NOAA

Preliminary assessment of Pacific cod in the Eastern Bering Sea

 FISHERIESAlaska Fisheries
Science Center

Grant Thompson

September 14, 2017

Comments

History of current review process

- This is the $11^{\text {th }}$ year of the nearly year-round review process!
- Although spring "vetting" meetings held only since 2010
- Models vetted by full Joint Teams 2010-2013
- Models vetted by Joint Team Subcommittee 2014-2016
- Models now vetted by BSAI Team Subcommittee
- Accomplishments during the first 10 years of the process:
- 174 EBS models fully vetted from 2007-2016 (17 per year)
- 238 Team and SSC comments addressed (24 per year)

Subcommittee comments (1 of 6)

- Subcommittee considered 26 comments at its 6/17 meeting
- Plus results from 10 new models (per SSC request)
- At its 6/16 meeting, the SSC opted to discontinue reviewing Subcommittee comments, so Subcommittee has final say
- Some Subcommittee comments pertain to the final assessment only
- Subcommittee recommended that the following models be included in this year's preliminary EBS Pacific cod assessment (continued on following slides):
- Model 16.6: Last year’s final model, after translating from SS V3.24u to V3.30

Subcommittee comments (2 of 6)

- Recommended models, continued:
- Model 17.1: Same as Model 16.6, except:
- Adjust timing of the fishery and survey in SS
- Do not use currently available fishery agecomp data, but do add new fishery agecomps (2015 and 2016)
- Switch to haul-based input N , catch-weighted sizecomps
- Develop a prior distribution for natural mortality based on previous estimates
- Switch to age-based, flat-topped, double normal select.
- Allow random time variability in selectivity, with os fixed at the restricted MLEs

Subcommittee comments (3 of 6)

- Recommended models, continued:
- Model 17.2: Same as Model 17.1, except:
- Use harmonic mean weighting of composition data
- Allow time-varying selectivity for fishery but not survey
- Model 17.3: Same as Model 17.1, except:
- Use harmonic mean weighting of composition data
- Estimate survey index standard error internally
- Model 17.4: Same as Model 17.1, except:
- Use Francis weighting
- Model 17.5: Same as Model 17.1, except:
- Give less weight to fishery comps than survey comps, less to sizecomps than agecomps

Subcommittee comments (4 of 6)

- Subcommittee recommended these non-model analyses:
- Compare σ_{R} to the RMSE of estimated recruitment devs
- Report Francis weights from the terminal run if harmonic mean is used and vice-versa

Subcommittee implementing recommendations:

- For switching to haul-based input sample size and catchweighted sizecomp data, the Subcommittee understands that the author will likely set initial input sample sizes equal to the number of hauls (or sets), rather than a more complicated haul-based approach such as that described by Stewart and Hamel (2014)

Subcommittee comments (5 of 6)

- Subcommittee implementing recommendations, continued:
- For giving less weight to fishery comps than survey comps and less to sizecomps than agecomps, if the Francis weightings obtained in Model 17.4 accomplish the same thing, then Model 17.5 does not need to be included
- Also, the Subcommittee's preferred method for implementing this feature is to begin with the weightings obtained in Model 17.4 and then adjust them as little as possible subject to the constraints described

Subcommittee comments (6 of 6)

- Subcommittee implementing recommendations, continued:
- For reporting Francis weights if harmonic mean is used and vice-versa, the confidence intervals surrounding the Francis weights should also be reported
- For developing a prior distribution for natural mortality based on previous estimates, if faced with a choice between the lognormal and normal..., the Subcommittee prefers the lognormal
- Other Subcommittee conclusions:
- Subcommittee concluded that the EBS Pcod assessment is not a good candidate for model averaging at this time

Data

Data changes (1 of 2)

- For Model 16.6 , the data file was identical to the one used in last year's assessment
- For Models 17.x, these changes were made:
- Sizecomp N measured as number of hauls
- For 1991-2016, the numbers of hauls sampled for fishery lengths were taken from the domestic observer database
- For years prior to 1990, the numbers of sampled hauls in the fishery sizecomp data were approximated by using a regression from the 2015 assessment

Data changes (2 of 2)

