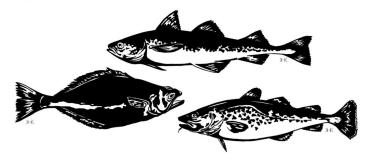

Bering Sea climate-enhanced multi-species stock assessment

Nov., 2023

Kirstin K. Holsman

Jim Ianelli, Kalei Shotwell, Steve Barbeaux, Kerim Aydin, Grant Adams, Kelly Kearney

https://apps-afsc.fisheries.noaa.gov/Plan Team/2023/EBSmultispp.pdf



2023 Climate-enhanced multispecies stock assessment for walleye pollock, Pacific cod, and arrowtooth flounder in the eastern Bering Sea

Kirstin K. Holsman, Jim Ianelli, Kalei Shotwell, Steve Barbeaux, Kerim Aydin, Grant Adams, Kelly Kearney

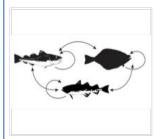
Contents

2023 BRP summa	ary tab	le					÷					 	v									2
Overview										ı,		 	÷							ç		3
Introduction					v 1		÷													÷		4
Methods					. 1					į,											ŀ	6
Climate informed	referen	nce	po	oin	ts														 ٠.			12
Results												 ٠.										14
Climate-informed																						
Discussion																						
Acknowledgments																						22
References																						22
Figures & Tobles																						20

November 2023 | kirstin.holsman@noaa.gov Alaska Fisheries Science Center, National Marine Fisheries Service, NOAA, 7600 Sand Point Way N.E., Seattle, Washington 98115

Suggested citation: Holsman, K. K., J. Ianelli, K. Shotwell, S. Barbeaux, K. Aydin, G. Adams, K. Keurney, K. Shotwell (2023) Climate-enhanced multispecies stock assessment for walleye pollock, Pacific cod, and arrowtooth flounder in the eastern Bering Sea. In: Ianelli, J. et al. 2023. Assessment of the eastern Bering Sea walleye pollock. North Pacific Fishery Management Council, Anchorage, AK.

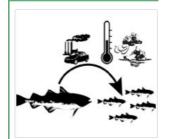
Two models presented each year:


- SSM: without trophic interactions (single-species mode)
- MSM: with trophic interactions (multi-species mode)

Produced annually 2016 - present

EBS CEATTLE

Mortality


- Empirical diets
- Bioenergetics

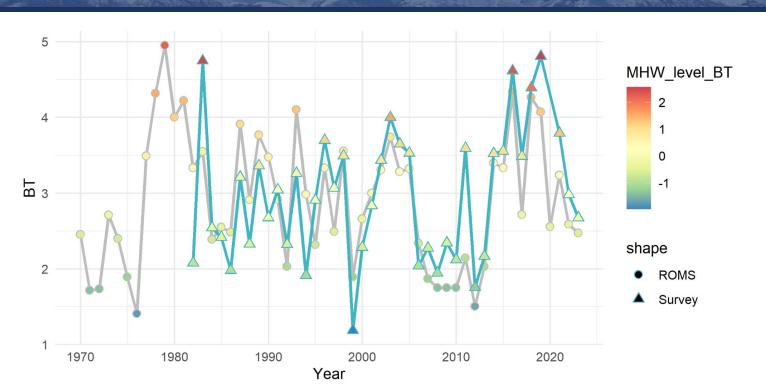
Weight @ Age

- Empirical
- VonB with Temp

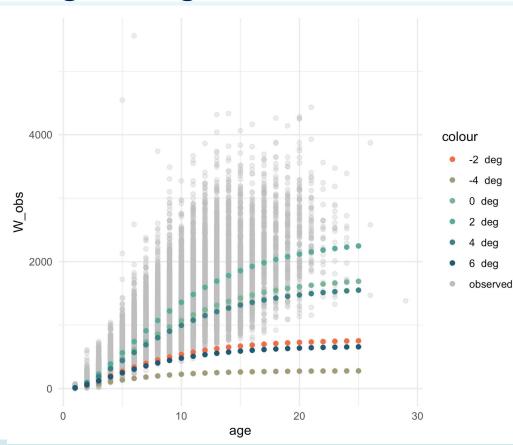
Rec

- Climate-S/R
- S/R
- mean R

HCRs

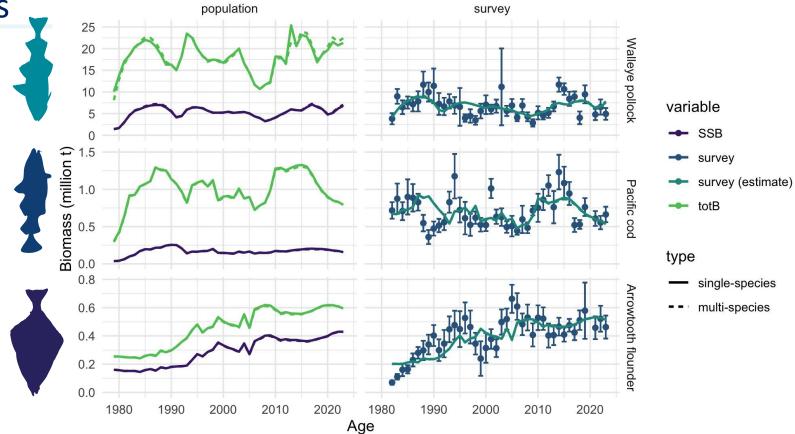


- Climate ABC
- MMSY
- MEY
- SPR
- Aggregate MSY


ROMS output

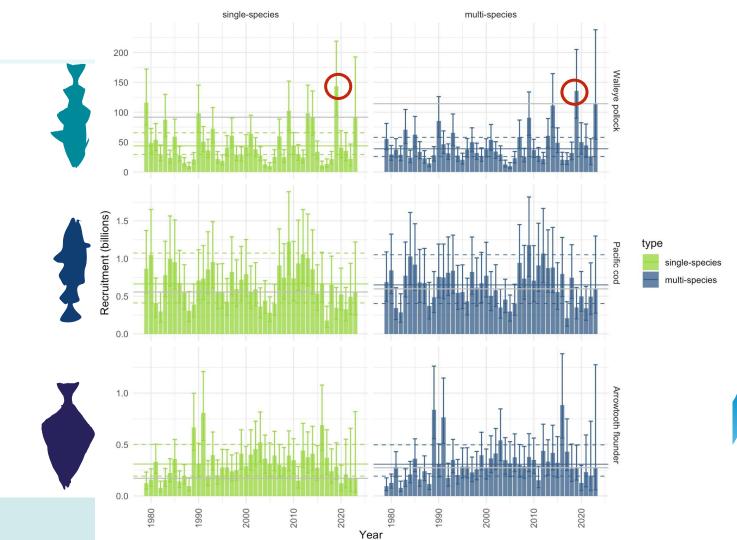
https://data.pmel.noaa.gov/aclim/thredds/catalog/files.html

Weight at Age

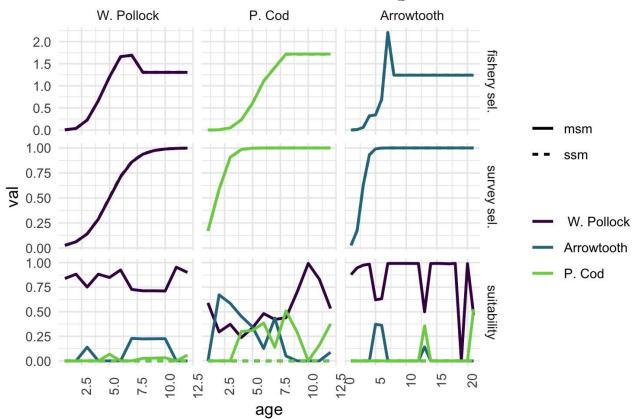

 Hist: Empirical used when avail; missing yrs have vonBT (currently updating with new TMB version of vonBT())

