| 2013 | 86 | 2 | 2 | 4 | 8 | 5 | 10 |
| 2014 | 86 | 1 | 1 | 3 | 4 | 4 | 5 |
| 2015 | 86 | 0 | 0 | 4 | 11 | 4 | 11 |


| 2016 | 86 | 4 | 5 | 7 | 19 | 8 | 24 |
| ---: | ---: | ---: | ---: | ---: | ---: | ---: | ---: |
| 2017 | 86 | 4 | 5 | 4 | 10 | 6 | 15 |
| 2018 | 86 | 1 | 1 | 3 | 6 | 4 | 7 |
| 2019 | 86 | 0 | 0 | 2 | 11 | 2 | 11 |

Table 19: Summary statistics for trawl survey abundance by decade, in millions.

| category | decade |  |  |  |  |  |  |  |  |  |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
|  | 1970 |  | 1980 |  | 1990 |  | 2000 |  | 2010 |  |
|  | mean | max |
| immature females | 1.706 | 7.369 | 0.7645 | 2.636 | 0.756 | 2.177 | 0.3201 | 2.2681 | 0.05116 | 0.1656 |
| mature females | 7.156 | 13.880 | 21.3116 | 182.903 | 3.008 | 5.047 | 0.7272 | 1.6975 | 0.20400 | 0.3594 |
| all females | 8.862 | 14.732 | 22.0762 | 183.684 | 3.764 | 5.322 | 1.0472 | 2.5573 | 0.25516 | 0.4544 |
| immature males | 4.042 | 8.476 | 1.3213 | 3.515 | 1.237 | 2.450 | 0.3257 | 1.9813 | 0.09662 | 0.1945 |
| mature males | 9.099 | 15.288 | 1.8942 | 7.842 | 1.619 | 3.102 | 0.2274 | 0.7251 | 0.12712 | 0.2722 |
| sublegal males | 6.497 | 14.712 | 1.6675 | 4.331 | 1.791 | 3.349 | 0.3850 | 1.9813 | 0.13763 | 0.3026 |
| legal males | 6.644 | 11.769 | 1.5480 | 6.244 | 1.065 | 2.186 | 0.1681 | 0.5276 | 0.08610 | 0.1642 |
| all males | 13.141 | 23.764 | 3.2155 | 10.575 | 2.856 | 4.371 | 0.5531 | 2.0733 | 0.22373 | 0.4668 |

Table 20: Summary statistics for trawl survey biomass by decade, in 1,000 's t .

| category | decade |  |  |  |  |  |  |  |  |  |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
|  | 1970 |  | 1980 |  | 1990 |  | 2000 |  | 2010 |  |
|  | mean | max |
| immature females | 1.125 | 4.968 | 0.3149 | 0.8008 | 0.3763 | 1.118 | 0.09232 | 0.4773 | 0.02422 | 0.08408 |
| mature females | 6.953 | 13.154 | 24.4680 | 211.6037 | 2.9518 | 5.408 | 0.81884 | 1.8163 | 0.20584 | 0.41163 |
| all females | 8.078 | 13.572 | 24.7829 | 212.3032 | 3.3281 | 5.585 | 0.91115 | 1.8167 | 0.23006 | 0.41163 |
| immature males | 3.811 | 8.341 | 0.7711 | 2.0838 | 0.9836 | 2.004 | 0.13309 | 0.3258 | 0.07633 | 0.16471 |
| mature males | 25.721 | 42.618 | 5.7347 | 23.5529 | 4.0885 | 8.360 | 0.65383 | 2.0913 | 0.32571 | 0.64394 |
| sublegal males | 8.148 | 19.378 | 1.3954 | 4.9581 | 1.9477 | 3.567 | 0.23745 | 0.5649 | 0.14687 | 0.34967 |
| legal males | 21.383 | 40.366 | 5.1104 | 20.6786 | 3.1245 | 6.787 | 0.54947 | 1.7457 | 0.25518 | 0.45898 |
| all males | 29.532 | 46.395 | 6.5058 | 25.6367 | 5.0721 | 9.328 | 0.78692 | 2.2047 | 0.40204 | 0.80865 |

Table 21: Estimated annual abundance (millions of crab) of male PIBKC population components from the NMFS EBS trawl survey.

