Spatial assessment model for snow crab

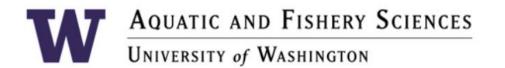
Maxime Olmos CPT, May 16 2022

Spatial assessment model for snow crab

SPATIOTEMPORAL CONSIDERATIONS TO BETTER UNDERSTAND, PREDICT AND MANAGE NATURAL RESSOURCES

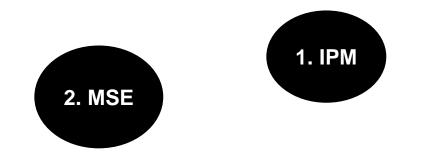
Eastern Bering Sea snow crab as a case study

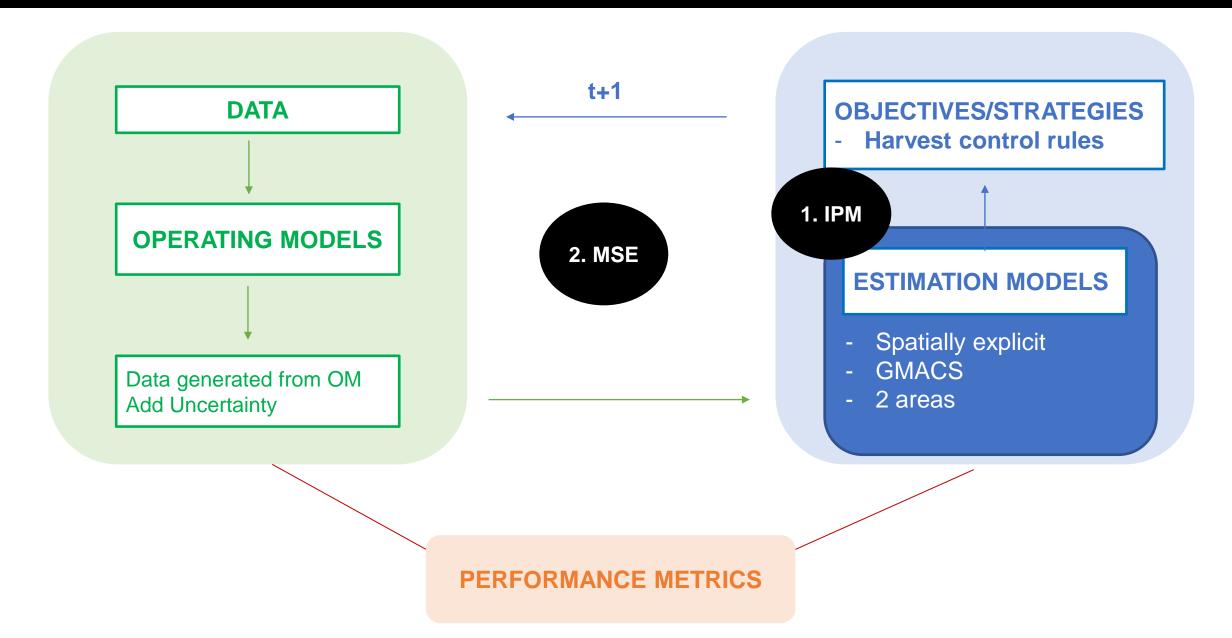
Maxime Olmos CPT, May 16 2022



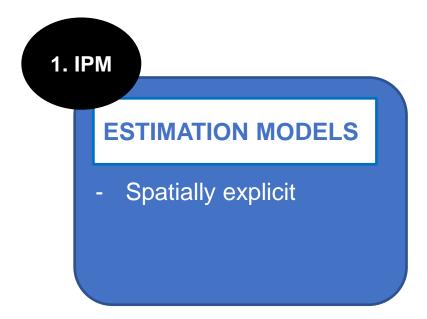
Acknowledge

- Cody Szuwalski
- Andre Punt
- Jie Cao
- Jim Thorson
- Cole Monnahan
- Kirstin Holsman
- William T. Stockhausen
- Anne Hollowed
- Alan Haynie
- ACLIM2 collaborators