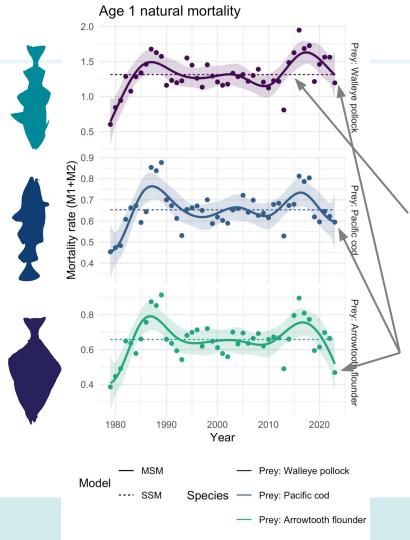
Projections: VonBT

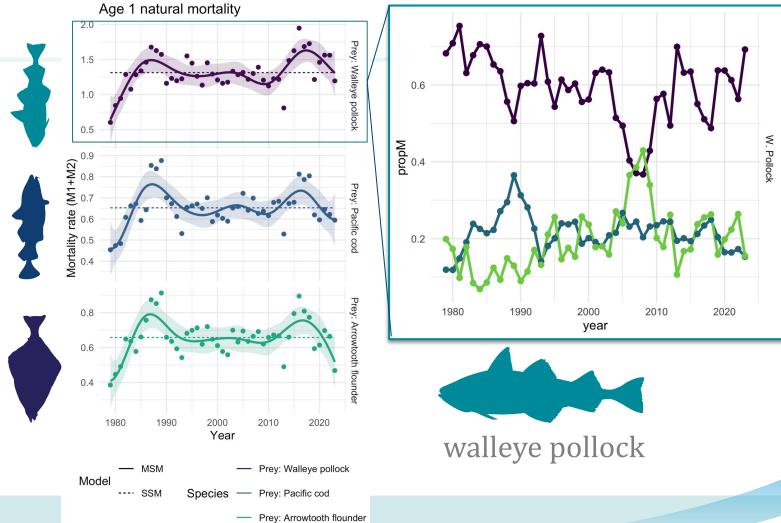
Holsman & Aydin 2015



Biomass

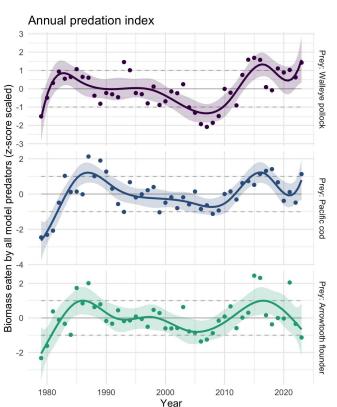



Recruitment

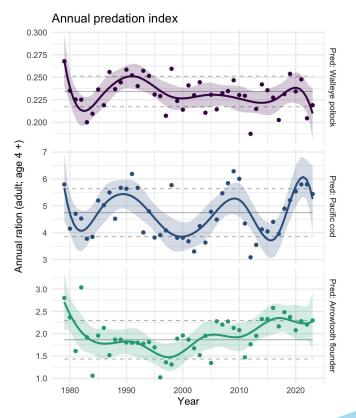


M1 in single species (CEATTLE) model = avg(M1+M2) from multispecies model

Predation mortality decreased in 2023

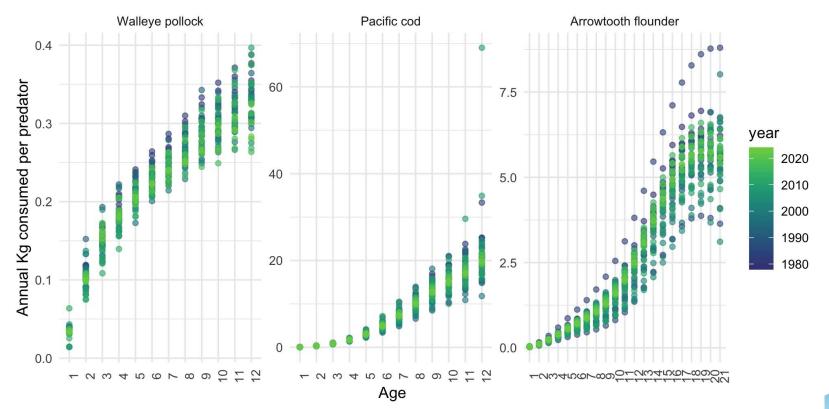

Pred

W. Pollock

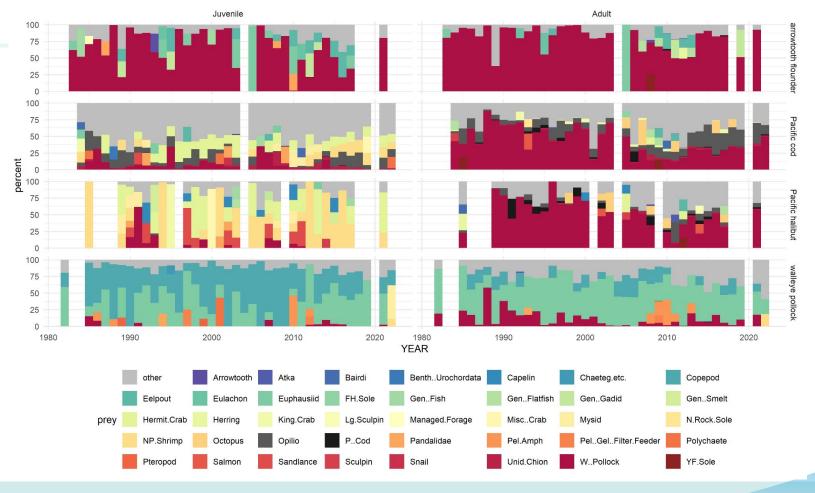

P. Cod Arrowtooth

ESPs

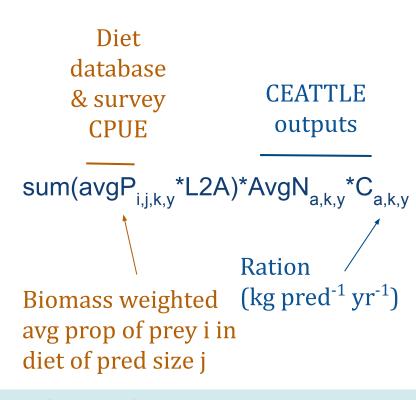
Use this if: need index of mortality for plk, pcod, or atf

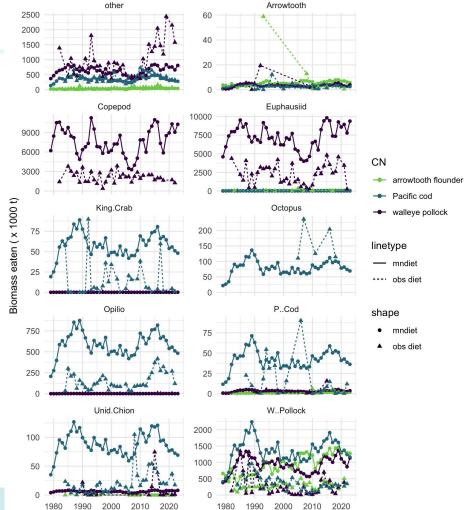


Use this if: need index of plk, pcod, atf eating other prey

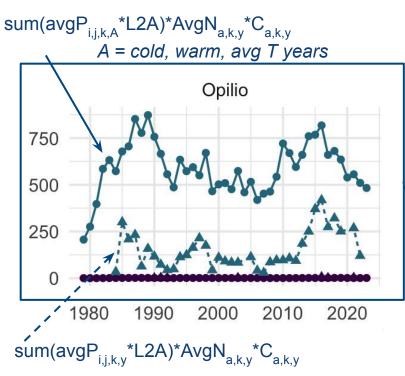


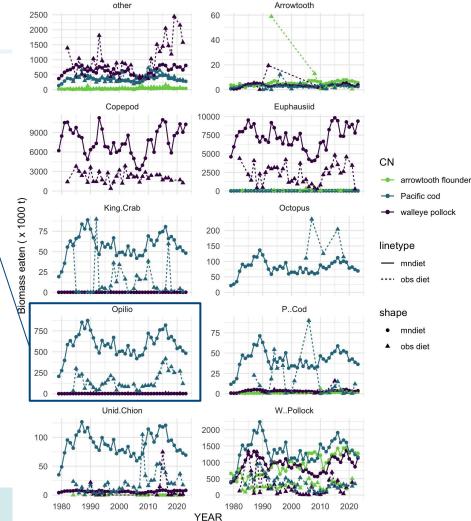
Annual estimates of prey consumed per fish