|  | immature males |  | mature males |  | sublegal males |  | legal males |  | all males |  |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| year | abundance | cv |
| 1975 | 8.476 | 0.567 | 15.288 | 0.502 | 14.712 | 0.479 | 9.051 | 0.501 | 23.764 | 0.466 |
| 1976 | 4.960 | 0.954 | 4.782 | 0.445 | 5.729 | 0.882 | 4.012 | 0.471 | 9.742 | 0.589 |
| 1977 | 4.216 | 0.457 | 13.044 | 0.743 | 5.491 | 0.440 | 11.769 | 0.771 | 17.260 | 0.625 |
| 1978 | 2.421 | 0.502 | 6.141 | 0.496 | 4.639 | 0.419 | 3.923 | 0.616 | 8.562 | 0.428 |
| 1979 | 0.139 | 0.699 | 6.240 | 0.360 | 1.913 | 0.472 | 4.467 | 0.347 | 6.380 | 0.357 |
| 1980 | 2.733 | 0.466 | 7.842 | 0.408 | 4.331 | 0.458 | 6.244 | 0.420 | 10.575 | 0.400 |
| 1981 | 2.099 | 0.324 | 3.834 | 0.180 | 2.688 | 0.317 | 3.246 | 0.177 | 5.934 | 0.207 |
| 1982 | 1.371 | 0.281 | 2.354 | 0.181 | 1.654 | 0.255 | 2.071 | 0.188 | 3.725 | 0.172 |
| 1983 | 1.031 | 0.357 | 1.851 | 0.186 | 1.561 | 0.309 | 1.321 | 0.170 | 2.882 | 0.220 |
| 1984 | 0.518 | 0.397 | 0.771 | 0.225 | 0.730 | 0.290 | 0.558 | 0.247 | 1.288 | 0.212 |
| 1985 | 0.068 | 0.598 | 0.428 | 0.281 | 0.226 | 0.340 | 0.270 | 0.294 | 0.496 | 0.269 |
| 1986 | 0.019 | 1.000 | 0.480 | 0.305 | 0.039 | 0.698 | 0.460 | 0.313 | 0.499 | 0.298 |
| 1987 | 0.622 | 0.834 | 0.903 | 0.414 | 0.695 | 0.748 | 0.830 | 0.416 | 1.525 | 0.434 |
| 1988 | 1.238 | 0.842 | 0.238 | 0.509 | 1.238 | 0.842 | 0.238 | 0.509 | 1.476 | 0.708 |
| 1989 | 3.515 | 0.588 | 0.240 | 0.624 | 3.515 | 0.588 | 0.240 | 0.624 | 3.755 | 0.585 |
| 1990 | 2.450 | 0.596 | 1.470 | 0.626 | 3.349 | 0.596 | 0.572 | 0.538 | 3.920 | 0.578 |
| 1991 | 1.920 | 0.373 | 2.014 | 0.363 | 2.697 | 0.332 | 1.238 | 0.444 | 3.935 | 0.343 |
| 1992 | 2.436 | 0.588 | 1.935 | 0.420 | 3.217 | 0.520 | 1.154 | 0.453 | 4.371 | 0.475 |
| 1993 | 1.484 | 0.520 | 1.876 | 0.310 | 2.245 | 0.432 | 1.114 | 0.300 | 3.359 | 0.339 |
| 1994 | 0.639 | 0.374 | 1.294 | 0.341 | 0.998 | 0.343 | 0.935 | 0.345 | 1.933 | 0.332 |
| 1995 | 1.147 | 0.889 | 3.102 | 0.600 | 2.062 | 0.744 | 2.186 | 0.615 | 4.249 | 0.675 |
| 1996 | 0.719 | 0.625 | 1.712 | 0.281 | 1.162 | 0.547 | 1.269 | 0.263 | 2.431 | 0.334 |
| 1997 | 0.467 | 0.525 | 1.201 | 0.294 | 0.736 | 0.464 | 0.933 | 0.284 | 1.669 | 0.342 |
| 1998 | 0.949 | 0.458 | 0.967 | 0.246 | 1.119 | 0.414 | 0.797 | 0.253 | 1.917 | 0.309 |
| 1999 | 0.160 | 0.373 | 0.617 | 0.334 | 0.324 | 0.388 | 0.453 | 0.345 | 0.777 | 0.327 |
| 2000 | 0.164 | 0.563 | 0.725 | 0.296 | 0.361 | 0.385 | 0.528 | 0.297 | 0.889 | 0.312 |
| 2001 | 0.093 | 0.645 | 0.522 | 0.710 | 0.169 | 0.595 | 0.446 | 0.744 | 0.615 | 0.690 |
| 2002 | 0.000 | 0.000 | 0.225 | 0.473 | 0.018 | 1.000 | 0.207 | 0.495 | 0.225 | 0.473 |
| 2003 | 0.045 | 0.717 | 0.229 | 0.389 | 0.061 | 0.589 | 0.214 | 0.402 | 0.274 | 0.341 |
| 2004 | 0.088 | 0.590 | 0.048 | 0.563 | 0.120 | 0.460 | 0.016 | 1.000 | 0.136 | 0.417 |
| 2005 | 1.981 | 0.964 | 0.092 | 0.712 | 1.981 | 0.964 | 0.092 | 0.712 | 2.073 | 0.921 |
| 2006 | 0.138 | 0.495 | 0.056 | 0.564 | 0.155 | 0.503 | 0.038 | 0.699 | 0.194 | 0.419 |
| 2007 | 0.246 | 0.717 | 0.110 | 0.854 | 0.302 | 0.644 | 0.054 | 0.745 | 0.356 | 0.639 |
| 2008 | 0.234 | 0.928 | 0.018 | 1.000 | 0.234 | 0.928 | 0.018 | 1.000 | 0.252 | 0.862 |
| 2009 | 0.268 | 0.631 | 0.249 | 0.732 | 0.448 | 0.697 | 0.068 | 0.588 | 0.516 | 0.676 |
| 2010 | 0.101 | 0.841 | 0.130 | 0.486 | 0.167 | 0.728 | 0.065 | 0.482 | 0.232 | 0.608 |
| 2011 | 0.000 | 0.000 | 0.166 | 0.792 | 0.036 | 0.698 | 0.129 | 0.868 | 0.166 | 0.792 |
| 2012 | 0.195 | 1.000 | 0.272 | 0.797 | 0.303 | 1.000 | 0.164 | 0.678 | 0.467 | 0.879 |
| 2013 | 0.076 | 1.000 | 0.104 | 0.862 | 0.112 | 0.745 | 0.069 | 0.804 | 0.181 | 0.644 |
| 2014 | 0.091 | 0.591 | 0.092 | 0.710 | 0.091 | 0.591 | 0.092 | 0.710 | 0.183 | 0.566 |
| 2015 | 0.076 | 0.766 | 0.234 | 0.367 | 0.185 | 0.525 | 0.125 | 0.446 | 0.309 | 0.408 |
| 2016 | 0.094 | 0.517 | 0.056 | 0.563 | 0.131 | 0.458 | 0.019 | 1.000 | 0.150 | 0.488 |
| 2017 | 0.068 | 0.773 | 0.091 | 0.503 | 0.087 | 0.637 | 0.072 | 0.589 | 0.159 | 0.456 |


| 2018 | 0.110 | 0.572 | 0.056 | 0.563 | 0.110 | 0.572 | 0.056 | 0.563 | 0.166 | 0.521 |
| :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- |
| 2019 | 0.155 | 0.485 | 0.071 | 0.575 | 0.155 | 0.485 | 0.071 | 0.575 | 0.226 | 0.462 |

Table 22: Estimated annual abundance (millions of crab) of female PIBKC population components from the NMFS EBS trawl survey.

