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1 Introduction 
For 2023 the authors wished to examine outstanding problems common to all four of the eastern Bering 
Sea (EBS) Pacific cod ensemble models accepted for management in 2022. The two main issues with the 
ensemble models were: 1) for the length composition data the Dirichlet multinomial log(theta) values 
approach the upper bound and therefore needed to be fixed for the models to converge, 2) failing 
residual runs tests for length and age composition data in all ensembles indicating autocorrelation in the 
residuals pointing at poor residual behavior, 3) potential confounding of aging bias, annually varying 
growth, and annually varying selectivity result in the models being highly unstable with considerable 
tuning of the annual devs. on growth and selectivity required for model convergence, and 4) the models 
are highly sensitive to changes in catchability and natural mortality with small changes in either resulting 
in substantial changes in management advice with only small changes in negative log likelihood. For 
Model 22.2 there was a ~150,000 ton range in 2023 ABC with a less than 10 -LL change from the MLE in 
likelihood profile run over catchability.  

For 2023 we conducted a series of model explorations in an attempt to fix these issues.. After initial 
investigations to move to a more standardized way of setting input sample sizes it became apparent 
that a different approach was needed for model exploration as the updated model did not consistently 
converge on the MLE and the complex base model made investigations difficult. We chose to move to a 
more simplified model and then add components to the model sequentially to evaluate the impacts of 
different model assumptions. All models examined in this paper are built in Stock Synthesis version 
3.30.21 and parameterized the same as Model 22.2 (Barbeaux et al. 2022) except for changes specified. 
For the simplified model we reverted to a standard multinomial for the composition data and removed 
all time varying components, we also fixed aging bias based on previous model results and in line with 
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isotope analyses validating aging methods (Kastelle et al. 2017). A full description of changes made to 
simplify the model is provided below. For model explorations we examined a wide range of model 
alternatives however for this analysis we have limited the changes to the impacts of allowing growth to 
be time varying, allowing survey selectivity to be time varying, reducing the maximum age from 20 to 
12, adding catch data from 1964 to 1976 while removing the regime change parameter on recruitment, 
and adding conditional age-at-length. Although all the models were generally well fit, the results in 
terms of both stock size and management implications from these models remained highly variable and 
individual models remained sensitive with small changes in fit resulting in large changes in management 
advice. The models explored displayed notable variation in survey catchability spanning a range from 
0.74 to 1.10 and was highly negatively correlated (R2 = -0.92) with natural mortality ranging from 0.33 to 
0.44. Likelihood profiles on catchability showed that for many of the seemingly reasonable individual 
models ABC recommendations could vary by more than 100,000 t with changes in log likelihood of less 
than 2 points. A major finding therefore of this work is that for Bering Sea Pacific cod very disparate 
outcomes in terms of management advice could be generated from models with very little difference in 
fit to data and retrospective bias.  

All model files are provided here: 

 https://afsc-
assessments.github.io/EBS_PCOD/2023_ASSESSMENT/SEPTEMBER_MODELS/APPENDICES/September_
Models.zip 

For 2023 the authors recommend the following: 

1) Moving away from the ensemble approach currently employed. The authors believe that the 
current ensemble of models are too similar in nature. A better ensemble approach would be to 
include models with more varied structures such as the multispecies model (CEATTLE) and 
simplified random effects models. This effort would require a much larger team of researchers 
to evaluate individual model performance. As it stands the evaluation of individual model 
performance in the ensemble may have been hindered by the volume of work required of a 
single author to complete an ensemble of models given their unstable nature in the limited time 
between the September and November Plan Teams. In addition it is the opinion of the 
assessment authors that if the ensemble approach is to continue the SSC should consider setting 
up a working group outside the normal Plan Team process to develop a science-based and 
transparent model selection and weighting scheme for new ensembles.   

2) Changing the current modeling approach to a simpler model with fewer and/or more 
constrained, annually varying parameters on growth and selectivity as these parameters are 
confounded. Generally we add this type of complexity to deal with poor residual behavior and 
retrospective bias issues, here the residuals of the complex models don’t appear to differ 
substantially from the more complex models and retrospective patterns are within reasonable 
bounds even with the simplest models considered. 

3) Fixing one or more key parameters (e.g. M, Q, Lmin, Lmax, K, etc.) in the model or using more 
constrained priors would provide improved model stability. Constraining natural mortality or 
growth parameters would be better candidates than survey catchability as more refined aging 
methods developed recently should better inform these parameters. Either fixing or providing a 

https://afsc-assessments.github.io/EBS_PCOD/2023_ASSESSMENT/SEPTEMBER_MODELS/APPENDICES/September_Models.zip
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strong prior on natural mortality would have the added effect of constraining catchability within 
a model as these parameters are highly correlated.     

If a single model is to be used for management this year, of the models presented the authors would 
recommend Model 23.1.0.d be considered as an option for further exploration for management in 2024. 
Model 23.1.0.d is the simplified model with the addition of constrained annual variability in growth 
(Figure 1 and Figure 2 ) and survey selectivity (Figure 3 and Figure 4). The model employs bootstrapped 
input sample sizes, the fit to the survey index is improved over Model 22.2 (Figure 5), retrospective bias 
remains within acceptable limits, and residual runs analyses imply that the fit to the composition data 
are better with less autocorrelation in the residuals while maintaining similar effective sample sizes. The 
mean absolute scaled error (MASE) analyses show the predictive skill of Model 23.1.0.d for the survey 
index was improved over Model 22.2 (0.40 vs 0.69) and remains similar for the fishery mean length and 
survey mean age.  

Model 23.1.0.d has improved performance while reducing the model by 86 parameters, however this 
reduction in complexity comes at a cost of increased uncertainty (higher standard deviations) in some 
key parameter estimates (M, Q, and R0; Figure 6) which translates into increased uncertainty in derived 
quantities such as B0, F40% , current recruitment (Figure 7), current spawning biomass (Figure 8 and 
Figure 9), and future catch recommendations. Another potential red-flag in Model 23.1.0.d is that 
natural mortality at 0.429 is higher than most methods external to the model indicate and catchability at 
0.765 is lower than most other models examined previously. Profiles over catchability show little change 
in likelihood over a wide range of natural mortality and catchability suggesting little information in the 
data to inform these quantities (Figure 10).  

One solution may be found in applying a maximum age-based method for deriving a prior for natural 
mortality (Sulliven at al. 2022; Thorson et al. 2023), which suggests a lower value with M at 0.387. When 
natural mortality is fixed in Model 23.1.0.d to this value, catchability increases to 0.972 and may be a 
reasonable alternative to allowing natural mortality to be freely fit. Fixing M in this model has a minor 
cost of degrading the overall model performance by +1.4 negative log likelihood (-LL) with an 
improvement to the fit to the age composition of -3.95 -LL, but a poorer fit to the survey index at +2.56 
LL and length composition at +2.40 -LL.   

2 Model 22.2 updated changes in input sample size 
Hulson et al. (2023) found that there was not a consistent approach to setting input sample sizes for 
composition data in assessment models at the Alaska Fisheries Science Center. They proposed a unifying 
bootstrap approach that would evaluate the variance and autocorrelation within the survey composition 
data collections to appropriately calculate annual input sample sizes. For the 2022 Pacific cod ensemble 
models the input sample sizes for the survey size and age composition data were set at the number of 
surveyed hauls for each year, and the fishery size composition data were set at the number of hauls 
sampled standardized to the mean sample of hauls from the survey over all years surveyed which is 
unique to Eastern Bering Sea Pacific cod. This method led to an average input sample size of 369 for 
both survey and fishery length and age compositions (Table 1). As noted the ensemble models were fit 
using the Dirichlet-multinomial (DM), which as coded in Stock Synthesis uses a parameter (log theta) to 
re-weight the data and in effect reduce the size and age composition input sample sizes, if needed, to 
appropriately weight data components within the model. In all of the 2022 ensemble models the DM log 
theta parameters approaches the upper bound for both the fishery and survey size composition data 
and must be fixed in order for the models to converge. Having the DM theta parameter fixed at the 
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upper bound is not optimal and may indicate that input sample sizes for the size composition data are 
too small and therefore underweighted in the model compared to other data components. Using a 
bootstrap approach (Hulson et al. 2023) for calculating input sample size for the survey length and age 
composition data resulted in an on average smaller age composition sample size of 250 (in agreement 
with the fitted DM theta value of -0.47) and a much larger on average input sample size of for the size 
composition data of 1661 (Table 1). A bootstrap approach is not yet available for the fishery 
composition data and therefore for the fishery size composition data input sample size we used the 
annual number of hauls sampled standardized to the mean survey size composition input sample size so 
that both means were equal for the two size composition data sets. As in previous years it was assumed 
that the raw numbers of hauls were far too high as they numbered in the tens of thousands for some 
year, far higher than the survey input sample size. Model 22.2 was then fit using these new sample sizes. 
Although not useful for judging differences in model fits the overall negative log likelihood (-LL) 
increased from 10,875 to 18,362, with a sharp increase in the length composition -LL from 9,990 to 
17,383 which does indicate a shift in the model weighting with more weight being given to the 
composition data. The DM log theta values for the survey age composition data changed from -0.47 to -
0.60 and the survey size composition changed from near the bound at 10 in the old model to 1.32 in the 
updated model. However the fishery size composition DM log theta remained at the bound suggesting 
the sample sizes remained too low in comparison with the other data components or potentially an 
additional issue with model misspecification. The change resulted in substantially more weight on the 
composition data than in the old Model 22.2 and a degradation in fit to the survey (Table 2 and Table 3) 
from -6 -LL to 68 -LL. Retrospective and mean absolute scaled error (MASE) values were the same 
between the two model configurations (Table 4) and the fishery mean length residuals remained 
significantly autocorrelated as determined by the residual runs test (ss3diags; Winker et al.2023). 
However, the change in input samples sizes resulted in better residual behavior for the survey mean 
length and age (Table 5). Convergence was impacted with a large number of jitter runs failing to 
converge at the MLE for the updated model. The profile over catchability for the updated Model 22.2 
(Figure 1) shows a highly irregular profile resulting from the models not converging to the MLE for each 
of the fixed catchability value runs. In conducting likelihood profiles over catchability for both the old 
and updated Model 22.2 survey catchability (Q) and natural mortality (M) are strongly negatively 
correlated (R2 = -0.999) with a slightly higher M (Table 10) in the model with updated input sample size. 
The updated Model 22.2 growth parameters were different from the old Model 22.2 driven entirely by 
the different input sample sizes (Table 7) and changes in relative weighting of the data components. 
However, changes in growth parameters had little impact on the overall size at age (Figure 1). Additional 
changes in influential parameters are shown in Table 8. Despite changes in important parameters such 
as catchability and natural mortality both model configurations resulted in similar estimates of 
recruitment over time (Figure 7), spawning stock biomass over time (Figure 8 and Figure 9), reference 
points (within 5%; Table 9), and management advice (2024 ABC within 2%; Table 9).  

