Norton Sound Red King Crab SAFE 2024

Sept 13 2023

Crab Plan Team:
NOAA-Online
Seattle WA

Toshihide “Hamachan” Hamazaki,
Alaska Department of Fish & Game
Division of Commercial Fisheries
Issues to Determine
Model Selection for Jan 2024

• Final model selection for Jan 2024

 • Model 21.0: Default baseline model
 – Length dependent M: $0.18 < \text{CL 124mm, Estimate } > 123\text{mm}$
 • Model 23.0: SSC requested alternative model
 – Length independent model estimate M.
 • The same model selection discussion in 2013, 2016, 2017...

• Other Issues to discuss (as time allows)
New Data: Catch (Winter, Summer), CPUE, and Trawl abundance

- Winter Com: 3,580 (10,013 lb)
- Winter Subsistence (To be reported: Assume the same as 2022)
- Summer Com: 146,087 (413,327 lb)
- Bycatch from other fisheries (??? Lb)
- Discards mortality 21,350 lb (model estimate)
- Total Catch 0.446 million lb < ABC (0.450).
- ADF&G Trawl abundance
 - 3.44 million (CV 0.325)
- NOAA NBS abundance
 - To be reported
Response to the CPT-SSC (Jan-Feb 2023)

Einstein did not say…
(______) is doing the same thing over and over again and expecting (______) results

• **SSC:** *Test the sensitivity of the assessment model to a lower size at maturity*

• **Author Reply**
 – Evaluated in SAFE 2019, 2022
 – No impacts: Tier 4 F_{OFL} determination is insensitive to size at maturity
Response to the CPT-SSC (Jan-Feb 2023)

Einstein did not say…
() is doing the same thing over and over again and expecting () results

• **SSC:** *One estimated value of M for all sizes.*

• **Author Reply**
 – Evaluated in SAFE 2013, 2016, 2017
 – Higher M (0.3-0.42)
 – Lower model fit (i.e. higher nll value)
 – Rejected by CPT-SSC
 – Alternative model 23.0
Response to the CPT-SSC (Jan-Feb 2023)

Einstein did not say…
(_________________________) is doing the same thing over and over again and expecting (_____________________) results

• **SSC:** *A small-scale observer program should be considered.*

• **Author Reply**
 – All the previous observer programs were small-scale. (further smaller-scale programs?)
 – **Welcome observer survey experts’ input**
 • Survey design, bias correction, etc.
 – ADF&G and NSEDC agree:
 • Previous observer programs did not work *(for the purpose of estimating discards mortality)*
 • Biased survey, biased data, biased discards estimates.
Response to the CPT-SSC (Jan-Feb 2023)

Einstein did not say…
() is doing the same thing over and over again
and expecting () results

• **SSC: Update the Standardized Com fish CPUE model.**

• **Author Reply**
 – Worthy consideration.
 – Welcome model improving suggestions and consultations from experts.
 – The updates will unlikely improve the assessment model performance.
 – Little difference between arithmetic and standardized CPUE.
 – High additional variance estimate
 – Removing CPUE data had little effect on model performance and projection (SAFE 2018)
 – Included as supplemental to triennial trawl survey, but trawl survey is becoming annual (NBS)
Einstein did not say…

(______) is doing the same thing over and over again and expecting (______) results

- **SSC: Update the Standardized Com fish CPUE model.**
Response to the CPT-SSC (Jan-Feb 2023)

• **SSC: LK-TK, VAST, GMACS Updates and progresses**

• **Author Reply**
 – Look forward to seeing progress in LK-TK and VAST
 • LK-TK: LTK Task force
 • VAST: Jon R. (NOAA)
 – GMAC in progress....
 • Feb 2023: model ran with 2022 data.
 – Transition matrix, molting prob similar to the assessment model
 – Large crab M: 0.40 (GMACS) vs. 0.64 assessment model
 – GMACS MMB: 25% lower than assessment model (model weight issue: Andre)

• Updated Input files .dat, .ctl, .prj to 2023.
• GMACS did not run
• Welcome any assistances
ADF&G Trawl Survey

- July 21 – July 30, 50 stations: Core, Tier 1, 2, 3

Figure 1. Stations trawled (in bold, n=50) during the 2023 red king crab bottom trawl survey. Note: stations in gray boxes have never been successfully trawled.
ADF&G Trawl Survey
ADF&G Trawl Survey

- High female catch outside the core area.
ADF&G Trawl Survey

• July 21 – July 30, 50 stations: Core, Tier 1, 2, 3
• High abundance of Legal Male
 – Fewer Pre1 males (legal next year)
 – Very few Pre2, Pre3 males, and Females
• Expecting abundance decline in 2-3 years?
• All but a few NSRKC died after ~ 2 years of holding.
• After 1 year holding: 10 out of 23 died ($M = 0.57$).
NSRKC Draft Assessment Models

Einstein did not say…
() is doing the same thing over and over again
and expecting () results