|  | immature females |  | mature females |  | all females |  |
| :--- | :---: | ---: | ---: | ---: | ---: | ---: |
| year | abundance | cv | abundance | cv | abundance | cv |
| 1975 | 0.000 | 0.000 | 13.148 | 0.608 | 13.148 | 0.608 |
| 1976 | 7.369 | 0.966 | 0.769 | 0.513 | 8.139 | 0.910 |
| 1977 | 0.852 | 0.825 | 13.880 | 0.860 | 14.732 | 0.857 |
| 1978 | 0.061 | 1.000 | 5.927 | 0.662 | 5.987 | 0.656 |
| 1979 | 0.250 | 0.714 | 2.054 | 0.809 | 2.305 | 0.763 |
| 1980 | 0.781 | 0.774 | 182.903 | 0.977 | 183.684 | 0.976 |
| 1981 | 0.827 | 0.408 | 5.433 | 0.437 | 6.260 | 0.423 |
| 1982 | 0.876 | 0.514 | 7.837 | 0.648 | 8.713 | 0.626 |
| 1983 | 0.464 | 0.545 | 9.308 | 0.780 | 9.772 | 0.763 |
| 1984 | 0.465 | 0.516 | 2.769 | 0.380 | 3.235 | 0.366 |
| 1985 | 0.260 | 0.541 | 0.486 | 0.437 | 0.746 | 0.360 |
| 1986 | 0.037 | 0.698 | 2.102 | 0.898 | 2.139 | 0.882 |
| 1987 | 0.402 | 0.743 | 0.670 | 0.584 | 1.072 | 0.478 |
| 1988 | 0.898 | 0.869 | 0.465 | 0.479 | 1.363 | 0.642 |
| 1989 | 2.636 | 0.738 | 1.142 | 0.659 | 3.778 | 0.576 |
| 1990 | 2.177 | 0.910 | 2.046 | 0.547 | 4.223 | 0.555 |
| 1991 | 0.805 | 0.463 | 2.767 | 0.416 | 3.573 | 0.353 |
| 1992 | 1.797 | 0.927 | 2.150 | 0.494 | 3.947 | 0.521 |
| 1993 | 0.881 | 0.606 | 1.783 | 0.445 | 2.663 | 0.378 |
| 1994 | 0.145 | 0.574 | 5.047 | 0.443 | 5.192 | 0.437 |
| 1995 | 0.658 | 0.920 | 4.039 | 0.521 | 4.697 | 0.491 |
| 1996 | 0.276 | 0.418 | 5.046 | 0.484 | 5.322 | 0.463 |
| 1997 | 0.320 | 0.669 | 2.614 | 0.423 | 2.935 | 0.388 |
| 1998 | 0.500 | 0.431 | 1.830 | 0.443 | 2.330 | 0.365 |
| 1999 | 0.000 | 0.000 | 2.756 | 0.490 | 2.756 | 0.490 |
| 2000 | 0.000 | 0.000 | 1.363 | 0.463 | 1.363 | 0.463 |
| 2001 | 0.019 | 1.000 | 1.697 | 0.753 | 1.716 | 0.745 |
| 2002 | 0.019 | 1.000 | 1.222 | 0.794 | 1.241 | 0.782 |
| 2003 | 0.067 | 0.483 | 1.120 | 0.764 | 1.188 | 0.721 |
| 2004 | 0.098 | 0.634 | 0.070 | 0.603 | 0.168 | 0.510 |
| 2005 | 2.268 | 1.000 | 0.289 | 0.565 | 2.557 | 0.886 |
| 2006 | 0.113 | 0.548 | 0.430 | 0.766 | 0.543 | 0.617 |
| 2007 | 0.122 | 0.728 | 0.166 | 0.899 | 0.288 | 0.592 |
| 2008 | 0.342 | 0.898 | 0.437 | 0.658 | 0.779 | 0.748 |
| 2009 | 0.152 | 0.612 | 0.477 | 0.818 | 0.629 | 0.755 |
| 2010 | 0.166 | 0.558 | 0.249 | 0.691 | 0.415 | 0.622 |
| 2011 | 0.018 | 1.000 | 0.037 | 0.698 | 0.055 | 0.563 |
| 2012 | 0.035 | 1.000 | 0.312 | 0.764 | 0.347 | 0.695 |
| 2013 | 0.045 | 0.704 | 0.150 | 0.627 | 0.196 | 0.534 |
| 2014 | 0.028 | 1.000 | 0.074 | 0.604 | 0.102 | 0.507 |
| 2015 | 0.000 | 0.000 | 0.202 | 0.655 | 0.202 | 0.655 |
| 2016 | 0.095 | 0.515 | 0.359 | 0.520 | 0.454 | 0.504 |
| 2017 | 0.105 | 0.501 | 0.244 | 0.624 | 0.350 | 0.535 |
|  |  |  |  |  |  |  |


| 2018 | 0.020 | 1.000 | 0.114 | 0.614 | 0.134 | 0.537 |
| :--- | :--- | :--- | :--- | :--- | :--- | :--- |
| 2019 | 0.000 | 0.000 | 0.297 | 0.828 | 0.297 | 0.828 |

Table 23: Estimated annual biomass (1000's t) of male PIBKC population components from the NMFS EBS trawl survey.