We explored changing from the DM to standard multinomial and implementing the Francis TA1.8 
weighting method for Model 22.2 to improve model performance. However, we found that when 
iteratively fitting using Francis TA1.8 methods the model the suggested correction to the fishery size 
composition value continued to increase without settling until the model no longer converged. This 
suggests model misspecification in Model 22.2, potentially due to the same issue contributing to the DM 
log theta approaching the upper bound for the fishery length composition data despite rather large 
input samples sizes. We theorized that the model misspecification could be due to confounding among 
the freely fit aging bias, annually varying growth, and annually varying selectivity.      
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3 Model 23.1.0.a description 
To allow an easier understanding of the interaction of model components on model results and model 
sensitivities we created a simplified version of Model 22.2 (Barbeaux et al. 2022). The new simplified 
Model 23.1.0.A had the following changes: 

1. Removing length composition data for years with age composition data (1994-2021) which 
were duplicated in the age comps. 

2. Reconfiguring both survey and fishery selectivity to be static instead of including annually 
varying parameters. 

3. Reconfiguring the Richard’s growth to be static instead of including annually varying Lmin. 
4. Reconfiguring the survey double normal selectivity (Stock Synthesis pattern 24; Methot et al. 

2023) to estimate parameters 1-4 and using new asymptotic option for parameter 6. 
5. Fixing the pre-2007 aging bias to Model 22.2 values. 
6. For the growth model fixing CV at older ages at 0.06 and fixing CV at younger ages at 0.2 based 

on the previous ensemble model fits. 
7. Changing from the Dirichlet-multinomial to standard multinomial for length and age 

composition data. 
8. Using the iterative Francis TA1.8 weighting method to tune the model. 

3.1 Duplicate composition data 
For the 2022 ensemble models both survey and age composition are included for all years in which they 
are available, resulting in 1994-2021 having both survey age and survey size composition data included 
in the model. Therefore the survey composition data for these years are potentially more highly 
weighted in the models than other data components. In the exploratory models for the years with 
bottom trawl survey age composition data available (1994-2019, and 2021) the bottom trawl survey size 
composition data were removed. 

3.2 Selectivity and growth 
For the 2022 ensemble models both fishery and survey selectivity and Lmin in the Richard’s growth model 
were set to be annually varying. This is likely confounded as the model would likely not be able to 
discern between annually varying growth and selectivity at the smaller sizes potentially leading to issues 
with model convergence and inability to settle on appropriate Francis weighting for the fishery length 
composition data. This may have also led to issues with the DM log theta approaching the upper bound 
for these data. Whether the annual variability is attributed to growth or selectivity has impacts on model 
results affecting management advice. For the simplified model, Model 23.1.0a, we set both growth 
(Figure 2) and selectivity (Figure 3) to be static over time reducing the number of devs by 220 (Table 2).  

In addition, we implemented a selectivity feature new to stock synthesis for the survey that simplifies 
the double normal function (selectivity option 24 in Stock Synthesis; Method et al. 2023) where the 
values past a set length are meant to be static, here we set all selectivity values at lengths greater than 
40 cm to be fixed. It should be noted that although this feature was meant to fix the survey selectivity to 
be asymptotic and not allow the shape to become dome-shaped, this was found not to be the case 
when conducting profiles over catchability. In cases where catchability was high and natural mortality 
was very low, the shape of the survey selectivity curve did unexpectedly become dome-shaped.  
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3.3 Aging bias  
Aging bias was fit for all of the 2022 ensemble models as a two parameter linear vector from ages 2 to 
20. The two parameters are the aging bias at age 2 and at the max age. These two parameters tended to 
vary considerably depending on assumptions of growth and selectivity as model configurations were 
explored leading to some fits that were improbable suggesting that these parameters were likely 
confounded with growth and selectivity. Changes in estimated aging bias had substantial impacts on 
model results and some fits were well outside what would be expected given isotope analysis (Kastelle 
et al. 2017). For the models explored this year in order to stabilize model explorations we fixed the two 
parameters based on the 2022 Model 22.2 accepted values.  

3.4 Composition distribution from Dirichlet multinomial to standard multinomial 
As described above when fitting Model 22.2 with the updated bootstrap input sample sizes the fishery 
size composition DM log theta continued to approach the upper bound, which in effect reverts the 
distribution to the standard multinomial. Although it has been common practice to fix the log(theta) 
parameter near the upper bound when this occurs, the fit may indicate that the input sample sizes 
continue to be inadequate or some other model misspecification.  

In order to investigate this phenomenon and evaluate other options, we changed the presumed 
distribution of the composition data to the standard multinomial. We then iteratively adjusted the 
model as per the Francis reweighting scheme TA1.8 (Francis, 2011) as implemented in the R library r4ss 
(Taylor et al. 2021), a technique previously utilized in Pacific cod models prior to 2018. 

3.5 Model 23.1.0.a Results 
Model 23.1.0.a performed well overall with standard metrics for model fits similar and in some cases 
improved over the more complicated Model 22.2 with substantially fewer fit parameters (82 vs. 306). 
Iterative Francis reweighting for Model 23.1.0.a settled on consistent values and resulted in 
considerable down-weighting of the length and age composition data from the initial input sample sizes 
with a multiplier values of 0.03 and 0.06 for the fishery and survey length composition data and 0.25 for 
the survey age composition data. This resulted in the survey index having more influence on the model 
then in the 2022 ensemble models. This is evidenced with the improved likelihood and RMSE on the 
survey abundance index fit (Table 3 and Table 4 ) and shown as a much tighter fit of the model to the 
survey abundance index (Figure 5). Due to the change to the Francis weighting versus the DM between 
the two models, no direct comparison of likelihoods can be used for comparison, however looking at the 
effective sample size shows a drop in the effective sample size between the updated Model 22.2 and 
Model 23.1.0.a for the fishery size and survey size and age compositions (Table 4). The visual fits to the 
fishery length composition data reveal little difference in the fitted values (Figure 11) or residuals (Figure 
12). However, Model 22.2 fits the survey size composition better, specifically Model 23.1.0.a tends to 
overestimate large incoming small fish even more than Model 22.2 when large recruitments are present 
(Figure 11). Visual inspection of the age composition fits (Figure 13) show Model 23.1.0.a fitting the age 
data less closely than Model 22.2 with lower effective same size, however visual inspection of the age 
composition Pearson residuals from both models shows similar patterns (Figure 14).  

The retrospective (Table 5) and residual runs tests (Table 6) results were similar between updated 
Model 22.2 and the simplified Model 23.1.0.a with Mohn’s rho retrospective values on spawning bias at 
0.07 and passing runs test for all but the fishery size composition data component for both models. 
Mohn’s rho tests show a small positive bias (0.08) for Model 23.1.0.a while the updated Model 22.2 had 
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a slight negative bias (-0.06). Examination using the mean absolute scaled error (MASE) provided in the 
ss3diags R Package (Winker et al. 2023) showed a marked improvement in the prediction skill of Model 
23.1.0.a over the updated Model 22.2 for the survey index (Table 5), a slight improvement for the 
prediction skill of mean survey age, and a slight degradation for the prediction skill of the mean fishery 
length.   

Despite being different from the updated Model 22.2 the growth parameter estimates between the old 
Model 22.2 and Model 23.1.0.a are similar (Table 6), however the standard deviation of the parameter 
estimates for Lmax and the Richard’s parameter are nearly double in the simpler model. Similar fitted 
values are expected given the down-weighting of the composition samples through the Francis re-
weighting method and lower sample sizes in the old Model 22.2 compared to the updated model. The 
increase in the variance of these parameters in Model 23.1.0.a over Model 22.2 was due to removal of 
annual variability in growth and selectivity where some of the variability was attributed to the annual 
devs.  

Model 23.1.0.a results in an increase in the estimated catchability over the update Model 22.2 to 1.097 
from 0.974. This has the impact of scaling down recruitment (Figure 7) and spawning stock biomass 
overall (Figure 9). For Model 23.1.0.a both the jitter analysis and likelihood profile over catchability were 
well behaved with all jitter runs converging and the majority arriving at the MLE. Although the likelihood 
profile over survey catchability for this model is well behaved it shows very little change in the overall 
likelihood over a wide range of survey catchability values (Figure 10 and Table 11). For catchability 
ranging from 0.9 to 1.28 there is a change in negative log likelihood of less than 2 -LL from the maximum 
likelihood estimate (MLE) resulting in a 100,000 t difference in 2023 recommended ABC across that 
range. This is of similar concern in Model 22.2. This may be an issue with environmentally driven 
fluctuations in growth and recruitment contributing substantially to the overall biomass's variability, 
leading to limited insights into the consequences of fishery removals. The ability of a model to fit 
catchability is influenced by the degree to which catch impacts changes in survey abundance. Given the 
considerable impact of environmental drivers on cod abundance and mortality, there's a possibility of 
insufficient data for accurately determining survey catchability without a better understanding of the 
environmental drivers of this stock.  

4 Further model explorations 
Alternative models with increasing complexity were developed to further explore model sensitivity and 
performance with the following: 

1. Allowing annual variability in both the Lmin and Richards K parameters. 

2. Adding constrained annually varying selectivity for the survey. 

3. Integrating catch data from the period 1964-1976 into the model while eliminating the 
recruitment adjustment parameter linked to the 1977 environmental regime change. 

4. Adjusting the upper age group for model dynamics from age 20 to age 12 to more accurately 
represent available data and speed up model runs. 

5. Introducing survey conditional age-at-length (CAAL) data. 
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Model 
Npar. 

+Ndevs 
Annually 

varying growth  
Annually varying 
survey selectivity 

Max age 
to 12 

Catch to 1964 no 
regime CAAL 

23.1.0.a 82      
23.1.0.b 176 X     
23.1.0.d 218 X X    
23.1.0.g 217 X X x X X  
23.1.0.h 217 X X X X X 

 
4.1 Model 23.1.0.b  
4.1.1 Annually varying growth  
For the 2022 ensemble models all growth was fit as a 4 parameter Richard’s growth relationship with 
Lmin fit as an annually varying deviation. All parameters in the 2022 models were fit with an 
uninformative prior. For the simplified Model 23.1.0.a although the four parameters were fit within the 
model with uninformative priors both growth and selectivity were set to be time-invariant. It has been 
long understood that environment, particularly temperature, is influential in the growth of Gadus 
species (Taylor 1958) and annual variability in growth should be expected. Growth in Pacific cod 
specifically has been found to be rather elastic and dependent on environmental conditions particularly 
for young fish (Laurel et al. 2008, Barbeaux et al. 2021). To evaluate this elasticity we explored including 
annually varying growth in Model 23.1.0.b. Here we used the growth parameters and standard 
deviations as posteriors from Model 23.1.0.a (Table 7) as ‘priors’ for all four growth parameters and 
added a mean tending random walk for Lmin and Richard’s parameter. This is option 5 described in the 
Stock Synthesis manual (Methot et al 2023) as a mean reverting random walk with rho and a logit 
transformation to stay within the minimum and maximum parameter bound. In developing Model 
23.1.0.b allowing all the growth parameters to vary annually was evaluated, however only varying Lmin 
and the Richards parameter provided substantial improvements to the model fit. The authors 
understand that using the values from Model 23.1.0a are not true priors, but given their large standard 
deviations it was considered only as a means of providing soft bounds on the parameters and kept the 
parameters from wandering to extreme values during fitting. The standard deviation of the devs were 
tuned following the methods of Thompson et al. (2021) where the standard deviation was tuned to set 
the variance of the estimates plus the sum of the estimates’ variances equal to unity. This resulted in 
standard deviation of 0.4416 for Lmin and 0.2995 for the Richards parameter annual deviations.  