The same model exercise performed in 2013, 2016, 2017

• Model 21.0: 2023 final model with data update
• Model 23.0:
 – SSC: Single M estimate for all lengths
Model 23.0 Profile Analysis

Total negative log likelihood

M = 0.4116
NSRKC Draft Assessment Model parameters

<table>
<thead>
<tr>
<th>Name</th>
<th>21.0 Estimate</th>
<th>std.dev</th>
<th>23.0 Estimate</th>
<th>std.dev</th>
</tr>
</thead>
<tbody>
<tr>
<td>(\log_q_1)</td>
<td>-7.310</td>
<td>0.194</td>
<td>-7.174</td>
<td>0.191</td>
</tr>
<tr>
<td>(\log_q_2)</td>
<td>-6.721</td>
<td>0.165</td>
<td>-6.575</td>
<td>0.169</td>
</tr>
<tr>
<td>(\log_q_3)</td>
<td>-6.850</td>
<td>0.151</td>
<td>-6.740</td>
<td>0.157</td>
</tr>
<tr>
<td>(\log_{N_{76}})</td>
<td>9.128</td>
<td>0.137</td>
<td>9.461</td>
<td>0.158</td>
</tr>
<tr>
<td>(R_0)</td>
<td>6.448</td>
<td>0.080</td>
<td>7.091</td>
<td>0.150</td>
</tr>
<tr>
<td>(a_1)</td>
<td>1.002</td>
<td>4.445</td>
<td>2.605</td>
<td>4.511</td>
</tr>
<tr>
<td>(a_2)</td>
<td>1.734</td>
<td>4.174</td>
<td>2.903</td>
<td>4.316</td>
</tr>
<tr>
<td>(a_3)</td>
<td>3.477</td>
<td>3.914</td>
<td>4.370</td>
<td>4.077</td>
</tr>
<tr>
<td>(a_4)</td>
<td>3.966</td>
<td>3.891</td>
<td>4.674</td>
<td>4.056</td>
</tr>
<tr>
<td>(a_5)</td>
<td>4.232</td>
<td>3.883</td>
<td>4.820</td>
<td>4.047</td>
</tr>
<tr>
<td>(a_6)</td>
<td>3.493</td>
<td>3.911</td>
<td>3.905</td>
<td>4.079</td>
</tr>
<tr>
<td>(a_7)</td>
<td>2.054</td>
<td>4.183</td>
<td>2.037</td>
<td>4.368</td>
</tr>
<tr>
<td>(r_1)</td>
<td>5.000</td>
<td>0.002</td>
<td>5.000</td>
<td>0.003</td>
</tr>
<tr>
<td>(r_2)</td>
<td>4.635</td>
<td>0.162</td>
<td>4.508</td>
<td>0.166</td>
</tr>
<tr>
<td>(\log_a)</td>
<td>-2.746</td>
<td>0.088</td>
<td>-2.765</td>
<td>0.094</td>
</tr>
<tr>
<td>(\log_b)</td>
<td>4.833</td>
<td>0.015</td>
<td>4.816</td>
<td>0.016</td>
</tr>
<tr>
<td>(\log_{f_{st1}})</td>
<td>-5.000</td>
<td>0.035</td>
<td>-2.392</td>
<td>0.080</td>
</tr>
<tr>
<td>(\log_{f_{wa}})</td>
<td>-2.400</td>
<td>0.424</td>
<td>-1.858</td>
<td>0.425</td>
</tr>
<tr>
<td>(\log_{f_{wb}})</td>
<td>4.772</td>
<td>0.069</td>
<td>4.860</td>
<td>0.028</td>
</tr>
</tbody>
</table>

Model 23.0

Better trawl survey selectivity parameter
NSRKC Draft Assessment Model parameters