| year | immature males |  | mature males |  | sublegal males |  | legal males |  | all males |  |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
|  | biomass | cv |
| 1975 | 8.341 | 0.525 | 38.054 | 0.501 | 19.378 | 0.466 | 27.016 | 0.499 | 46.395 | 0.475 |
| 1976 | 4.129 | 0.944 | 14.059 | 0.451 | 5.539 | 0.811 | 12.649 | 0.468 | 18.188 | 0.452 |
| 1977 | 3.713 | 0.443 | 42.618 | 0.768 | 5.966 | 0.463 | 40.366 | 0.784 | 46.332 | 0.729 |
| 1978 | 2.765 | 0.509 | 17.370 | 0.558 | 6.618 | 0.412 | 13.517 | 0.642 | 20.135 | 0.506 |
| 1979 | 0.108 | 0.782 | 16.502 | 0.350 | 3.241 | 0.474 | 13.369 | 0.349 | 16.610 | 0.349 |
| 1980 | 2.084 | 0.492 | 23.553 | 0.430 | 4.958 | 0.464 | 20.679 | 0.446 | 25.637 | 0.417 |
| 1981 | 1.704 | 0.299 | 11.628 | 0.174 | 2.779 | 0.297 | 10.554 | 0.175 | 13.332 | 0.175 |
| 1982 | 1.152 | 0.232 | 7.389 | 0.187 | 1.647 | 0.217 | 6.893 | 0.192 | 8.541 | 0.175 |
| 1983 | 0.962 | 0.357 | 5.409 | 0.178 | 1.897 | 0.297 | 4.474 | 0.175 | 6.371 | 0.187 |
| 1984 | 0.130 | 0.362 | 2.216 | 0.229 | 0.521 | 0.268 | 1.824 | 0.247 | 2.345 | 0.222 |
| 1985 | 0.039 | 0.733 | 1.055 | 0.267 | 0.338 | 0.374 | 0.755 | 0.283 | 1.094 | 0.263 |
| 1986 | 0.004 | 1.000 | 1.505 | 0.303 | 0.035 | 0.897 | 1.473 | 0.307 | 1.508 | 0.302 |
| 1987 | 0.191 | 0.783 | 2.923 | 0.411 | 0.334 | 0.536 | 2.781 | 0.414 | 3.115 | 0.397 |
| 1988 | 0.170 | 0.707 | 0.842 | 0.529 | 0.170 | 0.707 | 0.842 | 0.529 | 1.012 | 0.457 |
| 1989 | 1.275 | 0.620 | 0.827 | 0.637 | 1.275 | 0.620 | 0.827 | 0.637 | 2.102 | 0.551 |
| 1990 | 2.004 | 0.661 | 3.078 | 0.600 | 3.567 | 0.665 | 1.514 | 0.515 | 5.082 | 0.610 |
| 1991 | 1.377 | 0.386 | 4.690 | 0.386 | 2.741 | 0.336 | 3.326 | 0.450 | 6.067 | 0.373 |
| 1992 | 1.801 | 0.512 | 4.391 | 0.423 | 3.157 | 0.446 | 3.035 | 0.446 | 6.192 | 0.432 |
| 1993 | 1.088 | 0.545 | 4.556 | 0.307 | 2.442 | 0.409 | 3.203 | 0.301 | 5.644 | 0.305 |
| 1994 | 0.619 | 0.388 | 3.410 | 0.345 | 1.224 | 0.350 | 2.806 | 0.351 | 4.029 | 0.343 |
| 1995 | 0.968 | 0.863 | 8.360 | 0.604 | 2.541 | 0.673 | 6.787 | 0.615 | 9.328 | 0.629 |
| 1996 | 0.745 | 0.605 | 4.641 | 0.269 | 1.512 | 0.524 | 3.873 | 0.265 | 5.386 | 0.279 |
| 1997 | 0.381 | 0.545 | 3.233 | 0.276 | 0.849 | 0.451 | 2.765 | 0.271 | 3.614 | 0.294 |
| 1998 | 0.692 | 0.413 | 2.798 | 0.249 | 0.980 | 0.354 | 2.510 | 0.255 | 3.490 | 0.252 |
| 1999 | 0.161 | 0.402 | 1.729 | 0.337 | 0.464 | 0.414 | 1.426 | 0.347 | 1.890 | 0.333 |
| 2000 | 0.113 | 0.679 | 2.091 | 0.296 | 0.459 | 0.373 | 1.746 | 0.305 | 2.205 | 0.304 |
| 2001 | 0.087 | 0.764 | 1.599 | 0.735 | 0.225 | 0.628 | 1.461 | 0.759 | 1.686 | 0.733 |
| 2002 | 0.000 | 0.000 | 0.680 | 0.506 | 0.033 | 1.000 | 0.647 | 0.525 | 0.680 | 0.506 |
| 2003 | 0.019 | 0.984 | 0.702 | 0.400 | 0.050 | 0.723 | 0.671 | 0.411 | 0.721 | 0.390 |
| 2004 | 0.036 | 0.649 | 0.107 | 0.583 | 0.094 | 0.487 | 0.048 | 1.000 | 0.143 | 0.455 |
| 2005 | 0.326 | 0.942 | 0.344 | 0.710 | 0.326 | 0.942 | 0.344 | 0.710 | 0.670 | 0.589 |
| 2006 | 0.087 | 0.585 | 0.166 | 0.603 | 0.114 | 0.616 | 0.139 | 0.699 | 0.253 | 0.462 |
| 2007 | 0.197 | 0.737 | 0.306 | 0.798 | 0.298 | 0.632 | 0.206 | 0.734 | 0.503 | 0.661 |
| 2008 | 0.212 | 0.952 | 0.046 | 1.000 | 0.212 | 0.952 | 0.046 | 1.000 | 0.258 | 0.797 |
| 2009 | 0.254 | 0.680 | 0.497 | 0.713 | 0.565 | 0.740 | 0.187 | 0.604 | 0.751 | 0.698 |
| 2010 | 0.092 | 0.853 | 0.303 | 0.461 | 0.205 | 0.702 | 0.190 | 0.483 | 0.395 | 0.522 |
| 2011 | 0.000 | 0.000 | 0.461 | 0.843 | 0.062 | 0.705 | 0.399 | 0.886 | 0.461 | 0.843 |
| 2012 | 0.165 | 1.000 | 0.644 | 0.735 | 0.350 | 1.000 | 0.459 | 0.643 | 0.809 | 0.786 |
| 2013 | 0.015 | 1.000 | 0.250 | 0.797 | 0.075 | 0.824 | 0.190 | 0.752 | 0.265 | 0.754 |
| 2014 | 0.083 | 0.623 | 0.233 | 0.699 | 0.083 | 0.623 | 0.233 | 0.699 | 0.317 | 0.567 |
| 2015 | 0.082 | 0.747 | 0.622 | 0.394 | 0.275 | 0.494 | 0.428 | 0.458 | 0.703 | 0.395 |
| 2016 | 0.071 | 0.486 | 0.130 | 0.613 | 0.133 | 0.495 | 0.068 | 1.000 | 0.201 | 0.515 |
| 2017 | 0.046 | 0.767 | 0.255 | 0.514 | 0.076 | 0.599 | 0.224 | 0.573 | 0.300 | 0.470 |


| 2018 | 0.096 | 0.540 | 0.154 | 0.571 | 0.096 | 0.540 | 0.154 | 0.571 | 0.249 | 0.522 |
| :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- |
| 2019 | 0.115 | 0.542 | 0.206 | 0.604 | 0.115 | 0.542 | 0.206 | 0.604 | 0.321 | 0.504 |