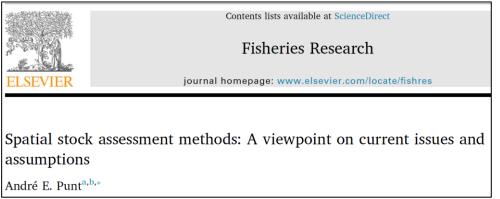


6



|CONTEXT| Motivations : accounting for spatial heterogeneity

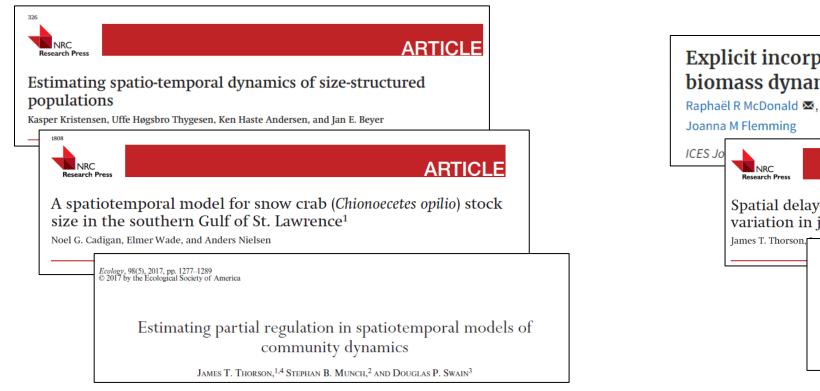
- Addressing spatial heterogeneity in population dynamics \rightarrow critical to better manage natural resources
- Accounting for spatial processes in population dynamic is complex
- Management of natural resources \rightarrow simplify assumptions about population spatial structure

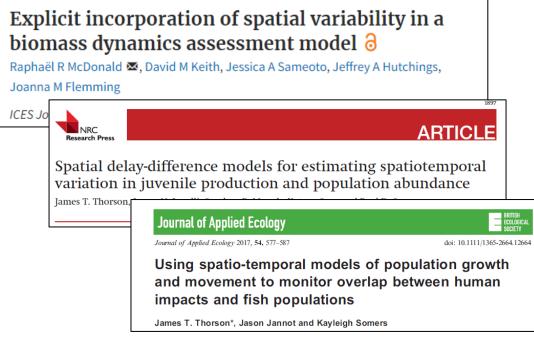


|CONTEXT| Solution : State-space spatiotemporal IPM

• Spatiotemporal IPMs can be implemented at a finer spatial scale

- Allow population processes to vary continuously across space by utilizing spatial correlation to account for a continuous approximation of spatial dynamics
- Can directly fit to fishery and survey data at the scale they are collected
- Attribute variation in survey data among sampling location to both sampling error and spatial process heterogeneity





|CONTEXT| Solution : State-space spatiotemporal IPM

• Spatiotemporal IPMs can be implemented at a finer spatial scale

- Allow population processes to vary continuously across space by utilizing spatial correlation to account for a continuous approximation of spatial dynamics
- Can directly fit to fishery and survey data at the scale they are collected
- Attribute variation in survey data among sampling location to both sampling error and spatial process heterogeneity

• But still some key demographic processes to refine

- Movement
 - Explicitly
 - \rightarrow How to account for movement when the spatial distribution of the stock may change between the survey and the fishery
 - Implicitly

|CONTEXT| Case study : Snow Crab EBS

- Spatial considerations are important for snow crabs in the EBS
 - Biomass strongly declined recently (Zacher et al., 2021)
 → A need to better understand the spatiotemporal dynamic
 - Spatially concentrated fishery
 - Ontogenetic migration
 - Stock's association with the cold pool
 - The potential for marine heat waves to influence dynamics

|CONTEXT| Purpose of the study

- Refine the representation of spatial processes in IPMs (migration)
- Use this spatially explicit framework to explore important questions

- To facilitate understanding of the drivers of the spatiotemporal population dynamics
 - Q1 : The effect of the cold pool on spatio-temporal variation in juvenile distribution ?
- To Improve management advice
 - Q2 : Distribution of fishing mortality in space ?

|CONTEXT| Purpose of the study

• The basic framework of our model is conceptually similar to Cao et al. (2020)