- Changes in data for Models 17.x, continued:
- Sizecomp N measured as number of hauls, continued
- 1991-2016 fishery sizecomp data from each week/gear/area cell were weighted proportionally to the official estimate of catch in that cell
- Inclusion of fishery agecomps for 2015 and 2016
- Given a desired annual sample size of 1000 otoliths, the objectives of the otolith sampling design were:

1. to distribute the sample so as to reflect the proportion of catch in each week/gear/area cell
2. conditional on achieving the first objective, to maximize the number of hauls sampled

Comparison of old and new sizecomps (1 of 3)

Comparison of old and new sizecomps (2 of 3)

Comparison of old and new sizecomps (3 of 3)

Fishery agecomps for 2015 and 2016

Model structures

List of models

- Model 16.6: Base model
- Models 17.1-17.5: Requested by Subcommittee
- Model 17.6: Added by author
- Same as Model 17.1, except:
- Use harmonic mean weighting of composition data
- Allow time-varying length at age 1.5
- Allow time-varying survey catchability

Model 16.6 (base model)

- One fishery, one gear type, one season per year
- Logistic, age-based selectivity for fishery and survey
- External estimation of time-varying weight-at-length parameters and the standard deviations of ageing error at ages 1 and 20
- All parameters constant over time except for recruitment and fishing mortality
- Internal estimation of all natural mortality, fishing mortality, length-at-age (including ageing bias), recruitment (conditional on Beverton-Holt "steepness" fixed at 1.0), catchability, and selectivity parameters

Alternative models: prior dist. for M (1 of 2)

Alternative models: prior dist. for M (2 of 2)

Alternative models: selectivity (1 of 4)

- All of the alternative models feature "age-based, flattopped, double normal selectivity"
- The parameter governing the point at which the flat-topped portion of the function begins and the "ascending width" parameter are the only two parameters estimated
- All of the alternative models also feature random annual time variability in selectivity
- In all cases, development of the model began with both free parameters of the relevant selectivity curve(s) being allowed to vary over time

Alternative models: selectivity (2 of 4)

- In the case of Model 17.4, however, the tuning process began converging on a configuration that did not result in a positive definite Hessian matrix
- The estimated devs for survey selectivity "ascending width" in this configuration were all very small
- When the this parameter was forced to remain constant, the tuning process converged on a model with a positive definite Hessian
- This was accepted as the final version of Model 17.4
- Two time-varying fishery selectivity parameters, but only one time-varying survey selectivity parameter

Alternative models: selectivity (3 of 4)

- Because Model 17.5 was requested to be based on Model 17.4 (comment Sub6), Model 17.5 also features timeinvariant "ascending width" for the survey selectivity
- The configurations of the models with respect to timevarying selectivity is therefore as follows:

Fleet	Parameter	M17.1	M17.2	M17.3	M17.4	M17.5	M17.6
Fishery	Beginning of flat top	x	X	x	x	X	x
Fishery	Ascending width	x	x	x	x	x	x
Survey	Beginning of flat top	x		x	x	x	x
Survey	Ascending width	x		x			x

Alternative models: selectivity (4 of 4)

- Dev types:
- Multiplicative devs for the beginning of the flat top were of the multiplicative type
- Additive devs for the "ascending width"
- Year ranges for devs:
- 1977-2016 for the fishery
- 1982-2016 for the survey

Alternative models: Model 17.5 weighting

- Model 17.5 is supposed to "give less weight to fishery comps than survey comps, less to sizecomps than agecomps," but this begs two questions:

1. How should "weight" be measured?

- Weight = sum (across years) of the nominal sample sizes specified in the data file and the multiplier ("Francis weight") derived during the process of tuning Model 17.4

2. How much less is "less?"

- Model 17.5 gives half as much weight to fishery comps as to survey comps and half as much weight to sizecomps as to agecomps

Alternative models: tuning the dev σ s

- Method provides restricted MLE for a linear-normal model
- Avoids the downward bias associated with maximizing the penalized likelihood
- Assumed to approximate the restricted MLE for the alternative models
- See document for details

Alternative models: Model 17.6 (1 of 2)