Table 24: Estimated annual biomass (1000's $t$ ) of female PIBKC population components from the NMFS EBS trawl survey.

|  | immature females |  |  |  |  |  |  | mature females |  | all females |  |
| :--- | ---: | ---: | ---: | ---: | ---: | ---: | :---: | :---: | :---: | :---: | :---: |
| year | biomass | cv | biomass | cv | biomass | cv |  |  |  |  |  |
| 1975 | 0.000 | 0.000 | 12.442 | 0.636 | 12.442 | 0.636 |  |  |  |  |  |
| 1976 | 4.968 | 0.972 | 0.824 | 0.532 | 5.792 | 0.891 |  |  |  |  |  |
| 1977 | 0.419 | 0.829 | 13.154 | 0.875 | 13.572 | 0.874 |  |  |  |  |  |
| 1978 | 0.076 | 1.000 | 6.416 | 0.725 | 6.492 | 0.717 |  |  |  |  |  |
| 1979 | 0.161 | 0.725 | 1.929 | 0.790 | 2.090 | 0.756 |  |  |  |  |  |
| 1980 | 0.699 | 0.865 | 211.604 | 0.984 | 212.303 | 0.983 |  |  |  |  |  |
| 1981 | 0.497 | 0.413 | 5.987 | 0.469 | 6.484 | 0.458 |  |  |  |  |  |
| 1982 | 0.553 | 0.572 | 8.824 | 0.678 | 9.377 | 0.669 |  |  |  |  |  |
| 1983 | 0.258 | 0.607 | 9.990 | 0.791 | 10.248 | 0.781 |  |  |  |  |  |
| 1984 | 0.015 | 0.688 | 3.070 | 0.381 | 3.085 | 0.380 |  |  |  |  |  |
| 1985 | 0.005 | 0.457 | 0.520 | 0.448 | 0.525 | 0.445 |  |  |  |  |  |
| 1986 | 0.011 | 0.727 | 2.420 | 0.901 | 2.431 | 0.896 |  |  |  |  |  |
| 1987 | 0.119 | 0.855 | 0.795 | 0.583 | 0.913 | 0.526 |  |  |  |  |  |
| 1988 | 0.190 | 0.788 | 0.528 | 0.491 | 0.718 | 0.473 |  |  |  |  |  |
| 1989 | 0.801 | 0.666 | 0.945 | 0.581 | 1.746 | 0.497 |  |  |  |  |  |
| 1990 | 1.118 | 0.928 | 1.810 | 0.508 | 2.929 | 0.491 |  |  |  |  |  |
| 1991 | 0.343 | 0.475 | 2.433 | 0.414 | 2.776 | 0.376 |  |  |  |  |  |
| 1992 | 0.802 | 0.961 | 1.848 | 0.480 | 2.649 | 0.463 |  |  |  |  |  |
| 1993 | 0.444 | 0.624 | 1.647 | 0.461 | 2.092 | 0.399 |  |  |  |  |  |
| 1994 | 0.087 | 0.570 | 4.806 | 0.447 | 4.893 | 0.443 |  |  |  |  |  |
| 1995 | 0.331 | 0.904 | 3.948 | 0.519 | 4.279 | 0.496 |  |  |  |  |  |
| 1996 | 0.177 | 0.415 | 5.408 | 0.502 | 5.585 | 0.491 |  |  |  |  |  |
| 1997 | 0.194 | 0.659 | 2.835 | 0.429 | 3.028 | 0.407 |  |  |  |  |  |
| 1998 | 0.267 | 0.425 | 1.914 | 0.441 | 2.182 | 0.392 |  |  |  |  |  |
| 1999 | 0.000 | 0.000 | 2.868 | 0.467 | 2.868 | 0.467 |  |  |  |  |  |
| 2000 | 0.000 | 0.000 | 1.462 | 0.460 | 1.462 | 0.460 |  |  |  |  |  |
| 2001 | 0.000 | 1.000 | 1.816 | 0.722 | 1.817 | 0.722 |  |  |  |  |  |
| 2002 | 0.000 | 1.000 | 1.401 | 0.776 | 1.401 | 0.775 |  |  |  |  |  |
| 2003 | 0.021 | 0.667 | 1.286 | 0.745 | 1.307 | 0.734 |  |  |  |  |  |
| 2004 | 0.025 | 0.821 | 0.098 | 0.597 | 0.123 | 0.504 |  |  |  |  |  |
| 2005 | 0.477 | 1.000 | 0.370 | 0.570 | 0.847 | 0.606 |  |  |  |  |  |
| 2006 | 0.038 | 0.602 | 0.538 | 0.760 | 0.576 | 0.712 |  |  |  |  |  |
| 2007 | 0.059 | 0.792 | 0.223 | 0.876 | 0.282 | 0.707 |  |  |  |  |  |
| 2008 | 0.222 | 0.901 | 0.450 | 0.635 | 0.672 | 0.705 |  |  |  |  |  |
| 2009 | 0.080 | 0.660 | 0.545 | 0.849 | 0.625 | 0.818 |  |  |  |  |  |
| 2010 | 0.084 | 0.578 | 0.310 | 0.660 | 0.394 | 0.634 |  |  |  |  |  |
| 2011 | 0.003 | 1.000 | 0.034 | 0.725 | 0.037 | 0.674 |  |  |  |  |  |
| 2012 | 0.009 | 1.000 | 0.229 | 0.660 | 0.237 | 0.637 |  |  |  |  |  |
| 2013 | 0.012 | 0.722 | 0.154 | 0.700 | 0.166 | 0.654 |  |  |  |  |  |
| 2014 | 0.016 | 1.000 | 0.091 | 0.605 | 0.108 | 0.529 |  |  |  |  |  |
| 2015 | 0.000 | 0.000 | 0.160 | 0.662 | 0.160 | 0.662 |  |  |  |  |  |
| 2016 | 0.050 | 0.490 | 0.354 | 0.493 | 0.405 | 0.478 |  |  |  |  |  |
| 2017 | 0.055 | 0.501 | 0.206 | 0.591 | 0.262 | 0.533 |  |  |  |  |  |
|  |  |  |  |  |  |  |  |  |  |  |  |


| 2018 | 0.013 | 1.000 | 0.108 | 0.725 | 0.121 | 0.654 |
| :--- | :--- | :--- | :--- | :--- | :--- | :--- |
| 2019 | 0.000 | 0.000 | 0.412 | 0.859 | 0.412 | 0.859 |