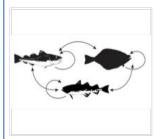
ESP indices expanded





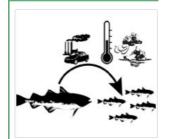
YEAR

ESP indices expanded



EBS CEATTLE

Mortality


- Empirical diets
- Bioenergetics

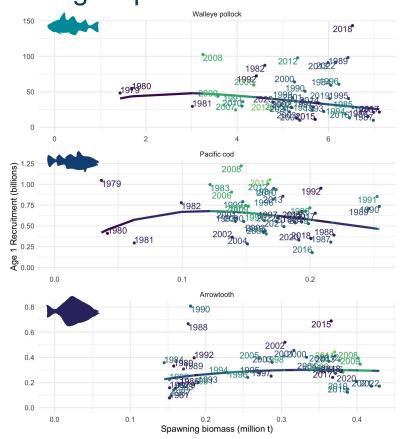
Weight @ Age

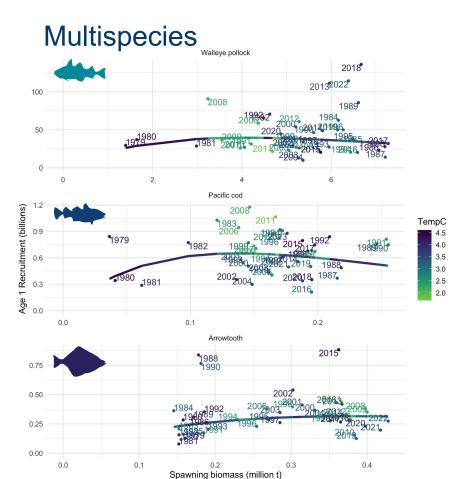
- Empirical
- VonB with Temp

Rec

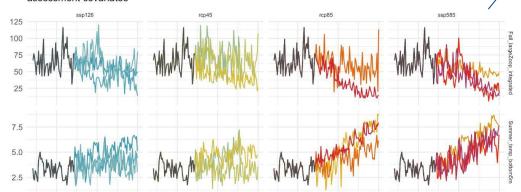
- Climate-S/R
- S/R
- mean R

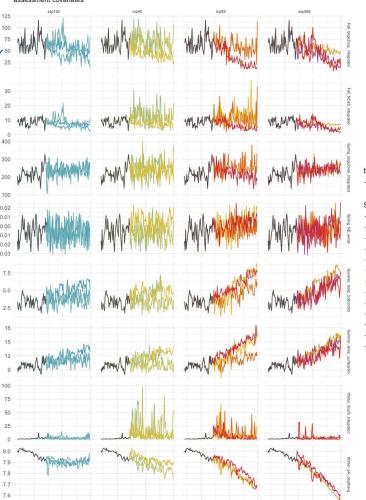
HCRs




- Climate ABC
- MMSY
- MEY
- SPR
- Aggregate MSY

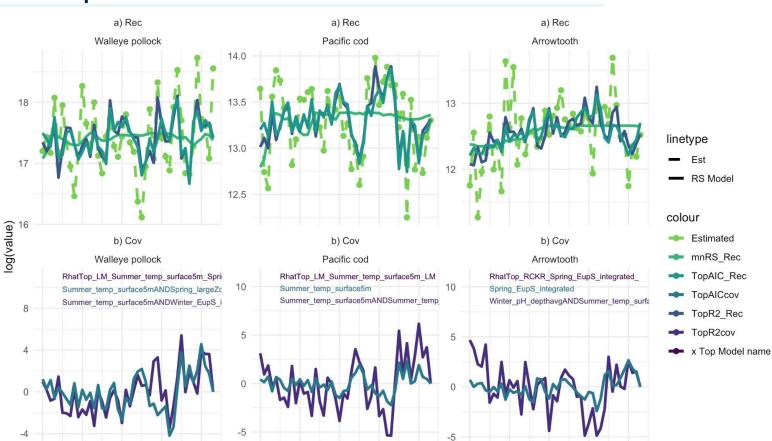
Recruitment (note: scales vary)


Single-species



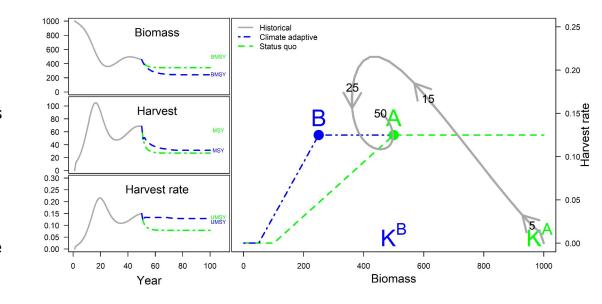
Recruitment covariates

CEATTLE Indices, delta corrected to the operational hindcast assessment covariates



CEATTLE Indices, delta corrected to the operational hindcast assessment covariates

Multispecies model


Recruitment yr

Adapting reference points to reflect changes in productivity

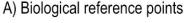
- MSA directs reference points to reflect current and probable future environmental conditions
- Changing reference points for stocks undergoing climate-related productivity shifts can result in counter-intuitive management actions:
 - Declining stocks fished harder
 - Flourishing stocks fished more conservatively

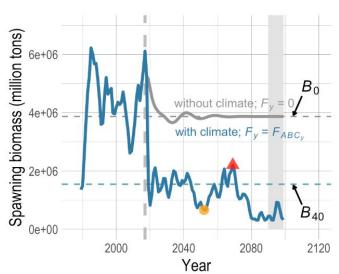
Szuwalski et al. 2023

Climate informed BRPs

Set target using climate naive (B0 from no-climate projection)

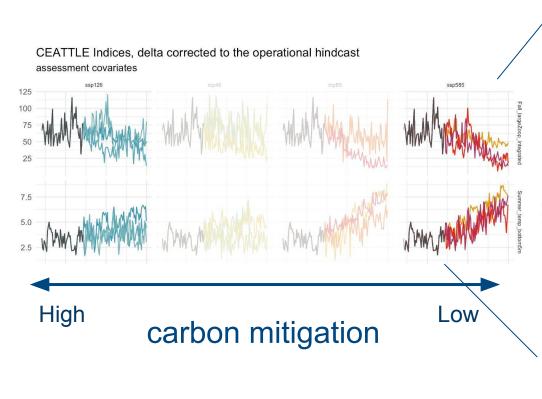
Ia: Use model with climate effects to get F40 for each climate projection and ABC 2080

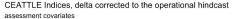

2a: Set ABC_2024 = avg(ABC 2080), calc F2024 and use that to get ABC_2025 (avg. using models with climate effects)

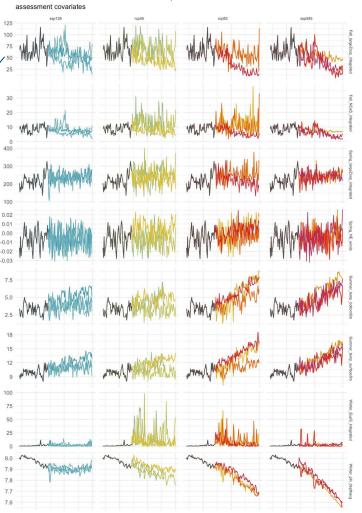

Ib: Use model with no climate to get F40%

2b:Apply F40%* to model with climate effects to get ABC from ensemble (ABC_2024 = avg(ABC from all models)