4.1.2 Results of adding annually varying growth 
Model 23.1.0.b performed well overall with standard metrics for model fits improved over Model 
23.1.0.a. The results of allowing annually varying growth (Figure 2) was an overall improvement to fits to 
all data components over the static growth model with lower negative log likelihood across all data 
components, lower RMSE for the survey index, and higher effective N for all of the composition data 
(Table 3, Table 4, and Figure 5). As was expected with the use of the ‘prior’ and annual variability the 
standard deviations of the growth parameters were also reduced (Table 7) from Model 23.1.0.a. 
Retrospective bias remained similar to Model 23.1.0.a with a small positive bias for spawning stock 
biomass (Table 5). The MASE evaluation showed improved predictive skill on the index and size 
composition and a slight degradation in the predictive skill on age composition (Table 5). Residual runs 
tests resulted in an improvement for the fit to the survey index and both survey and fishery length 
composition fits, but a slight degradation in the survey age composition fit from Model 23.1.0.a. 

https://afsc-assessments.github.io/EBS_PCOD/2023_ASSESSMENT/SEPTEMBER_MODELS/FIGURES/R4SS_FIGURES/MODEL23.1.0.a/plots
https://afsc-assessments.github.io/EBS_PCOD/2023_ASSESSMENT/SEPTEMBER_MODELS/FIGURES/R4SS_FIGURES/MODEL23.1.0.b/plots
https://afsc-assessments.github.io/EBS_PCOD/2023_ASSESSMENT/SEPTEMBER_MODELS/FIGURES/R4SS_FIGURES/MODEL23.1.0.d/plots
https://afsc-assessments.github.io/EBS_PCOD/2023_ASSESSMENT/SEPTEMBER_MODELS/FIGURES/R4SS_FIGURES/MODEL23.1.0.g/plots
https://afsc-assessments.github.io/EBS_PCOD/2023_ASSESSMENT/SEPTEMBER_MODELS/FIGURES/R4SS_FIGURES/MODEL23.1.0.h/plots
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However, unlike all the previous models described, all data components passed the residuals runs test 
(Table 6). Although fits to the length composition (Figure 15) and age composition (Figure 13) were 
discernably better than Model 23.1.0.a, patterns in the residuals for both length (Figure 15) and age 
(Figure 14) composition were visually similar. 

While adding annually varying growth improved model fit, it also increased uncertainty in model 
estimates of management reference points (Table 8 and Table 9), annual estimates of recruitment 
(Figure 6 and Figure 7) and annual estimates of spawning biomass ( Figure 8 and Figure 9). There was an 
overall increase in uncertainty in model results compared to Model 23.1.0.a and Model 22.2. The 
estimate of bottom trawl survey catchability was lower and natural mortality higher in Model 23.1.0.b 
than in Model 23.1.0.a (Table 8). However, the likelihood profile on catchability for Model 23.1.0.b 
continues to show low certainty in this value as large changes in catchability continue to result in small 
changes in likelihood (Table 11 and Figure 10).  

It is interesting to note that in likelihood profiles over catchability, natural mortality is always highly 
negatively correlated with catchability, however in the new models growth and selectivity parameters 
appear to have tipping points where the trajectory of the parameter values with catchability change 
suddenly (Figure 16). When examining the likelihood profiles by model component this manifests as a 
change in the trajectory of the index data likelihood (Figure 10). This tipping point becomes even more 
pronounced when annually varying growth is introduced with priors on the main growth parameters. In 
the 23.1.0.x series models, lower natural mortality, correlated with higher catchability values above 1.0, 
are compensated for by forcing the selectivity curve to be increasingly dome-shaped (Figure 17) making 
a subtle trade-off of fit between the survey age and size composition data and the survey index. 
Specifically, this trade-off is made for the initial year 1982, 1994, and 2001 where the survey abundance 
appeared to be higher than expected (Figure 5), out of line with adjacent years, and poorly fit in all 
models. This tipping point is due to the parameterization of the survey selectivity in which parameter 6, 
selectivity at last bin, is set to -1040 which was meant set selectivity constant for bins greater than bin 
number 40, but appears to allow selectivity become dome-shaped in some cases.  

An increase in catchability and decrease in natural mortality translated into a scaling up of the 
population with higher estimates of annual recruitment (Figure 7) and annual spawning biomass (Figure 
9). Although unfished spawning biomass (B0) increased over Model 23.1.0.a (Table 2) it did not increase 
proportionally to the annual spawning biomass and remained well below that estimated in Model 22.2. 
This resulted in an overall increase in the estimated status of the stock to over B50% in 2023 compared to 
Model 23.1.0.a and Model 22.2, where it was estimated to be below B40%.  

4.2 Model 23.1.0.d  
4.2.1 Annually varying survey selectivity  
In all of the 2022 ensemble models both survey and fishery selectivity was modeled as annually varying. 
This variability was removed for the 2023 simplified model but reinstitution of annually varying 
selectivity on survey selectivity was examined (Figure 4). The general parameterization of selectivity 
remained the same with a six parameter double normal as described for the Model 23.1.0.a, however an 
annual additive deviation (Stock Synthesis option 2; Methot et al. 2023) was added to the ascending 
width of the curve with a standard error of the deviation restricted to 0.2, this added 42 dev. 
parameters to the model, one for each survey year. Although the apparent variation in the fitted curves 
was minor (Figure 4), the additional flexibility improved the model fit by -10.19 -LL. We had examined 
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models with annually varying selectivity in the fishery as well, however adding annually varying fishery 
selectivity made only a modest improvement in model fit over a Model 23.1.0.b with a substantial 
increase in the number of annual dev. parameters (141 additional dev parameters gaining a 4 point 
reduction in -LL). For brevity the model with fishery annually varying selectivity was dropped from 
consideration and not fully presented in this document.  

4.2.2 Results of adding annually varying survey selectivity 
The addition of restricted annually varying selectivity for the bottom trawl survey improved the overall 
fit compared to Model 23.1.0.b (-10.19 -LL). The largest changes were an improved fit to the survey 
abundance index (-5.49 -LL), and both length composition data sets (-10.17 -LL) and a degraded fit to the 
survey age composition data (+2.21 -LL) (Table 2, Table 3, and Table 4). Retrospective Mohn’s rho and 
MASE values were the same as Model 23.1.0.b (Table 5). All modeled components passed the residual 
runs tests (Table 6) with the same p-values for the index and fishery length composition and slightly 
lower p-values for the survey length and age composition (Table 6). There was little difference in the 
growth parameter estimates with nearly identical standard deviations (Table 7). There was an increase 
in the estimated R0 and natural mortality and a decrease in the survey abundance index catchability with 
standard deviation remaining near those of Model 23.1.0.b (Table 8). Similar to all of the models 
examined the log likelihood profile over catchability again showed the model to have low certainty in 
this value as large changes in catchability continue to result in small changes in likelihood (Table 12 and 
Figure 10).  

The increase in catchability and decrease in natural mortality once again translated into a scaling up of 
the population from Model 23.1.0.b with higher estimates of annual recruitment (Figure 7) and annual 
spawning biomass (Table 2, Table 9, and Figure 9). Although this model is very near in fit to Model 
23.1.0.b the management advice provided would have increased the projected 2024 ABC by 
approximately 24 thousand tons.  

4.3 Model 23.10.0.g  
4.3.1Catch data 1964-1976 
Regarding the ensemble models for 2022, the catch series begins in 1977, and there is a presumed shift 
in the climate regime in the same year, positively influencing recruitment of Pacific cod from that point 
onward. The steady-state catch level for all four ensemble models was set at 42,500 tons, reflecting the 
average catch from 1964 to 1976. Examining the catch data available for the years 1964 to 1976 (Table 
12), it's evident that the catch fell notably below this average prior to 1967. Despite the considerable 
catch recorded during the 1920s and 1930s, anecdotal evidence suggests that the catch levels from the 
1940s to 1967 were lower compared to that of 1968 onward (Mackovjak, 2019). To test the influence of 
this initial catch on management reference points we added the 1964-1976 data and set an equilibrium 
catch value to a low 10,000 t, an approximation of potential catch levels prior to the development of the 
modern fishery in the late 1960’s.  

The notion of a regime change in the North Pacific, leading to altered recruitment patterns in 
groundfish, was initially proposed by Francis et al. in 2003. While the climatic regime shift of 1976-77 is 
well-documented (Hare and Mantua, 2000), the sustained and consistent positive influence of this 
warmer regime on Pacific cod recruitment lacks comprehensive documentation. Consequently, we 
undertook an investigation encompassing models that incorporate the catch data from 1964 to 1976, 
excluding the regime change parameter, and assuming an equilibrium catch of 10,000 tons. This 
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exploration aimed to assess the sensitivity of the reference points to these initial assumptions regarding 
the impacts of the regime change on Pacific cod recruitment and 10,000 tons was a best guess rough 
estimate of catches prior to 1964.  

4.3.2 Maximum age from age 20 to age 12 
In 2022, the age plus group for model dynamics was maintained at 20 across all four ensemble models. 
This decision was made despite the fact that only one Pacific cod was observed in the Bering Sea shelf 
survey since 1993 with an age greater than 14, and only 34 fish were aged above 12 out of a total of 
32,050 ages recorded. Starting from 2017, only two fish aged over 10 were identified out of a pool of 
5,524 total ages collected from the bottom trawl survey. It's worth noting that due to processing 
limitations, the age composition analysis from the VAST survey had to be confined to an age 12 plus 
group. 

In the near future, a shift in aging techniques is anticipated, moving towards the utilization of Fourier 
transform near-infrared spectroscopy (FT-NIRS) as detailed by Benson et al. (2023). Early findings 
pertaining to Pacific cod indicate notable discrepancies in age predictions beyond age 12 using FT-NIRS 
(communicated by Helser). Given these circumstances, we undertook an assessment to gauge the 
model's responsiveness to the transition to an age 12 plus group for model dynamics. 

4.3.3 Results of changing catch years and decreasing the maximum age to 12 
Two bridging models had been completed treating these two changes separately, but for brevity we 
chose to only present the combined model, Model 23.1.0.g. Neither of the changes to the model made 
much difference in the overall fit to the data (Table 2) with only a minor degradation in overall fit (+4.9 -
LL ). All three composition data components were only minutely impacted negatively with these two 
changes (+6.1 -LL) offset slightly by an improvement to the survey index (-1.1 –LL; Table 3 and Table 4). 