- Model 17.6 also includes random annual variability in two other parameters:
- Mean length at age 1.5
- For the mean length at age 1.5 , multiplicative devs were estimated for the years 1981-2015
- Each dev becomes "active" at age 0 in the year for which it is estimated, but its impact on the mean length of age 1.5 fish does not occur until the following year
- Thus, the impacts of the devs estimated for the years 1981-2015 are manifested at age 1.5 in the years 1982-2016

Alternative models: Model 17.6 (2 of 2)

- Additional random variability in Model 17.6, continued:
- Log survey catchability (Q)
- Additive devs were estimated for the years 1982-2016
- Unlike the σ s for other time-varying parameters, tuning the σ for the Q devs consisted of equating the RMSE with the mean standard error
- Rationale:
- This maintains consistency with historical precedents for dealing with survey index data
- Q has a proportional relationship to the survey index data, for which estimates of the amount of observation error are available

Results

Big picture

- Female spawning biomass, F FB relative to $B_{100 \%}, M$, and Q :

Model:	16.6	17.1	17.2	17.3	17.4	17.5	17.6
FSB (2017):	359,766	187,677	298,746	161,672	430,949	131,546	174,282
Bratio (2017):	0.546	0.279	0.465	0.267	0.510	0.187	0.268
M:	0.363	0.333	0.369	0.372	0.320	0.313	0.345
Q	0.876	1.113	0.948	0.982	1.153	1.106	1.012

Objective function values, parameter counts

Component	M16.6	M17.1	M17.2	M17.3	M17.4	M17.5	M17.6
Equilibrium catch	0.00	0.14	0.01	0.01	0.01	0.05	0.02
Survey index	-25.21	-14.65	-15.76	-36.31	6.20	-1.69	-62.35
Size composition	1372.94	2947.78	1454.99	1393.99	3729.21	7437.48	1453.89
Age composition	241.40	456.28	120.43	94.29	3434.03	3505.39	125.06
Recruitment	4.25	14.29	1.13	-5.09	32.25	12.76	5.07
Priors		0.25	0.11	0.09	0.33	0.37	0.19
"Softbounds"	0.01	0.00	0.00	0.00	0.00	0.00	0.00
Non-recruit devs		-245.56	-115.84	-286.45	-72.94	-178.40	-417.90
Total	1593.39	3158.53	1445.07	1160.54	7129.10	10776.00	1103.97

Sub-component	M16.6	M17.1	M17.2	M17.3	M17.4	M17.5	M17.6
Sizecomp (fishery)	364.60	1819.35	470.08	437.71	3531.12	767.73	469.32
Sizecomp (survey)	1008.34	1128.43	984.91	956.28	198.10	6669.75	984.57
Sizecomp (total)	1372.94	2947.78	1454.99	1393.99	3729.21	7437.48	1453.89
Agecomp (fishery)		205.72	68.86	38.75	2923.14	855.24	69.67
Agecomp (survey)	241.40	250.57	51.57	55.54	510.89	2650.15	55.38
Agecomp (total)	241.40	456.28	120.43	94.29	3434.03	3505.39	125.06

Parameter type	M16.6	M17.1	M17.2	M17.3	M17.4	M17.5	M17.6
Devs	39	189	119	189	154	154	259
Scalars	38	37	37	38	36	36	38
Total	77	226	156	227	190	190	297

Making the fit to index data comparable

- The familiar equation for standard error:
mean_logscale_std_err $=\frac{\text { mean_logscale_std_dev }}{\sqrt{\text { mean no hauls }}}$
- An analogy:
model_RMSE $=\frac{\text { mean_logscale_std_dev }}{\sqrt{\text { effective_mean_no_hauls }}}$
- After some algebra:
effective_mean_no_hauls $=$ mean_no_hauls. $\left(\frac{\text { mean_logscale_std_err }}{\text { model_RMSE }}\right)^{2}$

Input and output total effective sample sizes

- Input total effective sample size for a component:
- No. years \times arithmetic mean (across yrs) \times raw $\mathrm{N} \times$ mult.
- Output total effective sample size for a component:
- For composition data:
- No. years \times harmonic mean (across yrs) \times effective N
- For index data:
- No. years \times arithmetic mean (across yrs) \times raw $\mathrm{N} \times$ ((mean log-scale SE + "extra" SE)/(log-scale RMSE)) ${ }^{2}$

