

Bering ROMS/NPZ (Regional Oceanographic model with nutrients and plankton dynamics)

- 3-D, 10km² resolution ocean model (10 or 30 vertical layers)
- Developed with NSF/North Pacific Research Board (BSIERP)
- AFSC/PMEL partnership funded by IEA, ACLIM, FATE, MAPP
- Significant advances in ice modeling, ice plankton

Bering ROMS/NPZ (Regional Oceanographic model with nutrients and plankton dynamics)

Products

- 48-year hindcast (1970-2018) forced by measured conditions (IEA)
- 9-month forecast (annual) forced by CFS forecasts (MAPP)
- Forecasts to 2100 forced by IPCC model outputs (FATE, ACLIM)

Uses

- Forcing for biological models
 - CEATTLE, others
- Rapid Climate Assessment
- EFH predictive maps
- VAST distribution maps

Focus today

- Has current NBS bottom temperature happened before? (hindcast)
- Is it the "new normal"? (IPCC forecasts)
- Implications for CEATTLE

BTS survey dates by stratum

Bottom temperature comparison

Bottom temperature comparison

-2 0 2 4 6

Bottom temperature comparison

6

6

4

2

0

-2

NOAR

MARINE HEATWAVE ANALYSIS

NEBS Bottom Temperature

Marine heatwave analysis based on downscaled ROMSNPZ hindcast and 1970-2000 climatology.

ROMSNPZ: K. Kearney, A. Hermann, K. Aydin, 2018. Heatwave analysis: K. Holsman, 2018, based on Hobday et al. (2016) Data source: NOAA PMEL, AFSC REEM Program, IEA, MAPP Bering Seasons

KIRSTIN HOLSMAN KELLY KEARNEY KERIM AYDIN AL HERMANN STEVE BARBEAUX 2018

ARTICLE

nature

COMMUNICATIONS

DOI: 10.1036/s414s7-018-03732-9 OFFEN

Longer and more frequent marine heatwaves over the past century

Eric C.J. Oliver (§ ^{12,3}, Markus G. Donat (§ ^{4,5}, Michael T. Burrows⁶, Pippa J. Moore⁷, Dan A. Smale (§ ^{8,9}, Lisa V. Alexander^{4,5}, Jessica A. Benthuysen¹⁰, Ming Feng (§ ¹¹, Alex Sen Gupta (§ ^{4,5}, Alistair J. Hobday¹², Neil J. Holbrook (§ ^{2,13}, Sarah E. Perkins-Kirkpatrick^{4,5}, Hillary A. Scannell^{14,15}, Sandra C. Straub (§ ⁹ & Thomas Weinberg (§ ⁹)

	Pergenne Int Certainingtophy 143 (3514) 227-238	
2000	Contents liats available at ScienceDirect	W CHANNER
理智	Progress in Oceanography	
CI CEVILED	And the first the second second second second second the second second second second second second second second	1000
A hierarchical a	approach to defining marine heatwaves	Couster Straub",
A hierarchical a Alistair J. Hobday Eric C.J. Oliver ⁵⁴ , Je Neil J. Holbrook ¹⁴ ,	approach to defining marine heatwaves *, Lisa V. Alexander ^{Mr} , Sarah E. Perkins ^{he} , Dan A. Smale ^{de} , Sandra C. essica A. Benthuysen [#] , Michael T. Burrows [®] , Markus G. Donat ^{Me} , Min Pippa J. Moore ¹ , Hillary A. Scannell ^{MJ} , Alex Sen Gupta ^{Re} , Thomas We	Consette Straub ", g Feng ⁶ , ernberg ⁶
A hierarchical a Alistair J. Hobday ⁴⁴ Eric CJ. Oliver ¹⁰⁴ , Je Neil J. Holbrook ¹⁰⁴ , CMM Ocease and Amongham ¹⁰⁴ Alexandron Backhord and ¹⁰⁴ Alexandro Backhord and ¹⁰⁴ Alexandro Backhord Amongham ¹⁰⁴ Alexandro	approach to defining marine heatwaves *, Lisa V. Alexander ^{byc} , Sarah E. Perkins ^{byc} , Dan A. Smale ^{det} , Sandra C. sssica A. Benthuysen ⁴ , Michael T. Burrows ⁵ , Markus G. Donat ^{byc} , Min Pippa J. Moore ³ , Hillary A. Scannell ^{4,1} , Alex Sen Gupta ^{50c} , Thomas We Meter. Torowski 700. Aurola Meter Weber. Torowski Control Meter Ministry, Bei Unterstein Meter Weber, Bernessia V. Statt Meter. Software, Aurola Meter Ministry, De Unterstein, Charlet MR, Thoward H 11 79: 107 es of Meter Ministry. De Unterstein, Weber, Australia Control Meter Ministry, De University of Western Australia, Control 6, 6009 Western Australia, Australia Store Deversity of Consense, Network Meter Marker, Deversity of Western Australia, Control 6, 6009 Western Australia, Australia Store Deversity of Consense, Network	CrosoMa Straub ", g Feng ", ernberg "

A.J. Hobday et al. / Progress in Oceanography 141 (2016) 227-238

Day of Year

EBS Bottom Temperature

Marine heatwave analysis based on downscaled ROMSNPZ hindcast and 1970-2000 climatology.