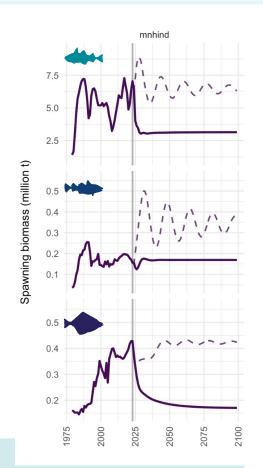
Climate informed biological reference points



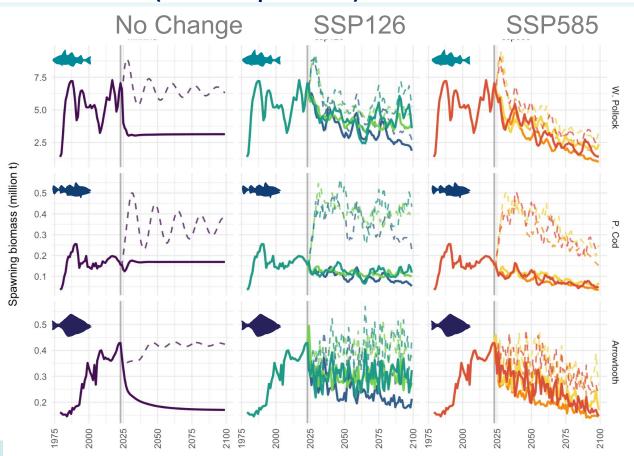



Holsman, K. K. et al. Climate-informed multispecies assessment model methods for determining biological references points and Acceptable Biological Catch. *Protoc. Exch.* https://doi.org/10.21203/rs.3.pex-1084/v1 (2020).

Recruitment covariates



Biomass (multispecies)


Project to 2099 such that F that results in $B_{2095-2099} \sim 0.4 \ B_{100\%}$ AND $B_y > 0.35 \ B_{100\%}$

Pollock & P. cod first, then arrowtooth

(Holsman et al. 2016)

Biomass (multispecies)

Assumes no climate type sim2

- CI-cesm ssp126

adaptation

CI-cesm ssp585 CI-gfdl_ssp126

(in fish, fishery or fisheries

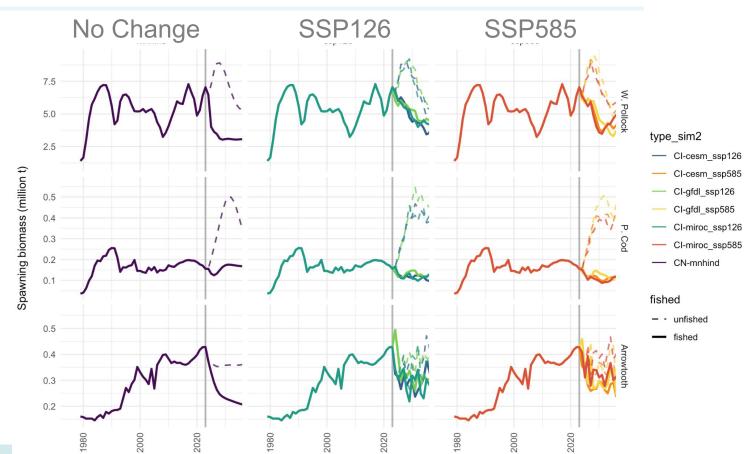
CI-gfdl_ssp585

CI-miroc ssp126

— CI-miroc_ssp585

management)

- CN-mnhind


fished

unfished

fished

Biomass

2023 Climate informed targets & reference points

	Walleye		Pacific		Arrowtoo	th
Quantity	pollock		cod		flounder	
	SSM	MSM	SSM	MSM	SSM	MSM
2023 M (age 1)	1.313	1.195	0.653	0.594	0.658	0.468
2023 Average 3+ M	0.306	0.306	0.38	0.38	0.227	0.227
Projected (age 3+) B_{2024} (t)	15,860,694	16,265,727	679,301	686,562	566,160	569,909
SSB_{2023} (t)	6,790,160	7,044,480	157,340	155,597	429,700	$428,\!256$
% change in SSB (t) from 2022	10.3	10.3	-9.2	-9.0	0.1	0.2
Projected SSB_{2024} (t)	6,239,390	6,475,040	156,408	155,652	374,227	373,806
Projected SSB_{2025} (t)	5,828,060	5,819,550	128,478	123,214	351,317	348,509
*Projected $SSB_{0,2100}$ (t)	6,164,698	6,504,694	322,907	372,244	368,306	426,212
*Projected $SSB_{target,2100}$ (t)	3,044,850	3,136,376	164,934	169,131	147,286	170,536
**Target 2100 B/B_0	0.494	0.482	0.511	0.454	0.4	0.4
$F_{target,2100}$	0.345	0.547	0.443	0.481	0.08	0.086
$F_{ABC,2024}$	0.134	0.192	0.498	0.566	0.033	0.042
ABC_{2024}	2,054,020	2,965,510	188,498	205,756	17,411	21,741
ABC_{2025}	1,853,370	2,521,900	156,934	$165,\!274$	16,533	20,573

Climate informed BRPs and ABC evaluations

Climate-informed outlook

Probability of near-term (+ 1-2 yr) biomass decline or increase

- Relative to 2023 levels, the model projects SSB of pollock will decline in 2024 (projected based on z023 catch) followed by a decline in SSB in 2025 (projected with F_{ABC}). For Pacific cod the model projects a decline (slightly) in SSB in both 2024 and 2025.
- Ensemble projections using climate-enhanced recruitment models and projected future warming scenarios (including high (ssp126), moderate (RCP45), and low (ssp585) carbon mitigation scenarios, as well as a persistence scenario and assuming 2023 catch for 2024 and F_{ABC} for 2025) estimate a $^{0}5\%$ probability that pollock SSB will remain between 89-93% of 2023 SSB in 2024 and will be bet sen 81-84% of 2023 SSB levels in 2025.
- Ensemble projections using climate-enhanced recruitment models based on long-term projections estimate a 95% chance that Pacific cod SSB will continue to decline to between 96-102% of 2023 SSB in 2024 and between 78-82% of 2023 SSB levels in 2025.
- Ensemble projections using climate-enhanced recruitment models based on long-term projections—stimate a 95% chance that arrowtooth SSB will be between 84 and 98% of 2023 SSB in 2024 and will be between 76 and 86% of 2023 SSB levels in 2025.

Climate informed BRPs and ABC evaluations

Climate-informed outlook

Probability of near-term (+ 1-2 yr) biomass decline or increase

- Relative to 2023 levels, the model projects SSB of pollock will decline in 2024 (projected based on z023 catch) followed by a decline in SSB in 2025 (projected with F_{ABC}). For Pacific cod the model projects a decline (slightly) in SSB in both 2024 and 2025.
- Ensemble projections using climate-enhanced recruitment models and projected future warming scenarios (including high (ssp126), moderate (RCP45), and low (ssp585) carbon mitigation scenarios, as well as a persistence scenario and assuming 2023 catch for 2024 and F_{ABC} for 2025) estimate a 95% probability that pollock SSB will remain between 89-93% of 2023 SSB in 2024 and will be between 81-84% of 2023 SSB levels in 2025.
- Ensemble projections using climate-enhanced recruitment models based on long-term projections estimate a 95% chance that Pacific cod SSB will continue to decline to between 96-102% of 2023 SSB in 2024 and between 78-82% of 2023 SSB levels in 2025.
- Ensemble projections using climate-enhanced recruitment models based on long-term projections—stimate a 95% chance that arrowtooth SSB will be between 84 and 98% of 2023 SSB in 2024 and will be between 76 and 86% of 2023 SSB levels in 2025.