Retrospective Mohn’s rho for Model 23.1.0.g, although slightly positively increased over that of Model 
23.1.0.d, remained within acceptable bounds at 0.11 (Table 5). The MASE analysis showed a slight 
improvement of predictive capability for the survey index and a slight degradation in predictive 
capability for all of the composition data sets (Table 6) consistent with the model component specific 
likelihoods, RMSE, and effective N results. These slight changes within the model did however impact 
survey catchability increasing it to 0.79 from 0.77 of Model 23.1.0.d. This increase in catchability was 
accompanied by an increase in natural mortality to 0.435 from 0.429, contrary to the trend of natural 
mortality decreasing with increasing Q. The log equilibrium recruitment ln(R0) also increased to 13.74 
from 13.69 consistent with the increase in natural mortality. A likelihood profile over survey catchability 
indicated that these model alterations did not improve fitting catchability as large changes in 
catchability continued to result in only small changes in likelihood (Table 13 and Figure 10).   

The main difference in growth was an increase in Lmax over Model 23.1.0.d due to the switch to the 
lower maximum age (Table 7). There was also a sharp increase in size and weight at the 12+ group and 
somewhat longer fish at ages 5 and 6 for the terminal year (Figure 1). The weight-at-age was nearly 
identical to Model 23.1.0.b (Figure 1) which is slightly lighter at age than Model 23.1.0.d. The trend in 
annually varying growth remained similar to Model 23.1.0.d despite restricting the age to 12+ (Figure 2) 
with a stable trend for young fish ages 0 to 6, increasing trend for fish ages 7 to 11, and a decreasing 
trend in size for the age 12+ group. The annual growth pattern in Model 23.1.0.d was consistent except 
the recent trend in increasing size was apparent through age 15 before turning to a recent decreasing 
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trend for ages 16 to 20. This difference in the trend by ages between Model 23.1.0.g and Model 23.1.0.d 
was due to the shortening of the modeled ages. This did not substantially impact the trend in spawning 
stock biomass with only slightly smaller values (~-3%) after 1982 (Figure 9 and Table 9) consistent with 
the slightly higher survey catchability. 

There was a substantial shift in the B0 reference point from 623 kt from Model 23.1.0.d to 543 kt in 
Model 23.1.0.g (Table 9) and therefore despite the small decrease in overall female spawning biomass 
(Figure 9) the status of the stock in 2023 was higher at B61% than the Model 23.1.0.d value of B55% (Table 
2 and Figure 8). The change in B0 can be attributed to the extension of the catch time series and lower 
equilibrium catch. There was also a reduction in the uncertainty of B0 to a CV of 0.057 from 0.087 from 
Model 23.1.0.d, however the uncertainty around the current spawning biomass and ABC projections 
remained the same (Table 9). F40% also increased from 0.47 to 0.49 from Model 23.1.0.d to 23.1.0.g due 
to the addition of the 1964-1976 catch and removal of the regime change parameter. Despite this 
increase in allowable F the 2024 ABC projection was reduced from 244kt to 239kt due to lower 
spawning biomass in Model 23.1.0.g (Table 2 and Table 9). Therefore both changes resulted in minor 
adjustment in management advice.  

Model 23.1.0.g continues to have the same issue as all the other models examined, changing the catch 
start year and reducing maximum age did not improve the profile on catchability. The log likelihood 
profile over catchability still showed the model to have low certainty in this value as large changes in 
catchability continue to result in small changes in likelihood (Table 13 and Figure 10). Catchability can be 
changed between 0.6 and 1.2 and still be within ±2 -LL from the MLE, resulting in a range in 
management advice for the 2024 ABC of ± 100,000t from the MLE.  

Changing to the lower maximum age for the data will likely need to happen as the AFSC switches to FT-
NIRS aging however changes within the model dynamics as explored here will not. Impact to the model 
fit and results looks to be minor with a slight increase in Lmax and allowable fishing mortality. Including 
the earlier catch series may not be as clear and further work should be conducted to investigate the 
influence of these earlier catches and assumed equilibrium catch level. There is work currently 
underway by Dr. Catherine West, a zooarcheologist from Boston University, through a National Science 
Foundation grant (NSF award # 2220552) to better account for Pacific cod fishery catch from pre-1964 
which may better inform the equilibrium catch level used in the model.  

4.4 Model 23.1.0.h 
4.4.1 Survey conditional-age-at length 
Annually varying growth in the 2022 ensemble models is driven by length and age composition data. In 
one set of alternative models we explored the inclusion of survey conditional-age-at-length (CAAL) to 
determine if this improved model estimates of annually varying growth (Figure 20). We employed the 
same method for calculating CAAL and input sample sizes for the CAAL used in the Gulf of Alaska Pacific 
cod stock assessment and documented in Barbeaux et al. (2021). In theory the CAAL should provide an 
improved estimate of the growth parameters including annual devs. Note that because we changed the 
data in the model the total likelihood cannot be directly compared to previous models however the 
RMSE, effective N, and other individual likelihood components can be.   
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4.4.2 Results of adding survey conditional-age-at-length 
The addition of the survey CAAL resulted in the fits to all be degraded overall (Table 3 and Table 4). Here 
we see an increase in the survey length composition of +12 -LL and fishery length composition of +15 –LL 
while the index had an increase of +9 -LL.  There was a minor improvement to the age composition data 
with the addition of the CAAL 76.74 in Model 23.1.0.g to 75.45 in Model 23.1.0.h.  Residual patterns 
remain similar to previous models (Figure 13, Figure 14, and Figure 21). Fits to the CAAL data were good 
for most years with an exception for 1992 and 1993 where the model predicted smaller fish at age than 
were observed (Figure 22). The Mohn’s rho for spawning stock biomass showed an increase in positive 
retrospective bias over Model 23.1.0.g to 0.15. MASE evaluation of predictive skill were similar for the 
index and survey age, but somewhat worse for fishery length composition data. Model 23.1.0.h fails the 
residual runs test for both the fishery length composition and survey age composition suggesting 
significant autocorrelation in the residuals in fitting these data sets. A likelihood profile over survey 
catchability (Table 14 and Figure 10) shows little improvement with the introduction of CAAL continuing 
to generate small changes in likelihood over large changes in catchability. This is reflected in a large 
range in management advice as spawning biomass and ABC are scaled with catchability.  

The main impact of the addition of CAAL in the model was to fit a smaller Lmin, a higher K, and reduce the 
standard deviation of all the growth parameters (Figure 23 and Table 7), as well as a small reductions in 
uncertainty for R0, natural mortality, and catchability (Table 8). The reduction in variance in parameters 
translated into lower uncertainty in the derived quantities such as fishing mortality, unfished spawning 
biomass, spawning biomass, and projected ABCs (Table 9). The trends in annually varying length-at-age 
were similar to Model 23.1.0.d and 23.1.0.g, but with slightly lower interannual variability for those 
years (1990-2022) with CAAL data. At ages 3 to 11 there is an increasing trend in size-at-age from 2000 
forward, and a decreasing trend in size-at-age at age 12+. Random walk devs on Lmin are relatively 
consistent for Models 23.1.0.g and Model23.1.0.h (Figure 22) with an overall increasing trend over the 
time series suggesting an increase in size of juvenile fish in the Bering Sea. Richards parameter impacts 
the rate of fish growth and is consistent between models prior to the introduction of CAAL from 1977-
1986, after which the series diverges with low values for Model 23.1.0.h that then increase over time.  

The forecast for Model 23.1.0.h was set to average biological parameters back to 1964, this resulted in 
some aberrant behavior for the forecasted weight-at-age resulting in these values being substantially 
higher than the other models (Figure 1). As projections had not been considered in developing these 
models, this issue went unnoticed until very recently and the authors have not had to time to correct 
this issue. This would impact model projections including the 2024 ABC which was incorrect and has 
been removed from all tables. This issue would not impact the time series fits or model performance.  

In summary the addition of CAAL reduces uncertainty throughout the model, but at a cost of degrading 
fits to all of the other model components (Table 3 and Table 4).  

5 A Case for Fixing Natural Mortality   
One way that could be used to alleviate model sensitivities and that has been explored in the past is to 
fix key model parameters or provide informative priors, e.g. natural mortality or catchability at 
‘reasonable’ values. It's crucial to emphasize that at its base, fitting catchability within the model is 
influenced by the degree to which catch impacts changes in survey abundance. The fluctuations in 
growth and recruitment due to environmental factors can significantly contribute to the overall 
biomass's variability independent of catch, leading to limited insights into the consequences of fishery 
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removals and therefore little information within the data to inform catchability. There has been 
substantial debate in the past over catchability with an equal amount of work going into studies to try to 
better understand this value, the results of which have been equivocal. Given the considerable impact of 
environmental drivers on cod abundance and mortality, there's a possibility of never having sufficient 
data to accurately determine survey catchability. Issues with aging Pacific cod in the past have made 
estimating natural mortality unreliable with estimates varying from 0.20 to 0.96 across the spectrum of 
Pacific cod stocks (Thompson 2018). However recent improvements in methods may provide a more 
reliable means of estimating natural mortality outside the model.  

5.1 Estimating a life-history-based prior for natural mortality 
The parameter M representing natural mortality is difficult to estimate in many stock assessment 
models. When total removals are fitted and information exists to estimate the fishing mortality rate, 
estimates of M are typically correlated with estimates of survey catchability, q, such that including a 
Bayesian prior on M can provide information about population scale and resulting catch limits.  

Substantial empirical and theoretical evidence suggests that natural mortality is lower for large bodied 
individuals (Andersen, 2019). Asymptotic body length L_inf is negatively correlated with the von 
Bertalanffy growth parameter k, such that these two growth parameters are sometimes used to predict 
M (Hoenig, 1983). In fact, the ratio M/k has erroneously been called a “life-history invariant” (Roff, 
1984), despite theory suggesting that higher M/k is associated with lower L_mat/L_inf (Beverton & Holt, 
1959). In particular, some taxa evolve behavioral and morphological defenses against predators (e.g., 
spines) that likely contribute to a lower M/k than otherwise expected (Thorson et al., 2014). These 
antipredator defenses may in some cases be evolutionarily conserved, such that a lower-than-expected 
M/k for a related taxa will be informative when predicting the value of M from k for a given species. This 
intuition gives rise to taxonomic-nested linear mixed models or phylogenetic trait imputation, which 
have been used to impute missing values for natural mortality (Thorson et al., 2017), recruitment 
density dependence (Thorson, 2020), or other behavioral and ecological traits (Thorson et al., 2023). 