Input and output effective sample sizes (1 of 2)

				Model 16.6				
Type	Fleet	Yrs	N	Mul	$\mathrm{N} \times$ Mult	Har	ENeff1	2Neff2
Size	Fish.	40	300	1.0000	300	569	11999	22747
Size	Surv.	35	300	1.0000	300	302	10498	10587
Age	Fish.							
Age	Surv.	22	300	1.0000	300	59	6598	1298
				SEav	SEextra	RMSE		
Index	Surv.	35	353	0.1079	0	0.1865	12355	4137
						Ave:	10363	9692
								0.94

Input and output effective sample sizes (2 of 2)

				Model 17.5					Model 17.6				
Type	Fleet	Yrs	N	Mult	N \times Mult	Har	LNeff1	2Neff2	Mult	N \times Mult	Har	2Neff1	ENeff2
Size	Fish.	38	5849	0.1919	1122	783	42654	29746	0.1881	1100	1103	41809	41911
Size	Surv.	35	345	7.0648	2439	354	85364	12377	1.5068	520	520	18207	18213
Age	Fish.	2	10410	4.0977	42657	2388	85314	4775	0.3425	3565	3568	7131	7136
Age	Surv.	22	358	21.6483	7747	164	170437	3617	0.2225	80	80	1752	1753
				SEave	SEextra	RMSE			SEave	SEextra	RMSE		
Index	Surv.	35	353	0.1079	0	0.2169	12355	3057	0.1079	0	0.1081	12355	12312
						Ave:	79225	10715			Ave:	16251	16265

Fit to trawl survey index

Fit to length at age 1.5 (Model 17.6)

- Correlation $=0.81$

Fishery selectivity (Models 16.6 and 17.1-17.2)

Fishery selectivity (Models 17.3-17.6)

Survey selectivity (Models 16.6 and 17.1-17.2)

Survey selectivity (Models 17.3-17.6)

Trawl survey catchability (Model 17.6)

- Autocorrelation of devs (estimated parameter) $=0.50$

Age 0 recruitment devs

- Model 17.4 correlation with other models $=0.24-0.45$

Total (age 0+) biomass, with survey biomass

Harmonic mean and Francis weights (1 of 2)

Harmonic mean and Francis weights (2 of 2)

			Model	Harmonic mean		Francis (2011, Equation TA1.8)			
			Model	Type	Fleet	Multiplier	Multiplier	Adjust	Multiplier
Adjust	Adj.(L95\%)	Adj.(U95\%)							
M17.4	Length	Fishery	2.3684	0.3831	0.1618	2.3701	1.0007	0.6725	1.9112
M17.4	Length	Survey	0.0448	0.3018	6.7358	0.0448	1.0003	0.6530	2.1189
M17.4	Age	Fishery	30.5489	0.6509	0.0213	30.5448	0.9999	0.9999	infinity
M17.4	Age	Survey	0.0406	0.0179	0.4398	0.0406	0.9995	0.5590	3.5087
M17.5	Length	Fishery	0.1919	0.1338	0.6974	0.0317	0.1654	0.1063	0.3409
M17.5	Length	Survey	7.0648	1.0244	0.1450	0.4062	0.0575	0.0411	0.1013
M17.5	Age	Fishery	4.0977	0.2294	0.0560	1.0813	0.2639	0.2639	infinity
M17.5	Age	Survey	21.6483	0.4595	0.0212	0.6903	0.0319	0.0181	0.0850
M17.6	Length	Fishery	0.1881	0.1886	1.0024	0.2636	1.4016	1.0417	2.1257
M17.6	Length	Survey	1.5068	1.5073	1.0004	0.4446	0.2951	0.2017	0.5300
M17.6	Age	Fishery	0.3425	0.3427	1.0007	0.6991	2.0413	2.0413	infinity
M17.6	Age	Survey	0.2225	0.2226	1.0006	0.2857	1.2840	0.8316	2.8291

Key parameters (Table 2.1.5)