Multispecies assessment

2023 Climate-enhanced multispecies stock assessment for walleye pollock, Pacific cod, and arrowtooth flounder in the eastern Bering Sea

Kirstin K. Holsman, Jim Ianelli, Kalei Shotwell, Steve Barbeaux, Kerim Aydin, Grant Adams, Kelly Kearney

Contents

23 BRP summary table
verview
roduction
ethods
imate informed reference points
sults
imate-informed outlook
scussion
knowledgments
ferences
zures & Tables

November 2023 | kirstin.holsman@noaa.gov Alaska Fisheries Science Center, National Marine Fisheries Service, NOAA, 7600 Sand Point Way N.E., Seattle, Washington 98115

Suggested citation: Hokman, K. K., J. Ianelli, K. Shotwell, S. Barbeaux, K. Aydin, G. Adams, K. Kearney, K. Shotwell (2023) Climate-enhanced multispecies stock assessment for walleye pollock, Pacific cod, and arrowtooth flounder in the eastern Bering Sea. In: Ianelli, J. et al. 2023. Assessment of the eastern Bering Sea walleye pollock. North Pacific Fishery Management Council, Anchorage, AK.

Climate-informed outlook

Probability of near-term (+ 1-2 vr) biomass decline or increase

 Relative to 2023 levels, the model projects SSB of pollock will decline in 2024 (projected based on 2023 catch) followed by a decline in SSB in 2025 (projected with F_{ABG}). For Pacific cod the model projects

Use climate informed model to characterize risk in +1 & +2 years

2024 and between 78-82% of 2023 SSB levels in 2025.

Ensemble projections using climate-enhanced recruitment models based on long-term projections estimate a 95% chance that arrowtooth SSB will be between 84 and 98% of 2023 SSB in 2024 and will be between 76 and 86% of 2023 SSB levels in 2025.

Low warming scenarios (SSP126): probability of long-term (2033, 2050, 2080) biomass decline or increase

Trends in biomass and recruitment under high carbon mitigation (low warming; SSP126) scenarios are
very similar to near-present day. Note that projections assume no adaptation by the species, fishery, or

Use climate informed model to characterize risk in 10 + years with low warming

Ensemble projections using climate-enhanced recruitment models based on long-term projections estimate a 95% chance that arrowtooth SSB will be between 62-74% of 2023 SSB in 2033, between 63-68% of 2023 SSB levels in 2050, and between 59-66% of 2023 SSB levels in 2050.

High warming scenarios (SSP585): probability of long-term (2033, 2050, 2080) biomass decline or increase

 $\bullet \ \ \text{Trends in biomass and recruitment under low carbon mitigation (high warming; \ SSP585) \ scenarios$

Use climate informed model to characterize risk in 10 + years with high warming

and 69% of 2023 SSB levels in 2050, and between 37 and 42% of 2023 SSB levels in 2080.

Ensemble projections using climate-enhanced recruitment models based on long-term projections estimate a 95% chance that arrowtooth SSB will be between 64 and 74% of 2023 SSB in 2033, between 58 and 61% of 2023 SSB levels in 2080.

Climate informed BRPs and ABC evaluations

Low warming scenarios (SSP126): probability of long-term (2033, 2050, 2080) biomass decline or increase

- Trends in biomass and recruitment under high carbon mitigation (low warming; SSP126) scenarios are very similar to near-present day. Note that projections assume no adaptation by the species, fishery, or fishery management. See figures 22 and 23 for more information.
- Ensemble projections using climate-enhanced recruitment models and projected future warming scenarios and assuming F_{ABC} for 2025 2100) estimate a 95% chance that pollock SSB will be between 59-63% of 2023 SSB in 2033, between 57-61% of 2023 SSB levels in 2050, and between 48-55% of 2023 SSB levels in 2080.
- Ensemble projections using climate-enhanced recruitment models based on long-term projections estimate a 95% chance that Pacific cod SSB will be between 71-79% of 2023 SSB in 2033, between 73-79% of 2023 SSB levels in 2050, and between 62-69% of 2023 SSB levels in 2080.
- Ensemble projections using climate-enhanced recruitment models based on long-term projections estimate a 95% chance that arrowtooth SSB will be between 62-74% of 2023 SSB in 2033, between 63-68% of 2023 SSB levels in 2050, and between 59-66% of 2023 SSB levels in 2080.

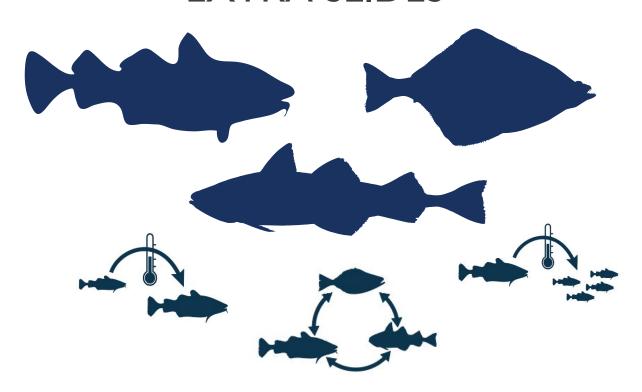
Climate informed BRPs and ABC evaluations

High warming scenarios (SSP585): probability of long-term (2033, 2050, 2080) biomass decline or increase

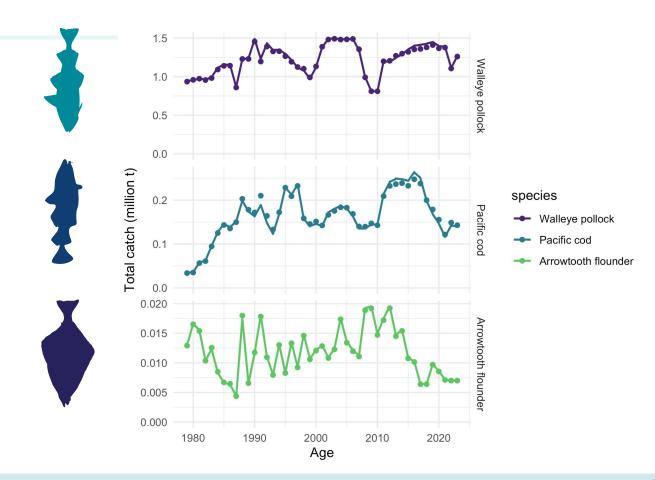
- Trends in biomass and recruitment under low carbon mitigation (high warming; SSP585) scenarios are markedly different than historical or present day productivity. Note that projections assume no adaptation by the species, fishery, or fishery management.
- Ensemble projections using climate-enhanced recruitment models and projected future warming scenarios and assuming F_{ABC} for 2025 2100) estimate a 95% chance that pollock SSB will be between 57 and 64% of 2023 SSB in 2033, between 50 and 55% of 2023 SSB levels in 2050, and between 29 and 34% of 2023 SSB levels in 2080.
- Ensemble projections using climate-enhanced recruitment models based on long-term projections estimate a 95% chance that Pacific cod SSB will be between 65 and 75% of 2023 SSB in 2033, between 64 and 69% of 2023 SSB levels in 2050, and between 37 and 42% of 2023 SSB levels in 2080.
- Ensemble projections using climate-enhanced recruitment models based on long-term projections estimate a 95% chance that arrowtooth SSB will be between 64 and 74% of 2023 SSB in 2033, between 58 and 61% of 2023 SSB levels in 2050, and between 40 and 43% of 2023 SSB levels in 2080.