ORIGINAL ARTICLE

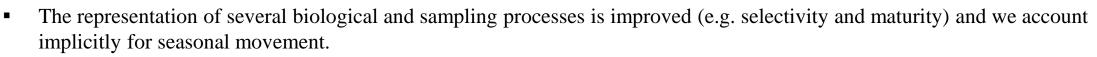
A novel spatiotemporal stock assessment framework to better address fine-scale species distributions: Development and simulation testing

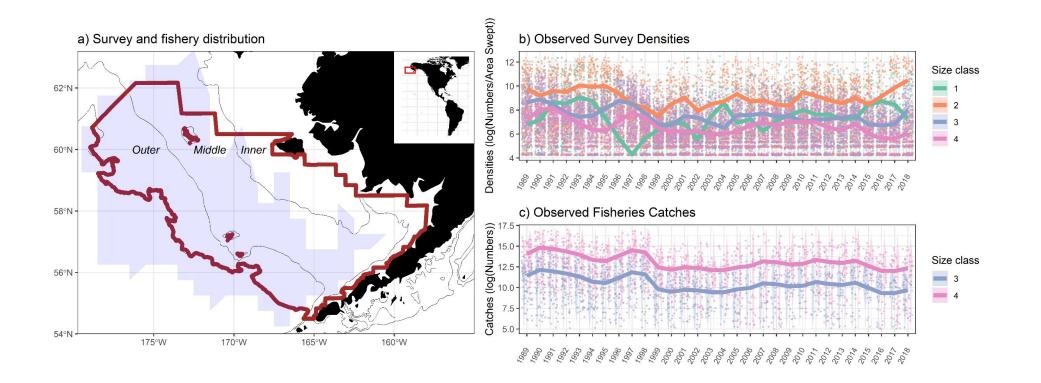
Jie Cao 💌, James T. Thorson, André E. Punt, Cody Szuwalski

w.fisheries.noaa.o

|CONTEXT| Purpose of the study

- The basic framework of our model is conceptually similar to Cao et al. (2020)
- With several improvements
 - Fit to real data





ww.fisheries.noaa.go

|METHODS|

|METHODS| A Spatiotemporal size-structured population model

- Size structure spatiotemporal population model
 - Combines theory and methods from population dynamics and geostatistics
 - Assumes population density varies continuously across space
 - Tracks variation in population density for multiple life stages and their expected dynamics across space and time

|METHODS| A Spatiotemporal size-structured population model

1. POPULATION DYNAMIC

2. DATA AND LIKELIHOOD

• Movement : accounts implicitly for seasonality

3. PARAMETERS

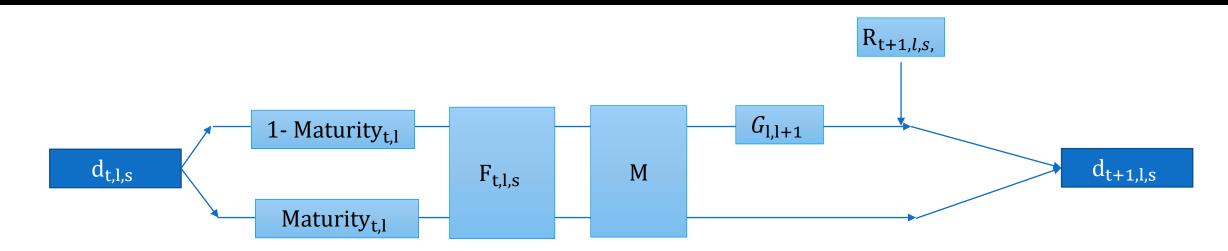
- Pre-specified
- \circ Estimated
 - Fixed effects
 - Random effects