Table 25: Results from fitting random effects model to male survey MMB data.

| quantity | value |
| :--- | ---: |
| objective function value | $2.838 e+01$ |
| max gradient | $4.549 e-08$ |
| estimated ln-scale process error | $-8.365 e-01$ |
| sd(ln-scale process error) | $1.798 e-01$ |
| estimated process error | $4.332 e-01$ |
| sd(estimated process error) | $7.791 e-02$ |

Table 26: A comparison of estimates for MMB (in t) at the time of the survey. Note that the survey was not conducted in 2020 and has not yet been conducted in 2021 so the 'raw' values are unavailable and the smoothed values are 1 -step and 2 -step ahead predictions.

| year | raw |  |  | RE |  |  |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: |
|  | value | lci | uci | value | lci | uci |
| 1975 | 38,053.59 | 20,759.61 | 69,754.48 | 26,784.90 | 17, 034.71 | 42,115.83 |
| 1976 | 14, 058.93 | 8,103.53 | 24,391.05 | 19,946.70 | 13,547.47 | 29,368.65 |
| 1977 | 42, 618.32 | 17, 814.39 | 101, 958.08 | 21,189.60 | 13,764.47 | 32,620.15 |
| 1978 | 17, 369.71 | 8, 912.49 | 33, 852.16 | 16,960.00 | 11,462.90 | 25,093.26 |
| 1979 | 10, 959.38 | 7,385.67 | 16, 262.32 | 13, 352.10 | 9, 817.39 | 18,159.47 |
| 1980 | 23, 552.92 | 13, 894.39 | 39, 925.46 | 15,538.70 | 11,082.00 | 21,787.69 |
| 1981 | 11,628.25 | 9, 320.75 | 14,507.00 | 11,412.30 | 9, 362.15 | 13, 911.40 |
| 1982 | 7,388.96 | 5,824.58 | 9,373.50 | 7,447.72 | 6, 063.18 | 9, 148.42 |
| 1983 | 5,408.73 | 4,315.80 | 6,778.45 | 5,074.75 | 4, 157.49 | 6,194.38 |
| 1984 | 2, 215.66 | 1,659.01 | 2, 959.08 | 2,351.50 | 1,849.90 | 2,989.11 |
| 1985 | 1,054.79 | 753.94 | 1,475.68 | 1,356.55 | 1, 029.82 | 1,786.94 |
| 1986 | 1,504.69 | 1,029.62 | 2,198.96 | 1,556.99 | 1,163.92 | 2,082.81 |
| 1987 | 2, 923.38 | 1,761.10 | 4,852.75 | 1,922.68 | 1,360.00 | 2,718.16 |
| 1988 | 842.43 | 445.93 | 1,591.49 | 1,435.90 | 964.21 | 2,138.35 |
| 1989 | 827.50 | 391.56 | 1,748.76 | 1,609.75 | 1,051.08 | 2, 465.37 |
| 1990 | 3, 077.51 | 1,512.59 | 6,261.49 | 2,603.20 | 1,740.69 | 3,893.08 |
| 1991 | 4, 689.67 | 2,910.49 | 7, 556.46 | 3,800.49 | 2, 691.45 | 5,366.52 |
| 1992 | 4, 391.01 | 2,612.05 | 7,381.55 | 4,173.43 | 2, 959.22 | 5,885.85 |
| 1993 | 4,555.60 | 3,100.43 | 6,693.73 | 4,324.43 | 3, 213.99 | 5,818.52 |
| 1994 | 3, 410.36 | 2, 219.61 | 5, 239.91 | 4,020.55 | 2, 928.76 | 5,519.34 |
| 1995 | 8,360.23 | 4,090.73 | 17, 085.84 | 4, 921.59 | 3, 362.53 | 7, 203.53 |
| 1996 | 4, 640.62 | 3, 308.54 | 6,509.03 | 4,376.01 | 3, 324.26 | 5,760.51 |
| 1997 | 3, 232.58 | 2, 284.30 | 4, 574.53 | 3,321.94 | 2, 534.27 | 4, 354.42 |
| 1998 | 2,797.93 | 2,042.57 | 3, 832.65 | 2,703.85 | 2,092.13 | 3,494.43 |
| 1999 | 1,729.24 | 1,136.48 | 2, 631.17 | 1,978.47 | 1,461.46 | 2,678.39 |
| 2000 | 2,091.34 | 1,442.89 | 3,031.19 | 1,832.25 | 1,362.25 | 2, 464.40 |
| 2001 | 1,598.74 | 688.93 | 3,710.05 | 1,262.12 | 840.00 | 1,896.36 |
| 2002 | 679.80 | 368.60 | 1,253.75 | 784.43 | 534.71 | 1,150.78 |
| 2003 | 702.01 | 428.47 | 1,150.19 | 548.48 | 385.14 | 781.09 |
| 2004 | 106.88 | 53.46 | 213.67 | 280.69 | 183.64 | 429.04 |
| 2005 | 344.06 | 151.76 | 780.00 | 267.08 | 172.14 | 414.36 |
| 2006 | 165.89 | 81.25 | 338.67 | 226.16 | 145.90 | 350.59 |
| 2007 | 306.46 | 124.64 | 753.49 | 231.03 | 144.95 | 368.26 |
| 2008 | 45.98 | 15.82 | 133.66 | 211.94 | 130.04 | 345.41 |
| 2009 | 497.11 | 218.63 | 1,130.34 | 294.05 | 188.63 | 458.37 |
| 2010 | 302.93 | 172.57 | 531.78 | 320.96 | 216.47 | 475.88 |
| 2011 | 461.36 | 180.34 | 1,180.27 | 370.62 | 235.44 | 583.40 |
| 2012 | 643.94 | 277.26 | 1,495.58 | 396.44 | 250.68 | 626.93 |
| 2013 | 250.14 | 101.79 | 614.66 | 343.53 | 217.66 | 542.17 |
| 2014 | 233.39 | 103.97 | 523.89 | 335.97 | 218.74 | 516.03 |
| 2015 | 621.71 | 382.23 | 1,011.25 | 390.15 | 271.33 | 560.99 |
| 201 | 128.55 | 62.34 | 265.09 | 246.93 | 164.41 | 370.87 |