Next year

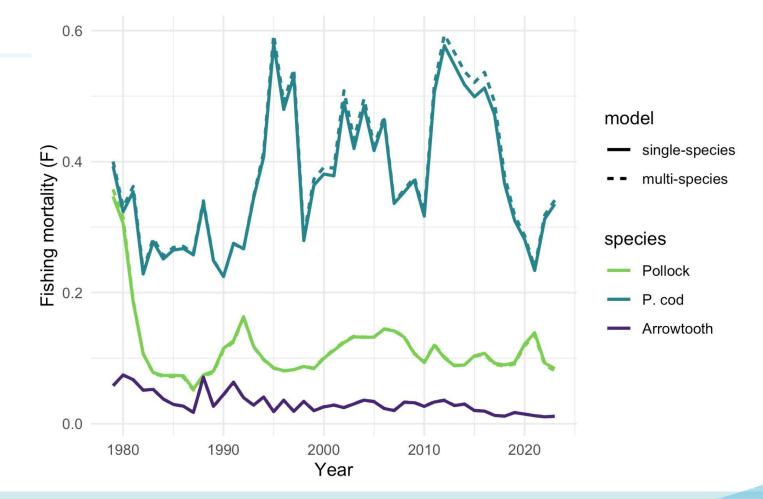
- Revist likelihood weighting
- 2. Update weight at age (Holsman et al. in prep)
- 3. Add in pred/prey overlap (Goodman et al. in prep)
- 4. Transition to TMB via merging CEATTLE and Rceattle
- 5. NSF conditioned ABC (2024)
- 6. Include ACLIM MSE results and CI features
- 7. Share output via AKFIN


CEATTLE workflow features

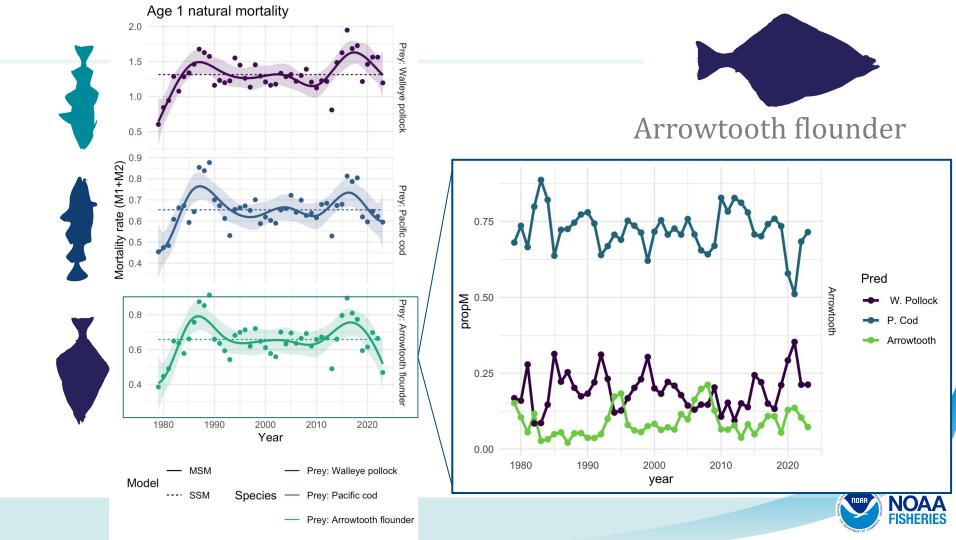
- R and shell scripts used to run the model through projections:
 - Regular output includes ESR contribution (R markdown)
 - ESP indices (produced annually)
 - Assessment written in Rmarkdown using Rdata outputs
 https://apps-afsc.fisheries.noaa.gov/Plan_Team/2023/EBSmultispp.pdf
- Github repositories (* private)
 - *CEATTLE (ADMB):
 - https://github.com/kholsman/CEATTLE
 - *futR(): recruitment fitting model in TMB:
 - https://github.com/kholsman/futR
 - * vonBT(): temp. varying vonB model in TMB:
 - https://github.com/kholsman/vonBT
 - Rceattle (G. Adams; R/TMB):
 - https://github.com/grantdadams/Rceattle

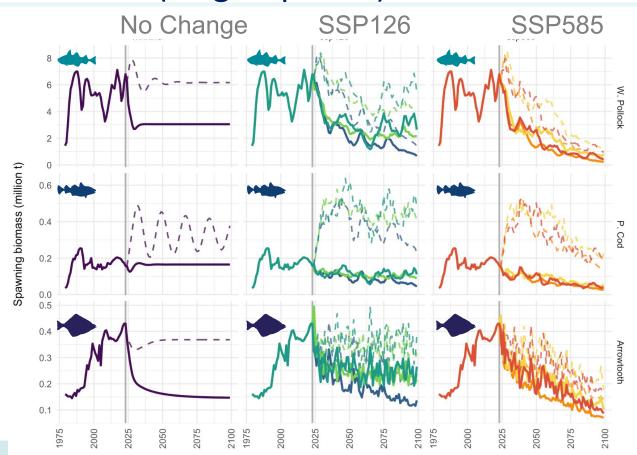


EXTRA SLIDES



Catch




Single species model

Recruitment yr

Biomass (Single species)

Assumes no climate type_sim2

- CI-cesm ssp126 CI-cesm ssp585

adaptation

CI-gfdl_ssp126

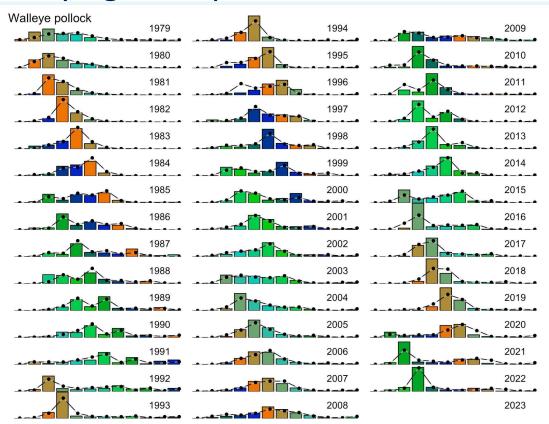
(in fish, fishery or fisheries

CI-gfdl_ssp585

CI-miroc ssp126

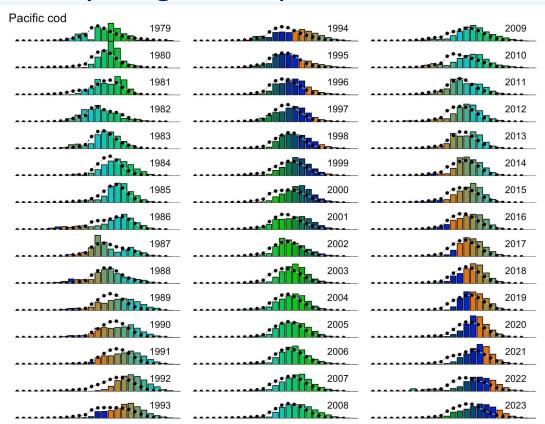
- CI-miroc ssp585

management)

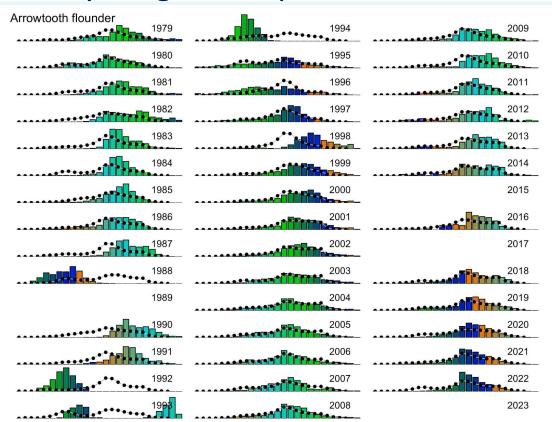

- CN-mnhind

fished

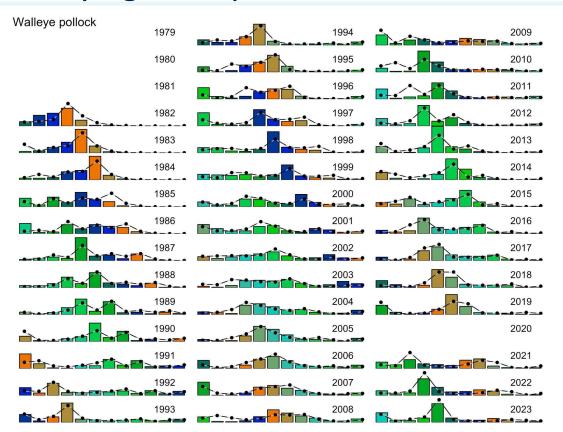
- unfished
- fished

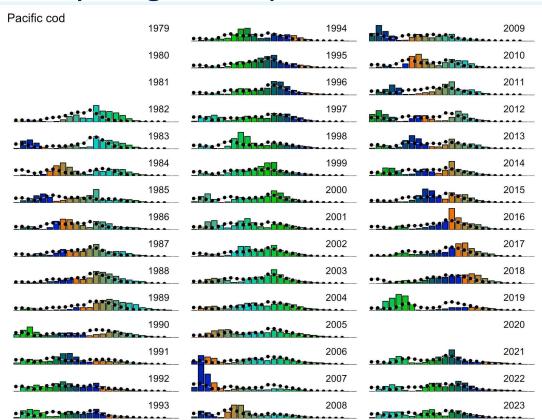

Fishery age comp.