|METHODS| 1. Population Dynamic

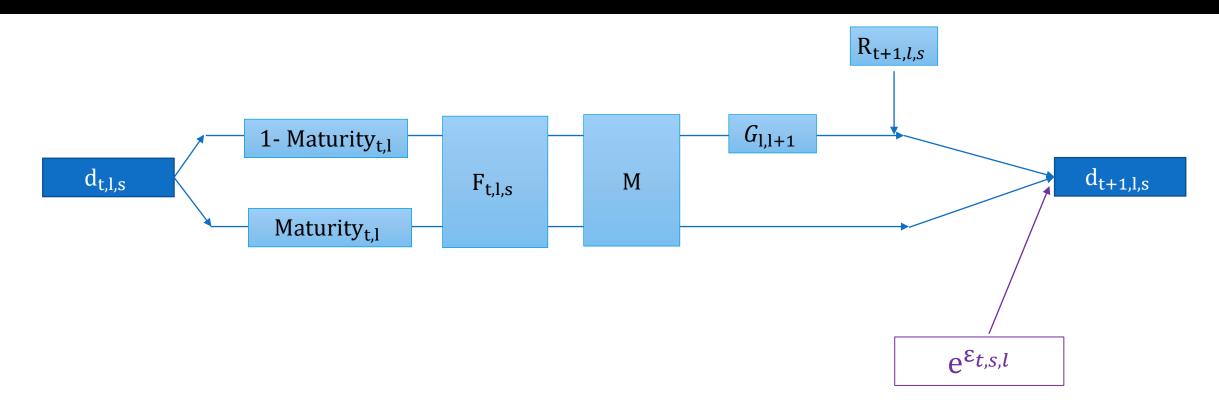
• Densities (d) at size for a given size class l, location s and time t+1 is expressed as

$$\mathbf{d}_{t+1,l,s} = g(\mathbf{d}_{t,s,l}) \times \mathbf{e}^{\varepsilon_{t,s,l}}$$

|METHODS| 1. Population Dynamic $g(d_{t,s,l})$



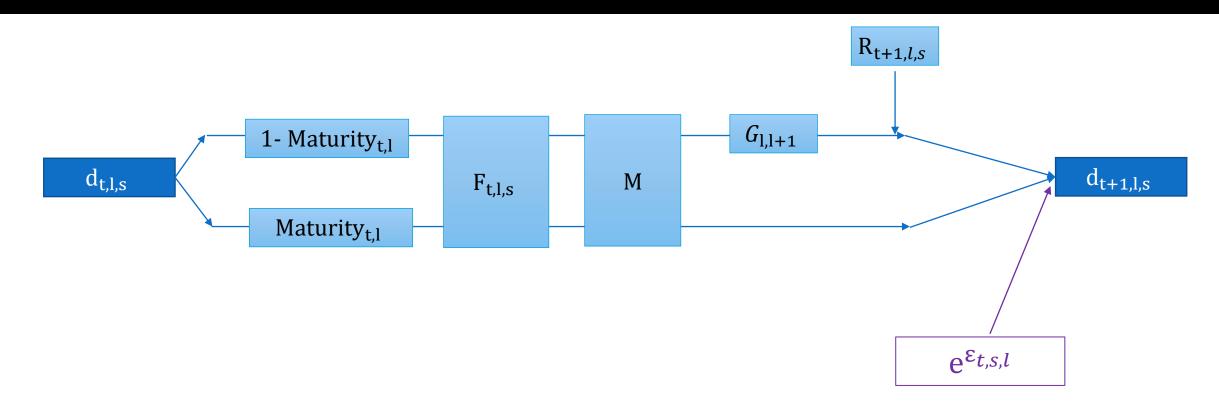
|METHODS| 1. Population Dynamic $g(\mathbf{d}_{t,s,l}) e^{\varepsilon_{t,s,l}}$



• $\varepsilon_{t,s,l}$ accounts for unmodelled spatial and temporal process and follows a multivariate normal distribution

$$vec[\mathbf{E}_t] \sim MVNormal(\mathbf{R}_{spatial} \otimes \boldsymbol{\Theta}_L)$$

|METHODS| 1. Population Dynamic $g(d_{t,s,l}) e^{\varepsilon_{t,s,l}}$



• $\epsilon_{t,s,l}$ accounts for unmodelled spatial and temporal process and follows a multivariate normal distribution

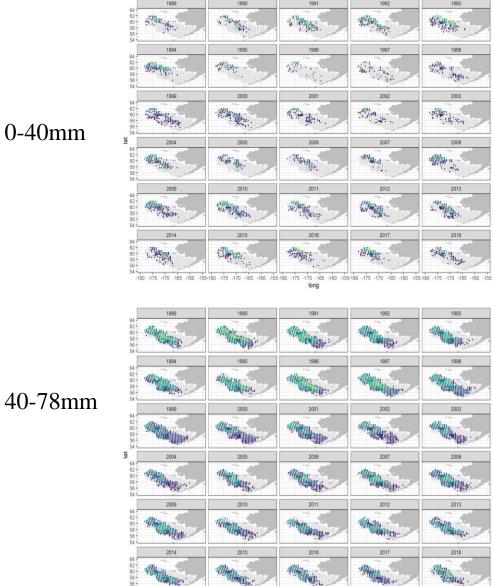
$$vec[E_t] \sim MVNormal(R_{spatial} \otimes \Theta_L)$$