ROMSNPZ: K. Kearney, A. Hermann, K. Aydin, 2018 Heatwave analysis: K. Holsman, 2018, based on Hobday et al. (2016) Data source: NOAA PMEL, AFSC REEM Program, IEA, MAPP Bering Seasons

NEBS Bottom Temperature

Marine heatwave analysis based on downscaled ROMSNPZ hindcast and 1970-2000 climatology.

EBS Bottom Temperature

ROMSNPZ: K. Kearney, A. Hermann, K. Aydin, 2018 Heatwave analysis: K. Holsman, 2018, based on Hobday et al. (2016) Data source: NOAA PMEL, AFSC REEM Program, IEA, MAPP Bering Seasons

NEBS Bottom Temperature

Marine heatwave analysis based on downscaled ROMSNPZ hindcast and 1970-2000 climatology.

EBS Bottom Temperature

ROMSNPZ: K. Kearney, A. Hermann, K. Aydin, 2018 Heatwave analysis: K. Holsman, 2018, based on Hobday et al. (2016) Data source: NOAA PMEL, AFSC REEM Program, IEA, MAPP Bering Seasons

Frequency NEBS Bottom Temperature month Marine heatwave analysis based on downscaled January ROMSNPZ hindcast + projections, and 1970-2000 climatology. February March 900 Stime Weather 75 April May June July August Ď September October ROMSNPZ: K. Kearney, A. Hermann, W. Cheng, K. Aydin, 2018 November Heatwave analysis: K. Holsman, 2018, based on Hobday et al. (2016) Data source: NOAA PMEL, AFSC REEM Program, IEA, MAPP Bering Seasons, ACLIM December

Frequency EBS Bottom Temperature

Overwinter survival during winter heat waves?

- Warm prevents direct physiological mortality, BUT
- Warm with prey promotes growth
- Warm without prey promotes starvation

CMIP5 ENSMN Annual SST anomaly (°C) (2050 to 2099) - (1956 to 2005)

Projection data from CMIP5 (Taylor et al., 2012) avail. at: <u>www.esrl.noaa.gov/psd/ipcc/ocn</u>

Modified from Fig. 6.2 Holsman et al. 2018 [in] Barange et al. (Eds.) 2018. Impacts of climate change on fisheries and aquaculture. TP 627.

GFDL_rcp45 BT

Marine heatwave analysis based on downscaled ROMSNPZ hindcast and 1970-2000 climatology.

MIROC_rcp85 BT

Marine heatwave analysis based on downscaled ROMSNPZ hindcast and 1970-2000 climatology.

ROMSNPZ: K. Kearney, A. Hermann, W. Cheng, K. Aydin, 2018 Heatwave analysis: K. Holsman, 2018, based on Hobday et al. (2016) Data source: NOAA PMEL, AFSC REEM Program, IEA, MAPP Bering Seasons, ACLIM

Marine heatwaves will likely increase in frequency and duration

Duration

Marine heatwave analysis based on downscaled ROMSNPZ hindcast + projections, and 1970-2000 climatology. Heatwaves Now ~ 21% of the time 2050 ~ 30-77% of the time 2100 ~ 60-90% of the time

ROMSNPZ: K. Kearney, A. Hermann, W. Cheng, K. Aydin, 2018 Heatwave analysis: K. Holsman, 2018, based on Hobday et al. (2016) Data source: NOAA PMEL, AFSC REEM Program, IEA, MAPP Bering Seasons, ACLIM

Marine heatwaves will likely increase in intensity

Intensity

Marine heatwave analysis based on downscaled ROMSNPZ hindcast + projections, and 1970-2000 climatology.

ROMSNPZ: K. Kearney, A. Hermann, W. Cheng, K. Aydin, 2018 Heatwave analysis: K. Holsman, 2018, based on Hobday et al. (2016) Data source: NOAA PMEL, AFSC REEM Program, IEA, MAPP Bering Seasons, ACLIM

EFH PREDICTED DISTRIBUTIONS (ROOPER)

- Same approach as for 2017 EFH
 - Generalized additive models
 - ROMS hindcasted temperatures
 - Other variables: depth, slope, current speed, tidal current speed, sediment size
- Maps present log-transformed predictions log(CPUE)
 - Not scaled the same
- Graphs and calculations are on back-transformed data

- Distribution influenced by cold pool
- Bottom temperature most important variable in model
- Consistently ~ 74%
 of the population is
 inside the survey
 area
- No trend over time

Distribution influenced by cold pool

9 = 0.00015a + 1.8256 16 - 0.1558

- Bottom temperature most important variable in model
- Declining proportion of the population inside survey area
- ~ 77% in 2018

VAST MODEL (THORSON)

- Multivariate spatio-temporal model that estimates variation in population density across space and time for multiple sizes, ages, and/or species based on survey and fishery data
- Used in ecosystem and stock assessments primarily in the North Pacific and South Africa

Pollock distribution - Comparing with vs. without temperature

Without temperature

With temperature

Color scale differs between analyses

Pollock distribution - Comparing with vs. without temperature

- Conclusions
- Including temperature has relatively little impact on relative biomass in NBS vs. total