| 2017 | 252.78 | 135.99 | 469.85 | 229.48 | 154.21 | 341.49 |
| :--- | ---: | ---: | ---: | ---: | ---: | ---: |
| 2018 | 153.55 | 77.73 | 303.35 | 197.35 | 128.77 | 302.46 |
| 2019 | 205.96 | 100.78 | 420.90 | 200.55 | 121.96 | 329.78 |
| 2020 | 0.00 | 0.00 | 0.00 | 200.55 | 99.37 | 404.75 |
| 2021 | 0.00 | 0.00 | 0.00 | 200.55 | 86.52 | 464.88 |

Table 27: A comparison of estimates for MMB (in t) at the time of the survey, fishery, and mating. Note that, for the 2021 assessment year, the survey has not yet been conducted since 2019, so the value of MMB at the time of the survey for 2021 is a 2 -step ahead prediction. The value of MMB-at-mating for the assessment year cannot be determined until $B_{M S Y_{\text {proxy }}}$ has been determined.

| year | survey time | fishery time | mating time |
| :---: | :---: | :---: | :---: |
| 1975 | 26,785 | 25,606 | 23,077 |
| 1976 | 19,947 | 19,069 | 15,135 |
| 1977 | 21,190 | 20,257 | 16,318 |
| 1978 | 16,960 | 16,214 | 12,536 |
| 1979 | 13,352 | 12,765 | 9,458 |
| 1980 | 15,539 | 14,855 | 9,304 |
| 1981 | 11,412 | 10,910 | 6,396 |
| 1982 | 7,448 | 7,120 | 4,822 |
| 1983 | 5,075 | 4,851 | 3,633 |
| 1984 | 2,352 | 2,248 | 1,985 |
| 1985 | 1,357 | 1,297 | 995 |
| 1986 | 1,557 | 1,488 | 1,291 |
| 1987 | 1,923 | 1,838 | 1,432 |
| 1988 | 1,436 | 1,373 | 1,293 |
| 1989 | 1,610 | 1,539 | 1,449 |
| 1990 | 2,603 | 2,489 | 2,344 |
| 1991 | 3,800 | 3,633 | 3,419 |
| 1992 | 4,173 | 3,990 | 3,734 |
| 1993 | 4,324 | 4,134 | 3,880 |
| 1994 | 4,021 | 3,844 | 3,617 |
| 1995 | 4,922 | 4,705 | 3,841 |
| 1996 | 4,376 | 4,183 | 3,538 |
| 1997 | 3,322 | 3,176 | 2,773 |
| 1998 | 2,704 | 2,585 | 2,210 |
| 1999 | 1,978 | 1,891 | 1,781 |
| 2000 | 1,832 | 1,752 | 1,650 |
| 2001 | 1,262 | 1,207 | 1,136 |
| 2002 | 784 | 750 | 706 |
| 2003 | 548 | 524 | 494 |
| 2004 | 281 | 268 | 253 |
| 2005 | 267 | 255 | 240 |
| 2006 | 226 | 216 | 204 |
| 2007 | 231 | 221 | 208 |
| 2008 | 212 | 203 | 191 |
| 2009 | 294 | 281 | 265 |
| 2010 | 321 | 307 | 289 |
| 2011 | 371 | 354 | 334 |
| 2012 | 396 | 379 | 357 |
| 2013 | 344 | 328 | 309 |
| 2014 | 336 | 321 | 302 |
| 2015 | 390 | 373 | 351 |
|  |  |  |  |


| 2016 | 247 | 236 | 222 |
| :--- | :--- | :--- | :--- |
| 2017 | 229 | 219 | 206 |
| 2018 | 197 | 189 | 178 |
| 2019 | 201 | 192 | 180 |
| 2020 | 201 | 192 | 181 |
| 2021 | 201 | 192 | $N A$ |

Table 28: Estimated current MMB at the time of the survey and $B_{M S Y_{p r o x y}}$ using the RE-smoothed survey data.

|  | Current survey MMB (t) | $B_{M S Y_{\text {proxy }}}(\mathrm{t})$ |
| :---: | :---: | :---: |
| RE-smoothed | 201 | 4,099 |

Table 29: Estimated value for the $\theta$ coefficient.

|  | Estimation Type | theta |
| :---: | :---: | :---: |
| 1 | RE-smoothed | 0.0006946 |

Table 30: Results from the OFL determination. $R M_{O F L}=$ retained catch portion of the OFL, $D M_{O F L}=$ discard mortality portion of the OFL used to determine $B$ ('current' MMB-at-mating for $2021 / 22$ )

|  | quantity | units | RE.smoothed |
| :---: | :---: | :---: | :---: |
| 1 | $B$ ("current" MMB) | t | 180.44 |
| 2 | $B_{M S Y}$ | t | $4,098.97$ |
| 3 | stock status | - | overfished |
| 4 | $F_{O F L}$ | year $^{-1}$ | 0.00 |
| 5 | $R M_{O F L}$ | t | 0.00 |
| 6 | $D M_{O F L}$ | t | 0.27 |
| 7 | $O F L$ | t | 0.27 |

## Figures



Figure 1: Distribution of blue king crab, Paralithodesplatypus, in Alaskan waters.