Spatial covariance matrix : between 2 locations
follows a Matern function

|METHODS| 2. Data – Survey Data : Densities (Ab/km2) – 1989 - 2018

log(Catch_N_a)

log(Catch_N_a)



180 -175 -170 -165 -160 -155-180 -175 -170 -155 -180 -175 -170 -155 -180 -175 -170 -155 -180 -175 -170 -155 -180 -175 -170 -155 -180 -175 -170 -155 -180 -175 -170 -165 -160 -155 -180 -175 -170 -165 -180 -175 -170 -165 -180 -175 -170 -165 -180 -175 -170 -155 -180 -175 -170 -155 -180 -175 -170 -155 -180 -175 -170 -155 -180 -175 -170 -155 -180 -175 -170 -155 -180 -175 -170 -155 -180 -175 -170 -155 -180 -175 -170 -155 -180 -175 -170 -155 -180 -175 -170 -155 -180 -155 -180 -175 -170 -155 -180 -150 -150 -150 -150 -180 -155 -180 -150 -150 -150 -150 -150 -150 -150 long



78-101mm

40-78mm

23

>101mm

|METHODS| 2. Data – Survey Data : Densities (Ab/km2) – 1989 - 2018

• Likelihood function

- Poisson link delta model (Thorson, 2017) to fit $d_{t,l,s}$ to samples of observed abundance density
- Probability density function
 - Encounter probability
 - Positive catch rates