As an alternative to estimating natural mortality from growth parameters, researchers have also 
compiled estimates of longevity from aged specimens, and research suggests that longevity-based 
predictions of natural mortality rate are more precise than growth-based estimates (Hamel & Cope, 
2022; Then et al., 2015). Longevity can be recorded either as the maximum aged specimen, or the 
average of the five maximum ages (Sullivan et al., 2022). However, developing separate estimators using 
longevity and growth parameters then results in multiple estimators for a given species (Sullivan et al., 
2022), which presents a challenge in either selecting a single estimator or weighting alternative 
estimators within an ensemble (Cope & Hamel, 2022).  

As alternative to developing separate models using growth or longevity information, recent research has 
developed phylogenetic structural equation models, which can explicitly represent the dependency 
among multivariate trait data (Thorson et al., 2023; van der Bijl, 2018; von Hardenberg & Gonzalez-
Voyer, 2013). In particular, a user-friendly R-package phylosem can impute missing trait values jointly 
with estimating complex dependencies among traits (Thorson & van der Bijl, In review). Research 
confirms that phylosem exactly replicates results from simpler models including structural equation 
models, phylogenetic linear models, and phylogenetic trait imputation (Thorson & van der Bijl, In 
review).  
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Here, we fit a phylogenetic structural equation model (PSEM) to a high-quality database of independent 
estimates of natural mortality (Then et al., 2015). We specifically use a PSEM that specifies three linear 
associations log�𝐿𝐿𝑖𝑖𝑖𝑖𝑓𝑓� → log(𝑡𝑡𝑚𝑚𝑚𝑚𝑚𝑚), log(𝑘𝑘) → log(𝑡𝑡𝑚𝑚𝑚𝑚𝑚𝑚), and 𝑡𝑡𝑚𝑚𝑚𝑚𝑚𝑚 → log(𝑀𝑀). A jackknife 
experiment confirms that this PSEM can explain nearly 50% additional variance relative to a 
conventional linear model when using growth parameters to predict natural mortality rate, while also 
providing a simple method to include both growth and longevity information in a single natural 
mortality estimator (Thorson, In review).  We then use either the maximum specimen age, or the 
average of the maximum ages to predict natural mortality rate for Pacific cod in the eastern Bering Sea 
since 2008. Both longevity metrics result in the same value t_max=14 years, and this results in a 
predicted value M=0.3866 and log standard deviation of 0.4.  

All of the models considered above were refit with the maximum age derived value of natural mortality 
of 0.3866 and presented in Table 15. In all of the newly developed simpler models the change in model 
fit by fixing natural mortality was minimal with likelihoods changing by +2 -LL or less. The fixing of 
natural mortality also resulted in improved retrospective runs as would be expected (Figure 25). Survey 
catchability fit in the models changed in the direction one would expect as it is negatively correlated 
with natural mortality, when the fixed M value was higher than the fit value catchability decreased, 
when it was lower it increased (Table 16).    

 

6 Recommendation 
If a single model is to be used for management this year, of the models presented the authors would 
recommend Model 23.1.0.d be considered as an option for further exploration for management in 2024. 
Model 23.1.0.d is the simplified model with the addition of constrained annual variability in growth 
(Figure 1 and Figure 2 ) and survey selectivity (Figure 3 and Figure 4). The model employs bootstrapped 
input sample sizes, the fit to the survey index is improved over Model 22.2 (Figure 5), retrospective bias 
remains within acceptable limits, and residual runs analyses imply that the fit to the composition data 
are better with less autocorrelation in the residuals while maintaining a similar effective n. The mean 
absolute scaled error (MASE) analyses show the predictive skill of Model 23.1.0.d for the survey index 
was improved over Model 22.2 (0.40 vs 0.69) and remains similar for the fishery mean length and survey 
mean age.  

Model 23.1.0.d has improved performance while reducing the model by 86 parameters, however this 
reduction in complexity comes at a cost of increased uncertainty (higher standard deviations) in some 
key parameter estimates (M, Q, and R0; Figure 6) that translates into increased uncertainty in derived 
quantities such as B0, F40% , current recruitment (Figure 7), current spawning biomass (Figure 8 and 
Figure 9), and future catch recommendations. Another potential red-flag in Model 23.1.0.d is that 
natural mortality at 0.429 is higher than most methods external to the model indicate and catchability at 
0.765 is lower than most other models examined previously. Profiles over catchability show little change 
in likelihood over a wide range of natural mortality and catchability (Figure 10).  

One solution may be found in applying a maximum age-based method for deriving a prior for natural 
mortality that provides a value of natural morality within reasonable bounds of what has been fit in the 
simplified models presented above. When natural mortality is fixed in Model 23.1.0.d to 0.387, 
catchability increased to 0.972 and provides a reasonable alternative to allowing natural mortality to be 
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freely fit. Fixing M in Model 23.1.0.d has a minor cost of degrading the overall model performance by 
only +1.4 negative log likelihood (-LL) with an improvement to the fit to the age composition of -3.95 -LL, 
but a poorer fit to the survey index at +2.56 LL and length composition at +2.40 -LL. The change provides 
a more stable model but makes strong assumptions on the value of natural mortality and by association 
survey catchability (Table 16).     
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8 Tables 
Table 1. Input sample sizes for composition data, the old based on survey haul numbers and ‘New’ on a 
bootstrap approach (Hulson et al. 2023). 

  Fishery Survey 
Year Old New Old New Length New Age 
1977 6 26    
1978 10 42    
1979 12 52    
1980 12 53    
1981 14 61    
1982 7 30 481 2432  
1983 26 112 476 1171  
1984 31 135 479 2424  
1985 46 203 364 897  
1986 47 207 481 2139  
1987 87 380 412 2104  
1988 89 387 354 1650  
1989 41 179 373 1176  
1990 42 184 354 1226  
1991 345 1506 400 1200  
1992 340 1485 368 807  
1993 201 880 451 813  
1994 317 1383 360 1265 183 
1995 344 1503 381 1999 174 
1996 445 1943 368 1343 151 
1997 472 2063 354 1389 98 
1998 451 1972 360 2196 180 
1999 600 2622 422 2078 224 
2000 652 2849 363 1396 154 
2001 692 3025 402 1829 304 
2002 759 3318 366 2159 329 
2003 947 4138 355 1040 265 
2004 794 3471 336 1887 308 
2005 761 3328 362 1164 212 
2006 594 2595 369 2487 492 
2007 466 2035 359 270 55 
2008 551 2409 347 1757 235 
2009 488 2134 364 908 201 
2010 435 1902 363 1191 150 
2011 572 2498 332 1398 127 
2012 611 2670 330 865 150 
2013 726 3171 329 909 149 
2014 793 3467 293 1057 124 
2015 733 3202 370 2068 362 
2016 621 2715 339 3149 536 
2017 544 2377 349 2802 447 
2018 418 1827 369 2996 367 
2019 301 1316 264 1230 250 
2020 231 1008 NA NA NA 
2021 189 827 255 3167 531 
2022 128 1115 320 2388 NA 

Mean 369 1626 369 1661 250 
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Table 2. Results from 2023 model exploration. The table shows Natural mortality (M),bottom trawl 
survey catchability (Q), unfished female spawning biomass (B0), female spawning biomass in 2023 (B23), 
projected Allowable Biological Catch in 2024 (ABC24), number of non-dev parameters (Npars), number of 
annual devs (Ndevs), and negative log likelihood (-LL) by model.  

M Q 
B0 

(kt) FMSY 
B23 

(kt) B23/B0 
ABC 24 

(kt) Npars Ndevs -LL Model 
0.347 0.960 661.5 0.326 249.8 0.378 145 20 284 10875 MODEL 22.2 old 
0.328 0.974 694.7 0.290 263.2 0.379 141 22 284 18362 MODEL 22.2 updated 
0.344 1.097 586.1 0.332 205.9 0.351 132 18 64 251 MODEL 23.1.0.a 
0.414 0.822 605.4 0.441 314.1 0.519 220 18 158 143 MODEL 23.1.0.b 
0.429 0.765 623.4 0.465 343.4 0.551 244 18 200 133 MODEL 23.1.0.d 
0.435 0.792 542.6 0.488 331.8 0.612 239 17 200 141 MODEL 23.1.0.g 
0.424 0.808 611.4 0.466 313.1 0.512  17 200 631 MODEL 23.1.0.h 

 

Table 3. Negative log likelihoods by data component and fleet. 

Model Label All Fishery Survey 
MODEL 22.2 old Age_like 817.80  817.80 
MODEL 22.2 updated Age_like 766.34  766.34 
MODEL 23.1.0.a Age_like 88.62  88.62 
MODEL 23.1.0.b Age_like 71.07  71.07 
MODEL 23.1.0.d Age_like 73.27  73.27 
MODEL 23.1.0.g Age_like 76.74  76.74 
MODEL23.1.0.h Age_like 75.45  75.45 
MODEL 22.2 old Length_like 9990.5 4502.5 5487.98 
MODEL 22.2 updated Length_like 17382.5 7682.9 9699.66 
MODEL 23.1.0.a Length_like 184.38 79.03 105.35 
MODEL 23.1.0.b Length_like 130.75 60.29 70.46 
MODEL 23.1.0.d Length_like 120.58 59.78 60.81 
MODEL 23.1.0.g Length_like 123.19 60.46 62.73 
MODEL 23.1.0.h Length_like 150.98 76.04 74.94 
MODEL 22.2 old Surv_like -5.96  -5.96 
MODEL 22.2 updated Surv_like 67.53  67.53 
MODEL 23.1.0.a Surv_like -30.05  -30.05 
MODEL 23.1.0.b Surv_like -83.13  -83.13 
MODEL 23.1.0.d Surv_like -88.62  -88.62 
MODEL 23.1.0.g Surv_like -89.74  -89.74 
MODEL 23.1.0.h Surv_like -80.49  -80.49 
MODEL 23.1.0.h Survey CAAL 445.62  445.62 
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Table 4. Root mean squared error RMSE and effective N for data components by model. For the fishery 
length on Models 23.1.1.x gear splits are in order of Trawl/Longline/Pot  

    Effective N    
Index RMSE Recruitment RMSE/SigmaR Fishery Length Survey Length Survey Age Model 

0.13 1.01 2919 852 168 MODEL 22.2_old 
0.16 1.22 3474 929 122 MODEL 22.2_updated 
0.12 1.06 1700 561 87 MODEL 23.1.0.a 
0.07 0.81 2263 813 132 MODEL 23.1.0.b 
0.07 0.77 2288 899 132 MODEL 23.1.0.d 
0.07 0.82 2242 860 120 MODEL 23.1.0.g 
0.08 0.71 1867 691 33 MODEL 23.1.0.h 

 

Table 5. Retrospective results (Mohn’s Rho) for a ten-year peal on spawning stock biomass and mean 
absolute scaled error (MASE) analyses from ss3diags library for components of models assessed. 