Parameter/constant	Model 16.6		Model 17.1		Model 17.2		Model 17.3		Model 17.4		Model 17.5		Model 17.6	
	Est.	SD												
Natural mortality	0.3625	0.013	0.3331	0.009	0.3686	0.016	0.3723	0.013	0.3196	0.021	0.3128	0.004	0.3449	0.011
Initial fishing mortality	0.1554	0.056	0.8505	0.310	0.1942	0.074	0.1751	0.058	0.5725	0.183	1.3134	0.842	0.2339	0.099
Length at $\mathrm{a}=1.5$ mean	16.4011	0.088	16.5445	0.082	16.3720	0.091	16.3727	0.084	35.4975	0.156	16.3104	0.031	16.7850	0.277
Length at a $=1.5 \mathrm{dev}$ SD													0.0936	
Asymptotic length	99.3869	1.901	109.9040	1.058	104.9930	1.727	106.1030	1.742	120.5450	1.174	107.1690	1.135	104.5350	1.636
Brody growth coefficient	0.1974	0.012	0.1563	0.005	0.1761	0.009	0.1739	0.009	0.0995	0.003	0.1576	0.005	0.1770	0.008
Richards growth coef.	1.0499	0.048	1.1975	0.023	1.1075	0.040	1.1057	0.037	1.5910	0.037	1.1600	0.019	1.0432	0.035
Length at $\mathrm{a}=1 \mathrm{SD}$	3.4251	0.058	3.4983	0.050	3.4223	0.058	3.4554	0.055	4.8030	0.078	3.3943	0.021	3.0796	0.039
Length at $\mathrm{a}=20 \mathrm{SD}$	9.7171	0.282	8.3603	0.136	9.2442	0.225	8.8043	0.236	7.4946	0.184	9.6703	0.137	9.6923	0.205
Ageing bias at $\mathrm{a}=1$	0.3210	0.013	0.3365	0.011	0.3370	0.034	0.3419	0.019	0.7846	0.005	0.3383	0.003	0.3520	0.020
Ageing bias at $\mathrm{a}=20$	0.3513	0.154	-0.3884	0.113	-1.1456	0.251	-0.2301	0.190	0.9732	0.066	-0.2466	0.031	-0.8161	0.187
\ln (mean post-76 recruits)	13.2195	0.104	12.8790	0.067	13.1953	0.110	13.1578	0.095	12.7959	0.132	12.8103	0.031	13.0273	0.083
σ (recruitment)	0.6377	0.066	0.4693		0.5602		0.4958		0.9708	-	0.6551		0.5730	
\ln (pre-77 recruits offset)	-1.0990	0.216	-1.5149	0.030	-1.2066	0.177	-1.1067	0.164	-1.8085	0.046	-1.2602	0.235	-1.2416	0.168
\ln (catchability)	-0.1328	0.065	0.1068	0.040	-0.0537	0.055	-0.0181	0.066	0.1425	0.081	0.1006	0.025	0.0122	0.057
\ln (catchability) dev SD													0.0898	
\ln (catchability) dev corr.													0.4959	0.126
Survey index "extra SE"							0.1105	0.031						

Constraints on randomly varying parameters

- σ for dev vectors:

Dev vector	M16.6	M17.1	M17.2	M17.3	M17.4	M17.5	M17.6
Recruitment	0.6377	0.4693	0.5602	0.4958	0.9708	0.6551	0.5730
Selectivity begin peak (fishery)		0.1222	0.1078	0.0993	0.2595	0.1261	0.1037
Selectivity ascend width (fishery)		0.3619	0.2564	0.2287	0.9773	0.4366	0.2573
Selectivity begin peak (survey)		0.0524		0.0545	0.1703	0.0554	0.0535
Selectivity ascend width (survey)		0.1597		0.1593			0.1595
Length at age 1.5						0.0936	
ln(Catchability)						0.0898	

- σ_{R} versus standard deviation of devs:

Model:	16.6	17.1	17.2	17.3	17.4	17.5	17.6
$\sigma_{R}:$	0.6377	0.4693	0.5602	0.4958	0.9708	0.6551	0.5730
SD(Rdevs):	0.6631	0.4758	0.5672	0.5036	0.9836	0.6670	0.5807

Retrospective bias

- Mohn's rho, with limits on acceptable values:

Model:	16.6	17.1	17.2	17.3	17.4	17.5	17.6
Rho:	0.148	0.101	0.287	0.094	0.122	0.313	0.074
M:	0.363	0.333	0.369	0.372	0.320	0.313	0.345
Min:	-0.207	-0.197	-0.209	-0.210	-0.192	-0.190	-0.201
Max:	0.281	0.267	0.284	0.286	0.260	0.256	0.272

Model averaging

Effective number of parameters

- Method: Find the number of free parameters that gives the same sum of squares as the full set of penalized devs
- Shading indicates cases where algorithm failed

Vector	M16.6		M17.1		M17.2		M17.3		M17.4		M17.5		M17.6	
	nyrs	npar												
Recruitment	39	22	39	11	39	20	39	11	39	1	39	17	39	8
Length at a=1.5													35	35
\ln (Catchability)													35	1
Sel_fish_P1			40	3	40	2	40	2	40	3	40	1	40	2
Sel_fish_P3			40	3	40	1	40	1	40	1	40	3	40	1
Sel_surv_P1			35				35	1	35	1	35	35	35	1
Sel_surv_P3			35	1			35	1					35	1
Sum	39		189	19			189	16	154	6	154	56	259	49
Nominal parms		77		226		156		227		190		190		297
Effective parms		60		56		60		54		42		92		87

Input and output effective sample sizes

- Input effective sample sizes

Type	Fleet	M16.6	M17.1	M17.2	M17.3	M17.4	M17.5	M17.6
Sizecomp	Fishery	11,999	222,271	42,454	42,454	526,425	42,654	41,809
Sizecomp	Survey	10,498	12,083	10,033	11,740	541	85,364	18,207
Agecomp	Fishery		20,820	7,741	3,456	636,028	85,314	7,131
Agecomp	Survey	6,598	7,873	894	1,948	320	170,437	1,752
Index	Survey	12,355	12,355	12,355	12,355	12,355	12,355	12,355
	Average:	10,363	55,080	14,695	14,390	235,134	79,225	16,251

- Output effective sample sizes

Type	Fleet	M16.6	M17.1	M17.2	M17.3	M17.4	M17.5	M17.6
Sizecomp	Fishery	22,747	67,315	42,558	42,295	85,151	29,746	41,911
Sizecomp	Survey	10,587	10,014	10,033	11,737	3,646	12,377	18,213
Agecomp	Fishery		3,459	7,752	3,472	13,552	4,775	7,136
Agecomp	Survey	1,298	1,654	893	1,955	141	3,617	1,753
Index	Survey	4,137	3,870	3,549	12,868	2,248	3,057	12,312
	Average:	9,692	17,263	12,957	14,465	20,948	10,715	16,265

Effective sample size per effective parameter

- Means are computed across components

	Arithmetic		Geometric		Harmonic	
Model	Mean	Weight	Mean	Weight	Mean	Weight
16.6	162	0.0920	100	0.1278	58	0.1405
17.1	308	0.1756	122	0.1560	70	0.1709
17.2	216	0.1230	106	0.1357	50	0.1222
17.3	268	0.1526	157	0.2003	94	0.2277
17.4	499	0.2841	100	0.1283	15	0.0366
17.5	116	0.0663	78	0.1001	59	0.1421
17.6	187	0.1065	119	0.1518	66	0.1601
Sum:	1756	1	782	1	412	1

Model-specific distributions of 2018 ABC

- Based on Hessian approximation

	2018 ABC	
Model	Mean	SD
16.6	258031	23900
17.1	150324	18403
17.2	236527	23211
17.3	121543	28344
17.4	236901	26178
17.5	73343	5545
17.6	130064	22732

Model averaging (1 of 2)

Model averaging (2 of 2)

Model averaging statistics

Weight	Mean	Sdev	L90\%	U90\%	L95\%	U95\%	L99\%	U99\%
Arithmetic	183,794	64,088	78,378	289,210	58,183	309,405	18,714	348,875
Geometric	170,348	66,351	61,212	279,485	40,304	300,393	-559	341,256
Harmonic	158,439	65,896	50,050	266,827	29,286	287,591	$-11,297$	328,174
Equal	172,390	69,456	58,146	286,635	36,260	308,521	$-6,515$	351,296