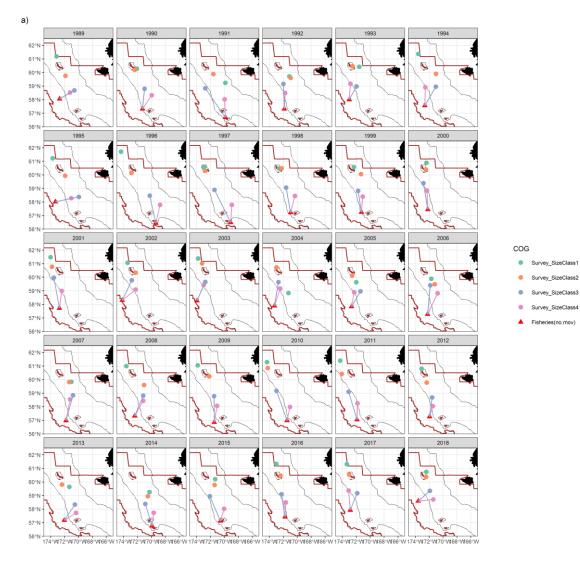
|METHODS| 2. Data – Fisheries data

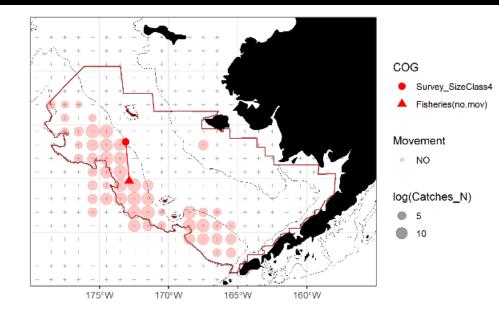
|METHODS| 2. Data – Fisheries data

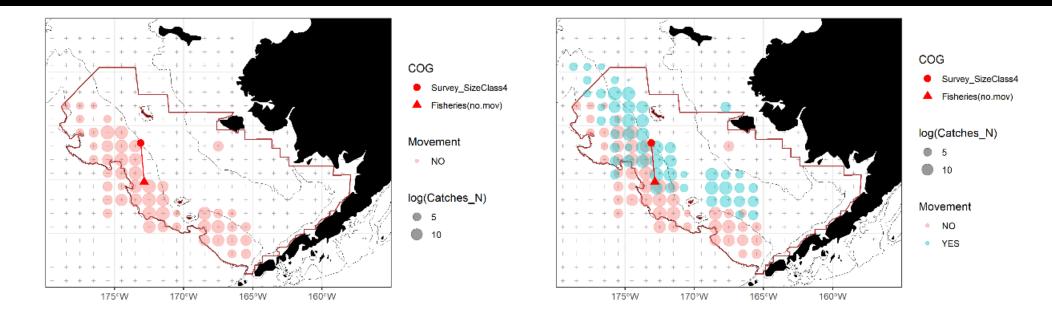
- Temporal mismatch between Survey (summer) and Fisheries (winter)
 - \circ Because of ontogenetic migrations \rightarrow Spatial mismatch
- → Accounting implicitly for seasonality in the model
- Strategy : Account for movement between survey and fisheries
 - Determine the spatial distribution of Fisheries in Summer

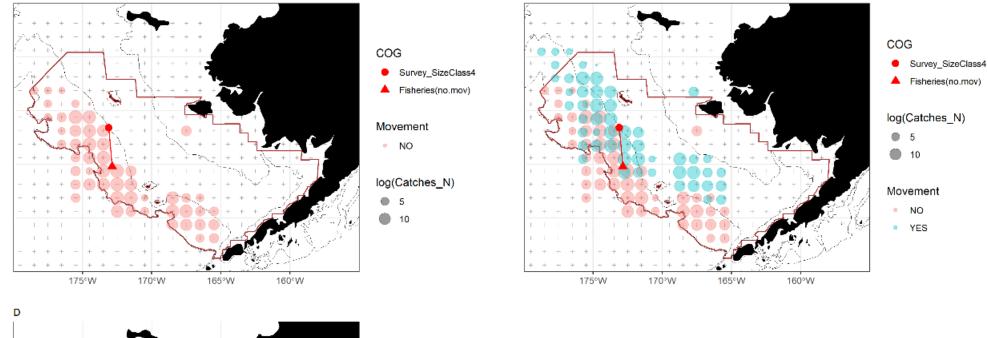
|METHODS| 2. Data – Fisheries data

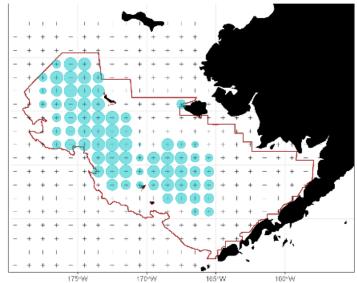
• Accounting implicitly for movement : Difference of COG between Fisheries and Survey