   MASE 
 Model Mohn's Rho Index Fish Length (adj.) Survey Age 
M22.2 old -0.06 (-0.07) 0.69  0.93 (0.21)  0.35 
M22.2 updated -0.06 (-0.07) 0.69  0.93 (0.21)  0.35 
M23.1.0.a 0.08 (0.10) 0.42  1.07 (0.24)  0.32 
M23.1.0.b 0.09 (0.07) 0.40  0.97 (0.22)  0.38 
M23.1.0.d 0.09 (0.07) 0.40  0.96 (0.22)  0.38 
M23.1.0.g 0.11 (0.08) 0.39  0.97 (0.22)  0.41 
M23.1.0.h 0.15 (0.14) 0.40  1.05 (0.24)  0.41 

 

Table 6. Residual runs test for models evaluated with combined fishery comp data from ss3diags. 

Model Type Index p-value Test Sigma3 lo Sigma3 hi 
MODEL 22.2 old cpue Survey 0.280 Passed -0.376 0.376 

MODEL 22.2 updated cpue Survey 0.261 Passed -0.433 0.433 
MODEL 23.1.0.a cpue Survey 0.850 Passed -0.424 0.424 
MODEL 23.1.0.b cpue Survey 0.903 Passed -0.260 0.260 
MODEL 23.1.0.d cpue Survey 0.903 Passed -0.222 0.222 
MODEL 23.1.0.g cpue Survey 0.974 Passed -0.227 0.227 
MODEL 23.1.0.h cpue Survey 0.903 Passed -0.265 0.265 

Model22.2 old len Fishery 0.002 Failed -0.024 0.024 
Model22.2 old len Survey 0.000 Failed -0.077 0.077 

MODEL 22.2 updated len Fishery 0.009 Failed -0.019 0.019 
MODEL 22.2 updated len Survey 0.122 Passed -0.090 0.090 

MODEL 23.1.0.a len Fishery 0.003 Failed -0.066 0.066 
MODEL 23.1.0.a len Survey 0.625 Passed -0.100 0.100 
MODEL 23.1.0.b len Fishery 0.155 Passed -0.060 0.060 
MODEL 23.1.0.b len Survey 0.815 Passed -0.125 0.125 
MODEL 23.1.0.d len Fishery 0.155 Passed -0.060 0.060 
MODEL 23.1.0.d len Survey 0.462 Passed -0.087 0.087 
MODEL 23.1.0.g len Fishery 0.155 Passed -0.061 0.061 
MODEL 23.1.0.g len Survey 0.815 Passed -0.083 0.083 
MODEL 23.1.0.h len Fishery 0.015 Failed -0.075 0.075 
MODEL 23.1.0.h len Survey 0.625 Passed -0.083 0.083 

  MODEL l22.2_old age Survey 0.039 Failed -0.160 0.160 
MODEL 22.2_updated age Survey 0.401 Passed -0.199 0.199 

MODEL 23.1.0.a age Survey 0.177 Passed -0.250 0.250 
MODEL 23.1.0.b age Survey 0.086 Passed -0.161 0.161 
MODEL 23.1.0.d age Survey 0.298 Passed -0.160 0.160 
MODEL 23.1.0.g age Survey 0.086 Passed -0.153 0.153 
MODEL 23.1.0.h age Survey 0.016 Failed -0.152 0.152 
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Table 7. Growth parameter values and standard deviations. 

Label Value StDev Model Label Value StDev Model 
LMAX 112.387 3.05 Model22.2_old Richards 1.474 0.04 Model22.2_old 
LMAX 116.862 1.78 Model22.2_updated Richards 1.541 0.02 Model22.2_updated 
LMAX 112.958 5.92 MODEL23.1.0.a Richards 1.494 0.11 MODEL23.1.0.a 
LMAX 112.380 3.24 MODEL23.1.0.b Richards 1.529 0.08 MODEL23.1.0.b 
LMAX 112.355 3.24 MODEL23.1.0.d Richards 1.528 0.08 MODEL23.1.0.d 
LMAX 113.217 3.23 MODEL23.1.0.g Richards 1.539 0.08 MODEL23.1.0.g 
LMAX 110.918 2.28 MODEL23.1.0.h Richards 1.535 0.07 MODEL23.1.0.h 
LMIN 15.134 0.45 Model22.2_old VonBert K 0.115 0.009 Model22.2_old 
LMIN 15.648 0.44 Model22.2_updated VonBert K 0.100 0.004 Model22.2_updated 
LMIN 14.772 0.24 MODEL23.1.0.a VonBert K 0.110 0.021 MODEL23.1.0.a 
LMIN 14.674 0.20 MODEL23.1.0.b VonBert K 0.112 0.011 MODEL23.1.0.b 
LMIN 14.713 0.21 MODEL23.1.0.d VonBert K 0.113 0.011 MODEL23.1.0.d 
LMIN 14.708 0.21 MODEL23.1.0.g VonBert K 0.109 0.011 MODEL23.1.0.g 
LMIN 14.681 0.20 MODEL23.1.0.h VonBert K 0.131 0.009 MODEL23.1.0.h 

 

Table 8. Influential parameter values and standard deviations. 

Label Value StDev Model Label Value StDev Model 
LN(R0) 13.156 0.100 Model22.2_old NatM 0.347 0.012 Model22.2_old 
LN(R0) 13.016 0.075 Model22.2_updated NatM 0.328 0.009 Model22.2_updated 
LN(R0) 13.022 0.141 MODEL23.1.0.a NatM 0.344 0.018 MODEL23.1.0.a 
LN(R0) 13.601 0.241 MODEL23.1.0.b NatM 0.414 0.026 MODEL23.1.0.b 
LN(R0) 13.740 0.248 MODEL23.1.0.d NatM 0.429 0.025 MODEL23.1.0.d 
LN(R0) 13.688 0.240 MODEL23.1.0.g NatM 0.435 0.025 MODEL23.1.0.g 
LN(R0) 13.669 0.175 MODEL23.1.0.h NatM 0.424 0.021 MODEL23.1.0.h 
LnQ BT Shelf Survey -0.041 0.064 Model22.2_old      
LnQ BT Shelf Survey -0.026 0.049 Model22.2_updated      
LnQ BT Shelf Survey 0.092 0.086 MODEL23.1.0.a      
LnQ BT Shelf Survey -0.196 0.163 MODEL23.1.0.b      
LnQ BT Shelf Survey -0.268 0.172 MODEL23.1.0.d      
LnQ BT Shelf Survey -0.233 0.162 MODEL23.1.0.g      
LnQ BT Shelf Survey -0.213 0.104 MODEL23.1.0.h      
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Table 9. Derived quantities values, standard deviations, and coefficient of variation. 

Label Value StdDev CV Model Label Value StdDev CV Model 
F40 0.33 0.02 0.05 Model22.2_old B2023      249,809       17,360  0.07 Model22.2_old 
F40 0.29 0.01 0.04 Model22.2_updated B2023      263,189       14,151  0.05 Model22.2_updated 
F40 0.33 0.03 0.09 MODEL23.1.0.a B2023      205,914       19,749  0.10 MODEL23.1.0.a 
F40 0.44 0.05 0.10 MODEL23.1.0.b B2023      314,146       58,787  0.19 MODEL23.1.0.b 
F40 0.47 0.05 0.11 MODEL23.1.0.d B2023      343,431       66,590  0.19 MODEL23.1.0.d 
F40 0.49 0.05 0.10 MODEL23.1.0.g B2023      331,845       62,266  0.19 MODEL23.1.0.g 
F40 0.47 0.04 0.09 MODEL23.1.0.h B2023      313,052       38,688  0.12 MODEL23.1.0.h 
ABC2024 144,694            14,664  0.10 Model22.2_old B0      661,455       14,493  0.02 Model22.2_old 
ABC2024 141,115            11,792  0.08 Model22.2_updated B0      694,750       12,587  0.02 Model22.2_updated 
ABC2024 131,883            18,010  0.14 MODEL23.1.0.a B0      586,050       27,073  0.05 MODEL23.1.0.a 
ABC2024 219,817            49,257  0.22 MODEL23.1.0.b B0      605,435       50,776  0.08 MODEL23.1.0.b 
ABC2024 243,533            56,378  0.23 MODEL23.1.0.d B0      623,435       54,253  0.09 MODEL23.1.0.d 
ABC2024 239,088            53,953  0.23 MODEL23.1.0.g B0      542,635       30,880  0.06 MODEL23.1.0.g 
ABC2024             0.20 MODEL23.1.0.h B0      611,365       23,726  0.04 MODEL23.1.0.h 
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Table 10. Likelihood profiles over survey catchability for the old input sample size and updated input 
sample size Model 22.2. Light shaded rows are ± 10LL from the MLE, dark shaded row is the 
closest to MLE. 

M Q B0 FMSY B2023 B2023/B0 ABC2024 Model -LL 
0.408 0.607  702,510  0.493          372,577  0.530            243,473  Model 22.2 old 10893 
0.402 0.638  690,370  0.489          355,882  0.515            231,967  Model 22.2 old 10889 
0.396 0.670  680,070  0.480          340,092  0.500            220,867  Model 22.2 old 10886 
0.390 0.705  671,990  0.468          325,376  0.484            210,231  Model 22.2 old 10884 
0.384 0.741  665,730  0.453          311,391  0.468            199,983  Model 22.2 old 10883 
0.378 0.779  660,385  0.448          297,939  0.451            190,460  Model 22.2 old 10880 
0.370 0.819  659,620  0.427          287,355  0.436            181,953  Model 22.2 old 10879 
0.363 0.861  656,310  0.424          273,501  0.417            167,867  Model 22.2 old 10876 
0.356 0.905  657,270  0.412          262,236  0.399            155,598  Model 22.2 old 10876 
0.348 0.951  660,520  0.399          251,553  0.381            146,301  Model 22.2 old 10875 
0.340 1.000  666,530  0.385          241,723  0.363            137,214  Model 22.2 old 10875 
0.331 1.051  674,500  0.371          232,258  0.344            128,133  Model 22.2 old 10876 
0.323 1.105  685,095  0.357          223,100  0.326            119,010  Model 22.2 old 10878 
0.314 1.162  698,290  0.343          213,998  0.306            109,750  Model 22.2 old 10882 
0.304 1.221  715,160  0.329          205,686  0.288            100,832  Model 22.2 old 10885 
0.294 1.284  735,990  0.316          198,475  0.270               92,520  Model 22.2 old 10889 
0.284 1.350  760,510  0.302          190,942  0.251               83,996  Model 22.2 old 10895 
0.274 1.419  789,875  0.288          183,723  0.233               75,680  Model 22.2 old 10902 
0.263 1.492  824,435  0.275          176,848  0.215               67,701  Model 22.2 old 10911 
0.251 1.568  876,375  0.258          171,031  0.195               59,398  Model 22.2 old 10919 
0.239 1.649  928,585  0.245          164,735  0.177               51,936  Model 22.2 old 10929 
0.387 0.607  721,175  0.457          384,413  0.533            233,327  Model 22.2 update 18423 
0.382 0.638  710,870  0.447          367,428  0.517            222,109  Model 22.2 update 18416 
0.375 0.670  705,800  0.422          355,832  0.504            213,090  Model 22.2 update 18437 
0.369 0.705  695,605  0.413          339,071  0.487            202,348  Model 22.2 update 18428 
0.363 0.741  690,235  0.402          325,001  0.471            192,820  Model 22.2 update 18423 
0.358 0.779  687,200  0.393          312,083  0.454            184,339  Model 22.2 update 18421 
0.355 0.819  686,660  0.384          306,398  0.446            179,781  Model 22.2 update 18396 
0.343 0.861  686,650  0.379          285,626  0.416            161,963  Model 22.2 update 18386 
0.339 0.905  686,880  0.370          279,310  0.407            155,643  Model 22.2 update 18363 
0.329 0.951  689,040  0.365          259,098  0.376            139,004  Model 22.2 update 18370 
0.323 1.000  695,900  0.354          249,146  0.358            130,620  Model 22.2 update 18372 
0.315 1.051  703,190  0.343          238,344  0.339            121,292  Model 22.2 update 18369 
0.304 1.105  716,200  0.325          228,459  0.319            111,728  Model 22.2 update 18379 
0.293 1.162  734,860  0.310          219,578  0.299            102,230  Model 22.2 update 18376 
0.283 1.221  760,165  0.296          212,295  0.279               93,747  Model 22.2 update 18378 
0.279 1.284  781,845  0.289          204,729  0.262               86,500  Model 22.2 update 18381 
0.264 1.350  823,400  0.270          196,966  0.239               76,732  Model 22.2 update 18392 
0.255 1.419  844,445  0.260          188,304  0.223               69,103  Model 22.2 update 18397 
0.245 1.492  888,745  0.247          181,505  0.204               61,267  Model 22.2 update 18406 
0.233 1.568  946,240  0.233          175,511  0.185               53,735  Model 22.2 update 18416 
0.222 1.649  1,009,605  0.220          169,199  0.168               46,607  Model 22.2 update 18429 
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Table 11. Model 23.1.0.a and Model 23.1.0.b likelihood profiles over catchability. Light shaded rows are 
± 2LL from the MLE, dark shaded row is the closest to MLE. *Note hit the lower bound for natural 
mortality at 0.3. 