Fishery length comp.

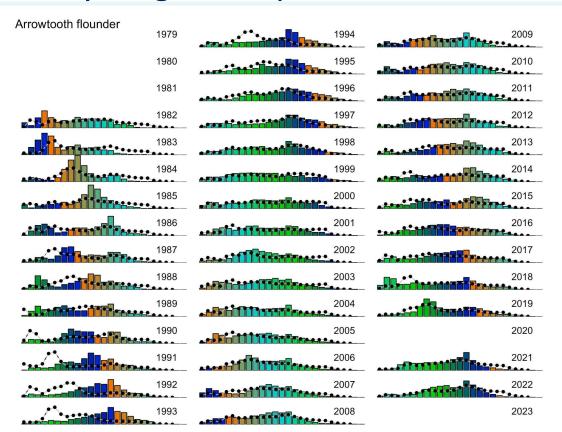


Pacific cod


Fishery length comp.


Survey age comp.

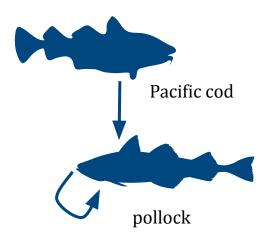
Survey length comp.



Pacific cod

Survey length comp.

1865


Incorporating predation interactions in a statistical catch-at-age model for a predator-prey system in the eastern Bering Sea

Jesús Jurado-Molina, Patricia A. Livingston, and James N. Ianelli

Abstract: Virtual population analysis and the statistical catch-at-age methods are common stock assessment models used for management advice. The difference between them is the statistical assumptions allowing the fitting of parameters by considering how errors enter into the models and the data sources for the estimation. Fishery managers are being asked to consider multispecies interactions in their decisions. One option to achieve this goal is the multispecies virtual population analysis (MSVPA); however, its lack of statistical assumptions does not allow the use of tools used in single-species stock assessment. We chose to use a two-species system, walleye pollock (Theragra chalcogramma) and Pacific cod (Gadus macrocephalus), to incorporate the predation equations from MSVPA into an age-structured multispecies statistical model (MSM). Results suggest that both models produced similar estimates of suitability coefficients and predation mortalities. The adult population estimates from the single-species stock assessment and MSM were also comparable. MSM provides a measure of parameter uncertainty, which is not available with the MSVPA technologies. MSM is an important advancement in providing advice to fisheries managers because it incorporates the standard tools such as Bayesian methods and decision analysis into a multispecies context, helping to establish useful scenarios for management in the Bering Sea.

MSVPA → Statistical MSM

Jurado-Molina et al. 2005 doi: 10.1139/F05-110

Deep-Sea Research II 134 (2016) 360-378

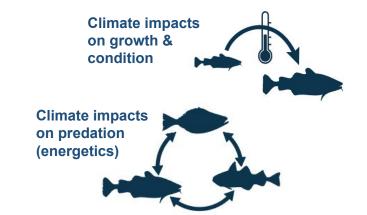
Contents lists available at ScienceDirect

Deep-Sea Research II

journal homepage: www.elsevier.com/locate/dsr2

A comparison of fisheries biological reference points estimated from temperature-specific multi-species and single-species climate-enhanced stock assessment models

Kirstin K. Holsman a,*, James Ianelli a, Kerim Aydin a, André E. Punt b, Elizabeth A. Moffitt b,1


^a Alaska Fisheries Science Center, National Marine Fisheries Service, NOAA, 7600 Sand Point Way N.E., Building 4, Seattle, Washington 98115, USA

b University of Washington School of Aquatic and Fisheries Sciences, 1122 NE Boat St., Seattle, WA 98105, USA

"CEATTLE"

<u>Climate Enhanced Age-structured</u> model with <u>Temperature-specific</u> <u>Trophic Linkages and Energetics</u>

Holsman et al. 2016

Deep-Sea Research II 134 (2016) 360-378

Contents lists available at ScienceDirect

Deep-Sea Research II

journal homepage: www.elsevier.com/locate/dsr2

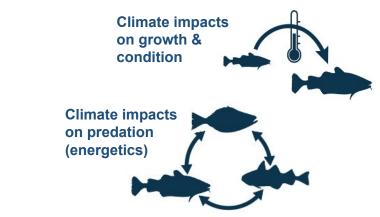
A comparison of fisheries biological reference points estimated from temperature-specific multi-species and single-species climate-enhanced stock assessment models

Check for updates

Kirstin K. Holsman a,*, James Ianelli a, Kerim Aydin a, André E. Punt b, Elizabeth A. Moffitt b,1

^a Alaska Fisheries Science Center, National Marine Fisheries Service, NOAA, 7600 Sand Point Way N.E., Building 4, Seattle, Washington 98115, USA

^b University of Washington School of Aquatic and Fisheries Sciences, 1122 NE Boat St., Seattle, WA 98105, USA


ARTICLE

https://doi.org/10.1038/s41467-020-18300-3

Ecosystem-based fisheries management forestalls climate-driven collapse

K. K. Holsman (12^{SI}), A. C. Haynie¹, A. B. Hollowed^{1,2}, J. C. P. Reum^{1,2,3}, K. Aydin^{1,2}, A. J. Hermann (1^{4,5}, W. Cheng (1^{4,5}), A. Faig (1²), J. N. Ianelli^{1,2}, K. A. Kearney (1^{4,4}), A. E. Punt (1²)

Holsman et al. 2016

Holsman et al. 2020

https://github.com/grantdadams/Rceattle

Fisheries Research 251 (2022) 106303

Contents lists available at ScienceDirect

Fisheries Research

journal homepage: www.elsevier.com/locate/fishres

An ensemble approach to understand predation mortality for groundfish in the Gulf of Alaska

Grant D. Adams ^{a,*}, Kirstin K. Holsman ^{a,b}, Steven J. Barbeaux ^b, Martin W. Dorn ^b, James N. Ianelli ^b, Ingrid Spies ^b, Ian J. Stewart ^c, André E. Punt ^a

- a School of Aquatic and Fishery Sciences, University of Washington, Seattle, WA, USA
- b Resource Ecology and Fisheries Management Division, Alaska Fisheries Science Center, Seattle, WA, USA
- ^c International Pacific Halibut Commission, Seattle, WA, USA

ARTICLE INFO

Handled by: Mark Nicholas Maunder

Keywords: Stock assessment Ecosystem-based fisheries management Natural mortality Multi-species State-space Climate change

ABSTRACT

There is increasing consensus of the need for ecosystem-based fisheries management (EBFM), which accounts for trophic interactions and environmental conditions when managing exploited marine resources. Continued development and testing of analytical tools that are expected to address EBFM needs are essential for guiding the management of fisheries resources in achieving and balancing multiple social, economic, and conservation objectives. To address these needs, we present and compare alternative climate-informed multi-species statical catch-at-age models to account for spatio-temporal differences in stock distributions, with application to four groundfish species (walleye pollock Gadus chalcogrammus, Pacific cod Gadus macrocephalus, arrowtooth flounder Athersethes stomias, and Pacific hallbut Higoglosus stendepics) in the Gulf of Alaska, USA. We integrate action

Grant Adams

grantdadams

Unfollow

I am a PhD student at the University of Washington School of Aquatic and Fisheries Science.

A 20 followers · 24 following

CEATTLE Applications

Operational advice:

- o Appendix to BSAI pollock assessment (2016 to now)
- o M2 index for EBS ecosystem status report (2016 to now)
- o M2 index for ESP (2020 to now)

ACLIM/Bering Sea:

- o 2010-2015 BSIERP MSE
- o 2016- now ACLIM climate MSE
- o 2019- 2023 Lenfest NFS
- o Lenfest ocean wealth

Holsman, K. K. et al. Climate-informed multispecies assessment model methods for determining biological references points and Acceptable Biological Catch. *Protoc. Exch.* https://doi.org/10.21203/rs.3.pex-1084/v1 (2020).