<table>
<thead>
<tr>
<th>Name</th>
<th>Estimate</th>
<th>std.dev</th>
<th>Estimate</th>
<th>std.dev</th>
</tr>
</thead>
<tbody>
<tr>
<td>Sw1</td>
<td>0.061</td>
<td>0.034</td>
<td>0.045</td>
<td>0.022</td>
</tr>
<tr>
<td>Sw2</td>
<td>0.424</td>
<td>0.147</td>
<td>0.373</td>
<td>0.088</td>
</tr>
<tr>
<td>Sw3</td>
<td>0.732</td>
<td>0.237</td>
<td>0.733</td>
<td>0.141</td>
</tr>
<tr>
<td>log_f1</td>
<td>-2.056</td>
<td>0.043</td>
<td>-1.942</td>
<td>0.041</td>
</tr>
<tr>
<td>log_fra1</td>
<td>-0.854</td>
<td>0.143</td>
<td>-0.886</td>
<td>0.142</td>
</tr>
<tr>
<td>log_frb1</td>
<td>-0.496</td>
<td>0.270</td>
<td>-0.484</td>
<td>0.266</td>
</tr>
<tr>
<td>log_fra2</td>
<td>4.641</td>
<td>0.008</td>
<td>4.648</td>
<td>0.009</td>
</tr>
<tr>
<td>log_frb2</td>
<td>4.654</td>
<td>0.013</td>
<td>4.655</td>
<td>0.013</td>
</tr>
<tr>
<td>log_fwra</td>
<td>-0.951</td>
<td>0.559</td>
<td>-0.922</td>
<td>0.589</td>
</tr>
<tr>
<td>log_fwr</td>
<td>4.654</td>
<td>0.038</td>
<td>4.651</td>
<td>0.039</td>
</tr>
<tr>
<td>w2t</td>
<td>0.142</td>
<td>0.039</td>
<td>0.144</td>
<td>0.040</td>
</tr>
<tr>
<td>q.1</td>
<td>0.719</td>
<td>0.128</td>
<td>0.712</td>
<td>0.124</td>
</tr>
<tr>
<td>q.2</td>
<td>0.812</td>
<td>0.157</td>
<td>0.796</td>
<td>0.154</td>
</tr>
<tr>
<td>σ</td>
<td>3.801</td>
<td>0.207</td>
<td>3.792</td>
<td>0.202</td>
</tr>
<tr>
<td>β1</td>
<td>11.874</td>
<td>0.692</td>
<td>12.807</td>
<td>0.721</td>
</tr>
<tr>
<td>β2</td>
<td>7.795</td>
<td>0.169</td>
<td>7.557</td>
<td>0.176</td>
</tr>
<tr>
<td>M</td>
<td></td>
<td></td>
<td>0.412</td>
<td>0.027</td>
</tr>
<tr>
<td>m8</td>
<td>3.416</td>
<td>0.262</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>
NSRKC Draft Assessment Models Likelihood

<table>
<thead>
<tr>
<th>Model</th>
<th>21.0</th>
<th>23.0</th>
</tr>
</thead>
<tbody>
<tr>
<td>Additional Parameters</td>
<td></td>
<td>0</td>
</tr>
<tr>
<td>AIC change</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Total</td>
<td>362.3</td>
<td>375.9</td>
</tr>
<tr>
<td>TSA</td>
<td>11.0</td>
<td>12.1</td>
</tr>
<tr>
<td>DIS</td>
<td>3.4</td>
<td>3.2</td>
</tr>
<tr>
<td>St.CPUE</td>
<td>-14.8</td>
<td>-14.8</td>
</tr>
<tr>
<td>TLP</td>
<td>134.0</td>
<td>142.2</td>
</tr>
<tr>
<td>WLP</td>
<td>39.6</td>
<td>40.1</td>
</tr>
<tr>
<td>CLP</td>
<td>49.5</td>
<td>54.4</td>
</tr>
<tr>
<td>OBS</td>
<td>24.3</td>
<td>28.0</td>
</tr>
<tr>
<td>WCLP</td>
<td>2.8</td>
<td>2.2</td>
</tr>
<tr>
<td>REC</td>
<td>19.4</td>
<td>20.7</td>
</tr>
<tr>
<td>TAG</td>
<td>85.0</td>
<td>87.8</td>
</tr>
<tr>
<td>M</td>
<td>0.18</td>
<td>0.4116</td>
</tr>
<tr>
<td>RMSE Trawl</td>
<td>0.34</td>
<td>0.33</td>
</tr>
<tr>
<td>RMSE CPUE</td>
<td>0.44</td>
<td>0.44</td>
</tr>
<tr>
<td>Total OFL</td>
<td>0.72</td>
<td>1.21</td>
</tr>
</tbody>
</table>
NSRKC Observer

Summer discards, total, winter retain: observed vs predicted

Summer discards

Summer total

Winter retain

Proportion

NSRKC Tag recovery size distribution

Tag recovery data observed vs predicted
Recovery after 1 year

Recovery after 2 years

Recovery after 3 years

Recovery after 3 years
Abundance

Modeled crab abundance Feb 01

Model 23.0: assumes higher recruits (not observed in trawl survey), higher total abundance, and higher mortality
No difference in BMSY between the two models Tier 4a for both models. Declining MMB
OFL

- Tier 4a for both 21.0 and 23.0
- FOFL = M = 0.18 (21.0), 0.4116 (23.0)
- OFL: 0.72 (21.0), 1.21 (23.0)
Model Selection:
Better model fit vs Biological correctness?
Discussed: 2013, 2016, 2017

21.0
• Biologically incorrect
• Trawl survey parameter hits boundaries
• Better overall model fit (but no observable difference)

23.0
• Biologically Correct
• Better trawl survey parameter estimate
• Less overall model fit (but no observable difference)

Evidence of crab M is length-independent?
Other stocks evaluated length-dependent M?
For Jan 2024

- Include NOAA NBS Trawl survey data
- Finalize Winter Subsistence harvest data
- GMACS comparison
Einstein did not say…

(Science) is doing the same thing over and over again and expecting (the same) results