M Q B0 FMSY B2023 B2023/B0 ABC2024 Model -LL 
0.428 0.607  628,560  0.448          358,028  0.570            266,750  Model23.1.0.a 263.27 
0.422 0.638  615,975  0.440          340,813  0.553            253,241  Model23.1.0.a 261.84 
0.416 0.670  604,905  0.432          324,522  0.536            240,370  Model23.1.0.a 260.43 
0.410 0.705  595,370  0.424          309,117  0.519            228,105  Model23.1.0.a 259.04 
0.404 0.741  587,395  0.415          294,561  0.501            216,417  Model23.1.0.a 257.69 
0.397 0.779  581,020  0.406          280,816  0.483            205,276  Model23.1.0.a 256.39 
0.390 0.819  576,295  0.396          267,847  0.465            194,658  Model23.1.0.a 255.16 
0.383 0.861  573,285  0.386          255,623  0.446            184,534  Model23.1.0.a 254.04 
0.375 0.905  572,080  0.375          244,109  0.427            174,603  Model23.1.0.a 253.04 
0.368 0.951  572,765  0.365          233,276  0.407            160,938  Model23.1.0.a 252.2 
0.359 1.000  575,445  0.353          223,096  0.388            149,870  Model23.1.0.a 251.55 
0.351 1.051  580,240  0.342          213,531  0.368            140,094  Model23.1.0.a 251.15 
0.342 1.105  587,305  0.330          204,553  0.348            130,375  Model23.1.0.a 251.04 
0.333 1.162  596,790  0.318          196,137  0.329            120,757  Model23.1.0.a 251.28 
0.324 1.221  608,855  0.306          188,270  0.309            111,313  Model23.1.0.a 251.93 
0.315 1.284  623,360  0.294          182,351  0.293            103,208  Model23.1.0.a 253.05 
0.307 1.350  639,265  0.283          178,992  0.280               97,047  Model23.1.0.a 254.52 

0.300* 1.419  652,660  0.276          176,069  0.270               92,037  Model23.1.0.a 256.36 
0.300* 1.492  654,240  0.275          173,938  0.266               90,100  Model23.1.0.a 259.23 
0.300* 1.568  655,845  0.275          172,085  0.262               88,328  Model23.1.0.a 263.39 
0.300* 1.649  657,355  0.275          170,532  0.259               86,749  Model23.1.0.a 268.84 

0.452 0.607  673,405  0.515          416,043  0.618            298,565  Model23.1.0b 144.63 
0.446 0.638  658,845  0.504          396,918  0.602            284,082  Model23.1.0b 144.26 
0.440 0.670  642,510  0.483          377,148  0.587            270,404  Model23.1.0b 144.25 
0.434 0.705  634,510  0.479          361,847  0.570            256,961  Model23.1.0b 143.64 
0.428 0.741  624,665  0.466          345,823  0.554            244,284  Model23.1.0b 143.40 
0.421 0.779  615,195  0.454          330,336  0.537            232,235  Model23.1.0b 143.26 
0.414 0.819  606,740  0.441          315,592  0.520            220,737  Model23.1.0b 143.21 
0.407 0.861  599,275  0.429          301,553  0.503            209,764  Model23.1.0b 143.25 
0.400 0.905  592,795  0.417          288,186  0.486            199,290  Model23.1.0b 143.40 
0.392 0.951  587,295  0.405          275,456  0.469            189,292  Model23.1.0b 143.65 
0.384 1.000  582,790  0.394          263,335  0.452            179,746  Model23.1.0b 144.03 
0.376 1.051  579,350  0.382          251,806  0.435            168,994  Model23.1.0b 144.55 
0.367 1.105  578,495  0.371          243,038  0.420            158,466  Model23.1.0b 145.19 
0.367 1.162  594,405  0.372          259,770  0.437            170,202  Model23.1.0b 144.71 
0.360 1.221  595,900  0.364          254,814  0.428            163,101  Model23.1.0b 145.08 
0.354 1.284  597,815  0.356          250,051  0.418            156,223  Model23.1.0b 145.48 
0.347 1.350  600,160  0.348          245,405  0.409            149,506  Model23.1.0b 145.91 
0.340 1.419  602,040  0.341          240,473  0.399            142,939  Model23.1.0b 146.41 
0.333 1.492  606,265  0.333          236,288  0.390            137,854  Model23.1.0b 146.91 
0.326 1.568  609,185  0.326          231,425  0.380            132,598  Model23.1.0b 147.50 
0.319 1.649  614,605  0.317          227,219  0.370            127,351  Model23.1.0b 148.09 
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Table 12. Eastern Bering Sea Pacific cod catch for 1964-2022. 

Year Catch (t) Year Catch (t) Year Catch (t) 
1964           13,408  1984      125,103  2004      183,748  
1965           14,719  1985      143,447  2005      182,940  
1966           18,200  1986      135,605  2006      168,818  
1967           32,064  1987      149,903  2007      140,129  
1968           57,902  1988      203,071  2008      139,802  
1969           50,351  1989      178,323  2009      147,174  
1970           70,094  1990      172,067  2010      142,844  
1971           43,054  1991      210,241  2011      209,201  
1972           42,905  1992      164,210  2012      232,623  
1973           53,386  1993      133,186  2013      236,691  
1974           62,462  1994      172,263  2014      238,718  
1975           51,551  1995      228,498  2015      232,829  
1976           50,481  1996      209,067  2016      247,620  
1977           33,335  1997      232,601  2017      237,851  
1978           42,543  1998      158,529  2018      199,867  
1979           33,761  1999      145,867  2019      178,904  
1980           35,058  2000      151,376  2020      155,665  
1981           56,507  2001      142,542  2021      121,749  
1982           61,104  2002      166,555  2022      152,146  
1983           94,801  2003      175,443     
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Table 13. Model 23.1.0.d and 23.1.0.g likelihood profiles over catchability. Light shaded rows are ± 2LL 
from the MLE, dark shaded row is the closest to MLE. 

M Q B0 FMSY B2023 B2023/B0 ABC2024 Model -LL 
0.457 0.607  679,640  0.522          425,216  0.626            307,231  Model23.1.0d 133.82 
0.452 0.638  665,475  0.510          405,972  0.610            292,310  Model23.1.0d 133.54 
0.446 0.670  644,305  0.490          383,401  0.595            278,523  Model23.1.0d 133.75 
0.440 0.705  632,835  0.478          366,254  0.579            264,915  Model23.1.0d 133.56 
0.434 0.741  622,430  0.466          349,934  0.562            251,929  Model23.1.0d 133.45 
0.427 0.779  613,055  0.454          334,398  0.545            239,537  Model23.1.0d 133.42 
0.420 0.819  604,685  0.442          319,606  0.529            227,711  Model23.1.0d 133.47 
0.413 0.861  597,300  0.430          305,521  0.512            216,424  Model23.1.0d 133.63 
0.406 0.905  590,875  0.418          292,103  0.494            205,655  Model23.1.0d 133.89 
0.398 0.951  585,460  0.406          279,330  0.477            195,369  Model23.1.0d 134.28 
0.391 1.000  581,080  0.395          267,246  0.460            185,600  Model23.1.0d 134.79 
0.382 1.051  580,115  0.384          259,479  0.447            178,331  Model23.1.0d 135.41 
0.383 1.105  603,225  0.385          286,700  0.475            192,596  Model23.1.0d 134.26 
0.377 1.162  603,805  0.377          281,452  0.466            187,133  Model23.1.0d 134.49 
0.370 1.221  604,715  0.368          276,276  0.457            181,787  Model23.1.0d 134.75 
0.364 1.284  605,975  0.360          271,122  0.447            176,529  Model23.1.0d 135.05 
0.357 1.350  607,595  0.352          265,972  0.438            169,713  Model23.1.0d 135.38 
0.350 1.419  609,605  0.344          260,820  0.428            162,337  Model23.1.0d 135.75 
0.344 1.492  612,035  0.336          255,666  0.418            155,045  Model23.1.0d 136.17 
0.337 1.568  614,925  0.329          250,521  0.407            147,842  Model23.1.0d 136.64 
0.330 1.649  618,320  0.321          245,392  0.397            141,201  Model23.1.0d 137.17 
0.469 0.607  593,295  0.699          425,484  0.717            313,571  Model23.1.0g 142.10 
0.463 0.638  578,390  0.680          404,851  0.700            298,556  Model23.1.0g 141.95 
0.457 0.670  570,505  0.664          387,512  0.679            283,536  Model23.1.0g 141.46 
0.450 0.705  561,410  0.645          370,082  0.659            269,474  Model23.1.0g 141.22 
0.444 0.741  552,870  0.627          353,318  0.639            256,106  Model23.1.0g 141.06 
0.437 0.779  545,455  0.610          337,364  0.619            243,336  Model23.1.0g 140.99 
0.430 0.819  539,170  0.592          322,179  0.598            231,135  Model23.1.0g 141.00 
0.423 0.861  529,465  0.578          306,090  0.578            219,879  Model23.1.0g 141.27 
0.416 0.905  523,905  0.558          291,697  0.557            208,847  Model23.1.0g 141.56 
0.408 0.951  523,590  0.548          279,700  0.534            197,917  Model23.1.0g 141.73 
0.400 1.000  525,145  0.521          268,281  0.511            187,520  Model23.1.0g 142.25 
0.392 1.051  523,205  0.513          258,255  0.494            179,501  Model23.1.0g 142.89 
0.392 1.105  543,845  0.510          284,780  0.524            193,289  Model23.1.0g 142.05 
0.386 1.162  545,660  0.499          279,366  0.512            187,809  Model23.1.0g 142.38 
0.379 1.221  548,460  0.487          274,431  0.500            182,550  Model23.1.0g 142.74 
0.373 1.284  548,815  0.477          268,000  0.488            177,088  Model23.1.0g 143.24 
0.367 1.350  555,755  0.463          265,142  0.477            172,450  Model23.1.0g 143.61 
0.360 1.419  559,670  0.452          260,441  0.465            167,525  Model23.1.0g 144.14 
0.354 1.492  563,400  0.441          255,520  0.454            162,646  Model23.1.0g 144.74 
0.347 1.568  568,140  0.430          250,993  0.442            157,951  Model23.1.0g 145.40 
0.341 1.649  573,885  0.419          246,846  0.430            151,632  Model23.1.0g 146.12 
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Table 14. Model 23.1.0.h likelihood profile over catchability. Light shaded rows are ± 2LL from the MLE, 
dark shaded row is the closest to MLE. *Note the model hit the lower bound for natural mortality at 0.3. 