Figure 2: Map of the ADFG King Crab Registration Area Q (Bering Sea), showing (among others) the Pribilof District, which constitutes the stock boundary for PIBKC. The figure also indicates NMFS EBS Shelf survey grid (squares and circles), the original area used to calculate survey biomass and fishery catch data (shded in grey) in the Pribilof District, and the additional 20 nm strip (red dotted line) added in 2013 .


Figure 3: The shaded area shows the Pribilof Islands Habitat Conservation Zone (PIHCZ). Trawl fishing is prohibited year-round in this zone (as of 1995), as is pot fishing for Pacific cod (as of 2015). Also shown is a portion of the NMFS annual EBS bottom trawl survey grid (squares and circles).


Figure 4: Retained catch and discard mortality, in t , for PIBKC in the crab fisheries. A discard mortality rate of 0.2 was used to convert bycatch biomass to mortality. The lower plot shows discard mortality in the crab fiheries on an expanded y scale to show annual details.


Figure 5: Upper plot: Bycatch of PIBKC in the groundfish fisheries since 2009 by gear type (no mortality applied). Lower plot: Discard mortality of PIBKC in the groundfish fisheries since 2009 by gear type. Gear-specific discard mortality rates of 0.2 and 0.8 were applied to bycatch from fixed and trawl gear, respectively



$$
\begin{aligned}
\text { target } & \text { Flathead Sole }- \text { Pollock - bottom }- \text { Yellowfin Sole - BSAI } \\
& \text { Pacific Cod }=\text { Rock Sole - BSAI }
\end{aligned}
$$

Figure 6: Upper plot: Bycatch of PIBKC in the groundfish fisheries, by target type since 2009. Lower plot: Discard mortality of PIBKC in the groundfish fisheries, by target type since 2009.Gear-specific discard mortality rates of 0.2 and 0.8 were applied to bycatch from fixed and trawl gear, respectively


Figure 7: Estimated bycatch of PIBKC, by ADFG stat area, in the fixed gear groundfish fisheries, expanded from groundfish observer reports. (1 of 2).


Figure 8: Estimated bycatch of PIBKC, by ADFG stat area, in the fixed gear groundfish fisheries, expanded from groundfish observer reports. (2 of 2).


Figure 9: Estimated bycatch of PIBKC, by ADFG stat area, in the trawl gear groundfish fisheries, expanded from groundfish observer reports. (1 of 2).


Figure 10: Estimated bycatch of PIBKC, by ADFG stat area, in the trawl gear groundfish fisheries, expanded from groundfish observer reports. (2 of 2).


Figure 11: NMFS EBS Shelf Survey stations in the Pribilof District (large dots), the survey station grid (thin black lines), and the Pribilof Islands Habitat Conservation Zone (orange outline).


Figure 12: NMFS survey abundance time series for male PIBKC. The upper plot shows the entire time series, the lower plot is since 2001. The y-axis scale on the upper plot is capped at 25 million crab to show variability across most years. The $y$-axis scale on the lower plot is capped at 2.5 million.


Figure 13: NMFS survey abundance time series for female PIBKC. The upper plot shows the entire time series, the lower plot is since 2001. The y-axis scale on the upper plot is capped at 25 million crab to show variability across most years; the abundance for mature females in 1980 is 182 million. The y -axis scale on the lower plot is capped at 2.5 million.


Figure 14: NMFS survey biomass time series for male PIBKC. The upper plot shows the entire time series, the lower plot is since 2001. The y-axis scale on the upper plot is capped at $25,000 \mathrm{t}$ to show variability across most years. The y-axis scale on the lower plot is capped at $2,500 \mathrm{t}$.


Figure 15: NMFS survey biomass time series for female PIBKC. The upper plot shows the entire time series, the lower plot is since 2001. The y-axis scale on the upper plot is capped at $25,000 \mathrm{t}$ to show variability across most years. The y -axis scale on the lower plot is capped at $2,500 \mathrm{t}$.


Figure 16: Annual size compositions for PIBKC in the NMFS EBS trawl survey, by sex, over the entire survey period.


Figure 17: Annual size compositions for PIBKC in the NMFS EBS trawl survey, by sex, over the entire survey period, except that females in 1980 have been removed to show detail.


Figure 18: Annual size compositions for PIBKC in the NMFS EBS trawl survey, by sex, since 2005.


Figure 19: Survey CPUE $\left(t / n m i^{2}\right)$ for PIBKC males. Page 1 of 1.


Figure 20: Survey CPUE $\left(t / n m i^{2}\right)$ for PIBKC females. Page 1 of 1.


Figure 21: Time series of PIBKC bycatch mortality in the crab and groundfish fisheries. Upper plot: full time series. Lower plot: recent time period. Discard mortality rates of 0.2 and 0.8 were applied to bycatch by pot and trawl gear, respectively.


Figure 22: Diagnostic plots for the random effects model, based on 7 MCMC chains run using the R package adnuts (Monahan, 2018; Monahan and Kristensen, 2018). Shown are plots for the ln -scale process error standard deviation ('logSdLam'). Top row: trace plot; upper middle: autocorrelation plot; lower middle: histogram (across all chains); bottom plot: density plots. The vertical black line in the lower two plots represents the converged model parameter estimate.


Figure 23: 'Raw' and smoothed survey MMB time series. Confidence intervals shown are $80 \%$ CIs, assuming lognormal error distributions. The two final smoothed values are 1- and 2 -step predictions. Upper plot: arithmetic scale, full time series. Middle plot: arithmetic scale, recent time period. Lower plot: ln-scale.


Figure 24: Estimated time series for MMB using the RE method at the time of the survey (the random effects model time series), at the time of the fishery, and at the time of mating. The value for MMB at the time of the survey in this assessment year is a 2 -step ahead prediction because the survey was not conducted in 2020 and has not yet been conducted this year. Values for MMB at the time of the fishery and the time of mating are unavailable (projected values for these quantities in the assessment year are determined as part of the OFL calculation).


Figure 25: $F_{O F L}$ Control Rule for Tier 4 stocks under Amendment 24 to the BSAI King and Tanner Crabs fishery management plan. Directed fishing mortality is set to 0 below $\beta$ ( $=0.25$ ).