Bering Seasons

o Forecasts under 9mo

GOA

- o G. Adams (UW): 3 and 4 species model for GOA (Adams et al, in review)
- o G. Adams (UW): M2 index for GOA Ecosystem Status Report (2021-now)
- o Climate MSE underway for GOA

Hake (S. Wassermann)

Model Summary

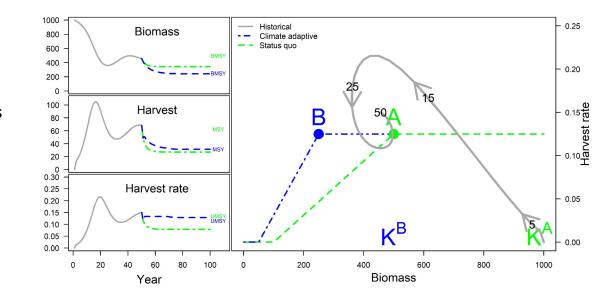
CEATTLE (Holsman et al. 2016)

- NEBS+EBS
- Age or Length based
- Multi- or single-species
- ADMB
- Climate (energetics) effects on
 - Growth
 - Mortality (if in MSM)
 - Recruitment
- Used to derive climate-inform. ABC
- Pollock, Pcod, ATF
- Operational 2016 now (annually)
- Climate naive targets; climate informed reference points

Rceattle (Adams et al. 2022)

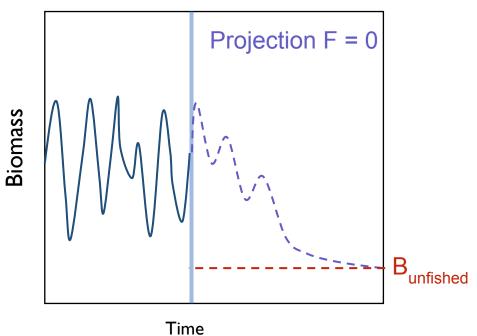
- GOA
- Age or Length based
- Multi- or single-species
- TMB
- Random effects
- Data weighting
- Climate (energetics) effects on
 - Growth*
 - Mortality (if in MSM)
 - Recruitment
- Used in EBS, GOA, and Cali Current (hake)
- Pollock, Pcod, ATF, Halibut, and Hake

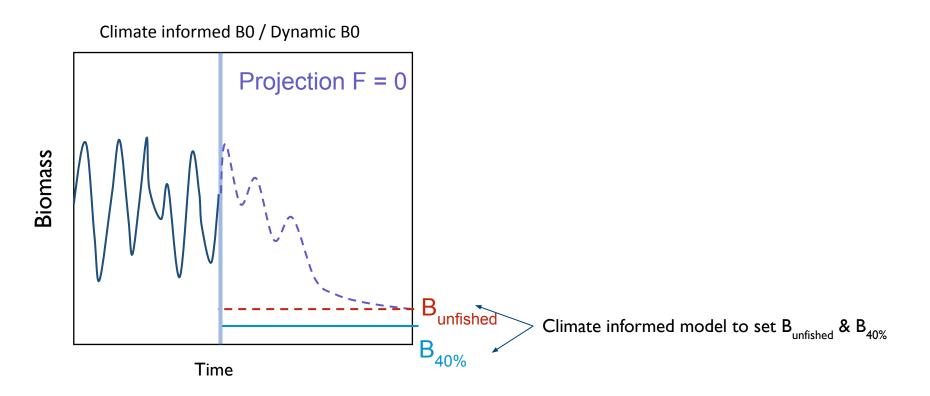
Discussion: Climate informed BRPs


Set B0 and B40 target using climate informed models

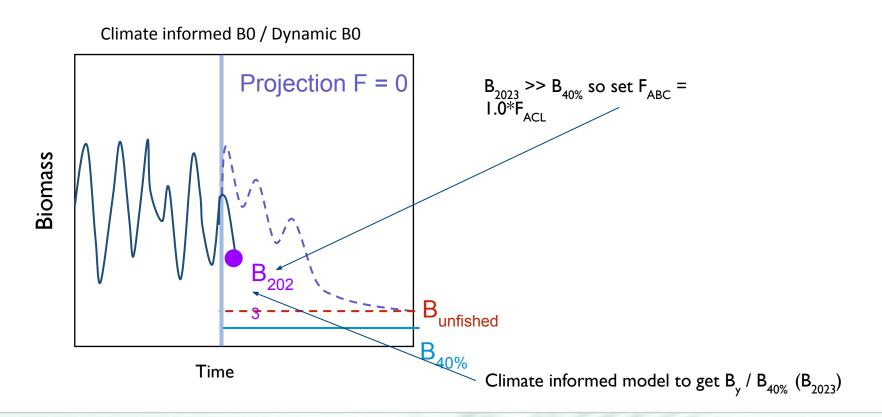
NO!

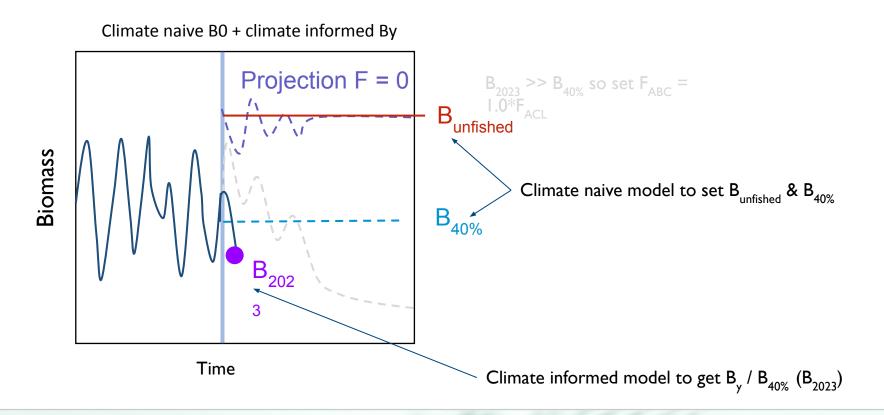
Adapting reference points to reflect changes in productivity

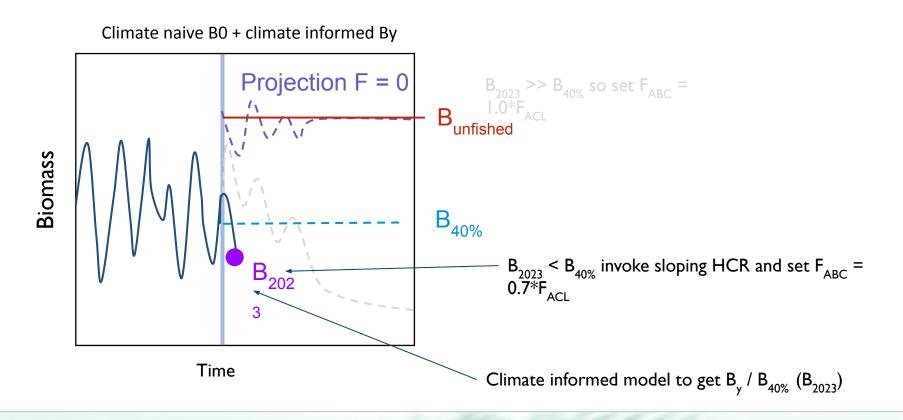

- MSA directs reference points to reflect current and probable future environmental conditions
- Changing reference points for stocks undergoing climate-related productivity shifts can result in counter-intuitive management actions:
 - Declining stocks could be fished harder
 - Flourishing stocks could be fished more conservatively


Szuwalski et al. 2023

First: Set Target / reference points




First: Set Target / reference points


First: Set Target / reference points

"hybrid" climate- naive & climate informed approach

"hybrid" climate- naive & climate informed approach