M Q B0 FMSY B2023 B2023/B0 ABC2024 Model -LL 
0.470 0.607  666,785  0.542          403,687  0.605            337,328  Model23.1.0.h 633.52 
0.462 0.638  654,040  0.527          386,153  0.590            320,677  Model23.1.0.h 632.70 
0.455 0.670  642,440  0.514          369,347  0.575            304,868  Model23.1.0.h 632.01 
0.447 0.705  630,285  0.505          352,520  0.559            290,158  Model23.1.0.h 631.44 
0.439 0.741  621,895  0.491          337,432  0.543            275,664  Model23.1.0.h 631.00 
0.430 0.779  615,225  0.477          323,154  0.525            261,761  Model23.1.0.h 630.74 
0.421 0.819  610,240  0.462          309,616  0.507            248,426  Model23.1.0.h 630.69 
0.412 0.861  606,980  0.446          296,768  0.489            235,623  Model23.1.0.h 630.87 
0.402 0.905  605,490  0.430          284,563  0.470            223,327  Model23.1.0.h 631.32 
0.392 0.951  605,800  0.414          272,945  0.451            211,513  Model23.1.0.h 632.08 
0.381 1.000  607,970  0.397          261,850  0.431            200,149  Model23.1.0.h 633.18 
0.371 1.051  610,170  0.381          250,663  0.411            189,431  Model23.1.0.h 634.66 
0.360 1.105  616,560  0.365          241,103  0.391            178,228  Model23.1.0.h 636.54 
0.356 1.162  624,225  0.360          245,238  0.393            179,138  Model23.1.0.h 638.05 
0.347 1.221  632,205  0.349          241,256  0.382            172,501  Model23.1.0.h 640.02 
0.339 1.284  641,035  0.338          237,399  0.370            165,824  Model23.1.0.h 642.18 
0.331 1.350  650,730  0.328          233,657  0.359            159,122  Model23.1.0.h 644.55 
0.322 1.419  661,315  0.318          230,023  0.348            152,413  Model23.1.0.h 647.12 
0.314 1.492  672,810  0.308          226,494  0.337            145,719  Model23.1.0.h 649.92 
0.306 1.568  685,235  0.298          223,063  0.326            139,061  Model23.1.0.h 652.95 

0.300* 1.649  694,810  0.292          220,578  0.317            134,275  Model23.1.0.h 656.26 
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Table 15. Negative log likelihood and derived quantities for assessed models for models with (Free M) M fit with a uninformative prior, (Fixed M) 
fixed at 0.386623, and the AIC weighted (Burnham and Anderson 2002) values from the likelihood profiles on survey index catchability 
between -0.5 and 0.5 for the free M models. Negative log likelihood (-LL), unfished female spawning biomass (B0), female spawning 
biomass in 2023 (B2023), and projected 2024 allowable biological catch (ABC2024).  

 Free M Fixed M  Change 
in -LL 

AIC Weighted  
Model  -LL B0 B2023 B2023/B0 ABC2024 -LL B0 B2023 B2023/B0 ABC2024 B0 B2023 B2023/B0 ABC2024 

M22.2 old 10875 661,455 249,809 0.378 144,694 10,881 653,795 295,111 0.451 192,152 6 663,556 249,862 0.377 144,781 
M22.2 up 18362 694,750 263,189 0.379 141,115 18,405 683,985 332,473 0.486 204,657 43 686,923 279,187 0.406 155,540 
M23.1.0.a 251 586,050 205,914 0.351 131,883 253 568,340 246,505 0.434 178,060 2 587,786 209,209 0.356 134,930 
M23.1.0.b 143 605,435 314,146 0.519 219,817 144 590,270 274,837 0.466 187,374 1 610,263 314,592 0.516 218,929 
M23.1.0.d 133 623,435 343,431 0.551 243,533 134 594,955 276,042 0.464 188,263 1 620,013 333,797 0.538 236,289 
M23.1.0.g 141 542,635 331,845 0.612 239,088 143 531,915 264,534 0.497 181,473 2 547,403 330,233 0.603 236,739 
M23.1.0.h 631 611,365 313,052 0.512   632 613,550 276,694 0.451   1 616,616 318,377 0.516   

 

Table 16. Survey catchability (Q) estimates for models fit with (Free M) a non-informative prior on natural mortality and (Fixed M) models fit 
with a fixed natural mortality of 0.386623. 

 
Survey catchability 

with 
Model  Free M Fixed M 
M22.2 old 0.960 0.772 
M22.2 up 0.974 0.683 
M23.1.0.a 1.097 0.902 
M23.1.0.b 0.822 0.953 
M23.1.0.d 0.765 0.972 
M23.1.0.g 0.792 1.017 
M23.1.0.h 0.808 0.949 
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9 Figures 
 

 

  

Figure 1. End year (top) length (cm) at age (bottom left) difference in length by age from Model 22.2 old, 
and (bottom right) difference in weight by age from Model 22.2 old for all models. Please note 
that the weight difference for Model 23.1.0.h (pink) is in error and should not be considered. 
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Figure 2. Length at age over time in each of the models examined.  

 

 

Model 23.1.0.g Model 23.1.0.h 

Model 22.2 old Model 22.2 updated Model 23.1.0.a Model 23.1.0.b,d 
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Figure 3. Fishery  (left) and survey (right) selectivity for 2022.  

 

 

 

Figure 4. Annually varying selectivity for (top) fishery and (bottom) survey.   
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Figure 5. Model fits to the log of the bottom trawl survey index for all models examined.  
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Figure 6. The distribution of the log of virgin recruitment (R0) for all models.  
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Figure 7. Recruitment in numbers of Age-0 Pacific cod with 95% confidence bounds for all models.   
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Figure 8. Spawning stock biomass/unfished spawning biomass with B35% management target and (shaded) 95% confidence bounds for all models. 
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Figure 9. Total spawning biomass (males and females) with (shaded) 95% confidence bounds for all models.  
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Figure 10. Likelihood profiles scaling the log survey catchability index from -0.5 to 0.5 for the main 

model components and in total. 
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Figure 11. Length comps, aggregated across time by fleet for (left) Model 22.2 and (right) Model 23.1.0a 

 

Figure 12. Pearson residuals for length composition, comparing across fleets for (left) Model 22.2 and 
(right) Model 23.1.0.a. Closed bubbles are positive residuals (observed > expected) and open 
bubbles are negative residuals (observed < expected). 



Draft  EBS Pacific cod model explorations 

40 
September 2023  BSAI Plan Team 

 

 

Figure 13. Bottom trawl survey age composition distributions and model fits (green line). Note that 
models 23.1.0.b, .d, and .g are nearly indistinguishable visually. 
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Figure 14. Pearson residuals for survey age composition. Closed bubbles are positive residuals (observed 
> expected) and open bubbles are negative residuals (observed < expected). 

Model 22.2 Model 23.1.0.a 

Model 23.1.0.b Model 23.1.0.d 
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Figure 15. Model 23.1.0.b (Left) length comps, aggregated across time by fleet and (right) Pearson 
residuals, comparing across fleets for (left) Model 22.2 and (right) Model 23.1.0.a. Closed 
bubbles are positive residuals (observed > expected) and open bubbles are negative residuals 
(observed < expected). 
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Figure 16. Key parameters fit for the likelihood profile scaling the log survey index catchability from -0.5 
to 0.5 for Model 22.2 and Model 23.1.0.b. 

 

Figure 17. Bottom trawl survey selectivity for Model 23.1.0.b with log catchability fixed at between (far 
left) -0.25 and (far right) 0.5 showing change to dome-shaped selectivity appearing in the 
likelihood profile over catchability.   
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Figure 18. Model 23.1.0.d (Left) length comps, aggregated across time by fleet and (right) Pearson 
residuals, comparing across fleets for (left) Model 22.2 and (right) Model 23.1.0.a. Closed 
bubbles are positive residuals (observed > expected) and open bubbles are negative residuals 
(observed < expected). 

  

Figure 19. Model 23.1.0.g (Left) length comps, aggregated across time by fleet and (right) Pearson 
residuals, comparing across fleets for (left) Model 22.2 and (right) Model 23.1.0.a. Closed 
bubbles are positive residuals (observed > expected) and open bubbles are negative residuals 
(observed < expected). 
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Figure 20. Conditional age-at-length data used in Model 23.1.0.h. 

 

  

Figure 21. Model 23.1.0.h (Left) length comps, aggregated across time by fleet and (right) Pearson 
residuals, comparing across fleets for (left) Model 22.2 and (right) Model 23.1.0.a. Closed 
bubbles are positive residuals (observed > expected) and open bubbles are negative residuals 
(observed < expected). 
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Figure 22. Conditional age-at-length (CAAL) data distributions and Model 23.1.0.h fits to the data 
including (bottom right) mean age from the CAAL data. 
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Figure 23. Mean length at age and 95% confidence intervals for (left) Model 23.1.0.g and right (Model 
23.1.0.h) showing reduction in uncertainty in growth estimates.    

 

 

Figure 24. Annual devs on (left) Richards parameter and (right) Lmin for Model23.1.0.g and Model 
23.1.0.h.    
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Figure 25 Total spawning biomass from 10-year retrospective peels of Model 23.1.0d with (left) natural 
mortality fit with an uninformative prior and (right) with natural mortality fixed at 0.387. 
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