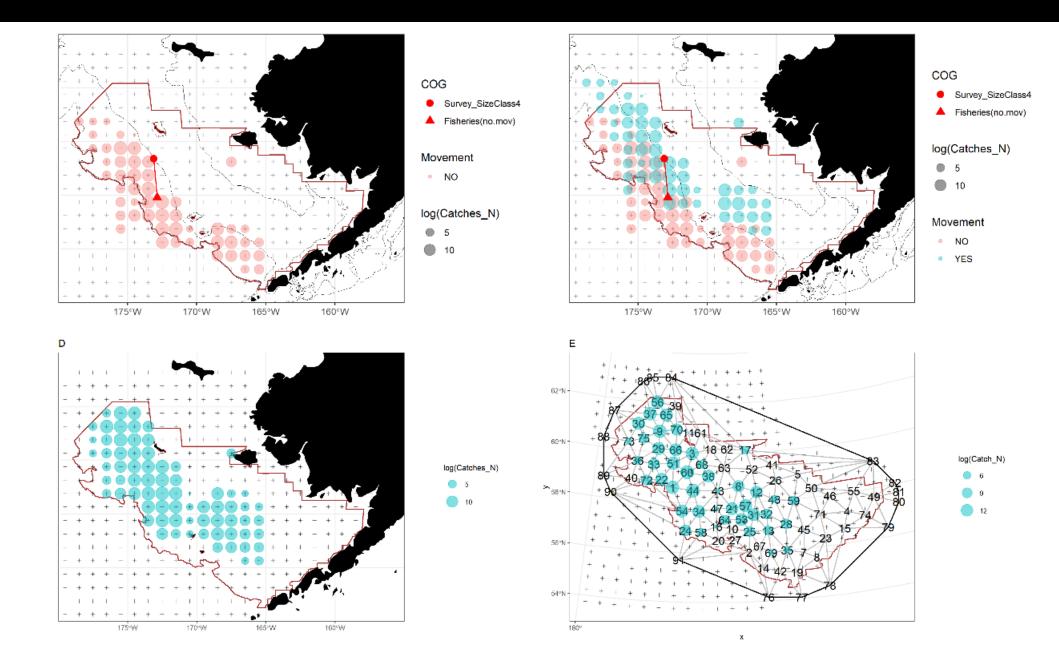




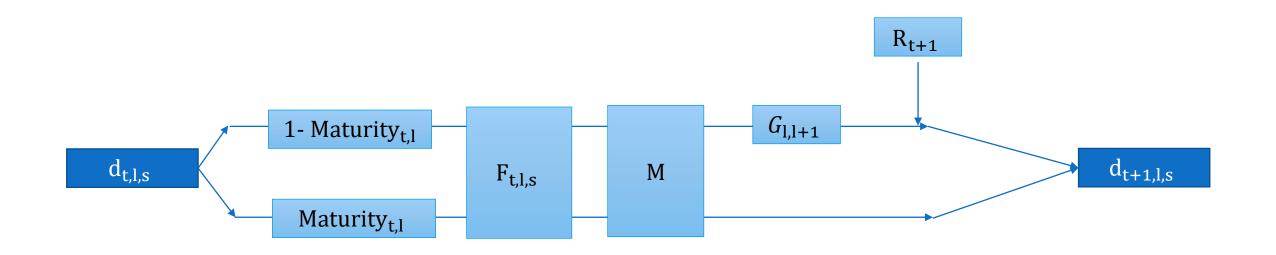




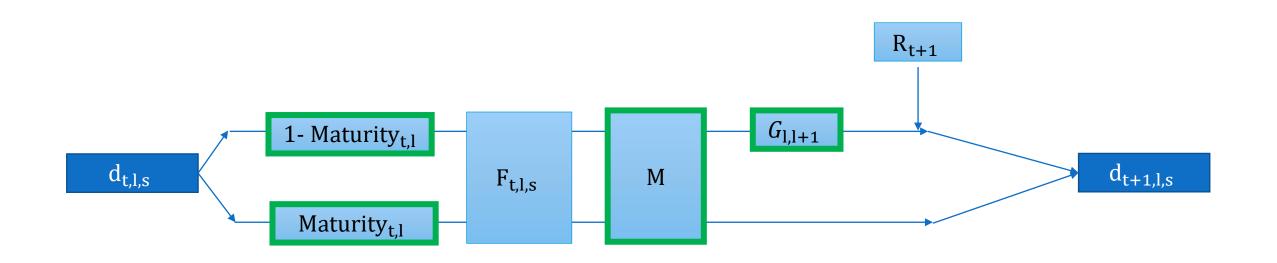




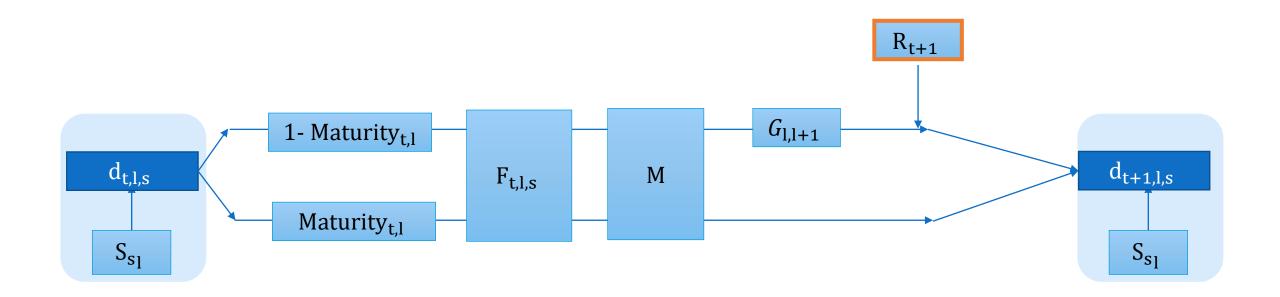
METHODS 3. Parameters



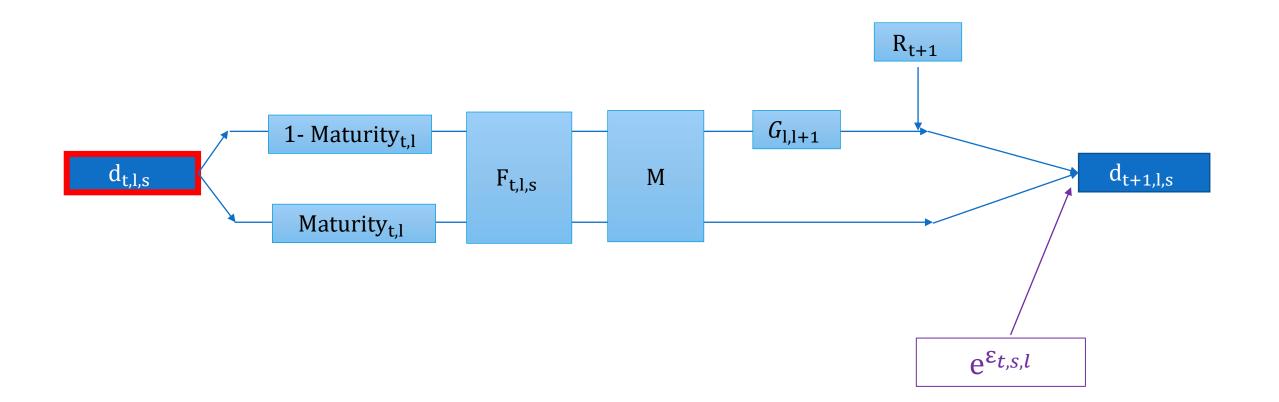
METHODS 3. Parameters – Pre-specified



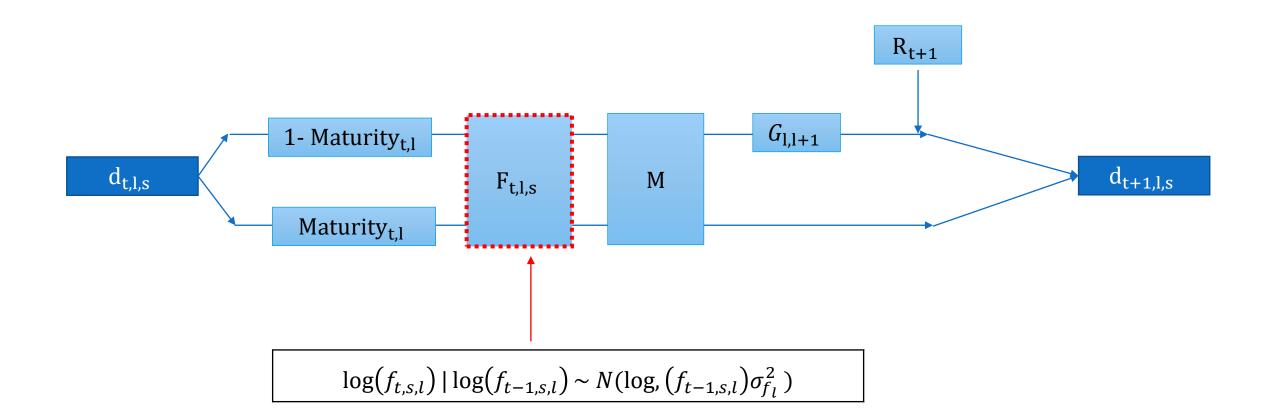
|METHODS| 3. Parameters – Fixed Effects



[METHODS] 3. Parameters – Random effects (State space parametrization)



METHODS 3. Parameters – Random effects – Fishing Mortality



|METHOD| Derived quantities : Some explorations using this framework

- Q1 : The effect of the cold pool on spatio-temporal variation in juvenile distribution ?
 - **Potential** underlying mechanisms : cold pool acts as a thermal barrier to Pacific cod and imposes a spatial mismatch between Pacific cod and juvenile crab distributions.
 - Expectation
 - ✓ During cold years the distribution of juvenile crab is spread across the Eastern Bering sea shelf
 - ✓ Whereas during warm years we expect that the distribution of juvenile crab to contract as a result of a smaller cold pool providing a smaller thermal refuge from cod predation.

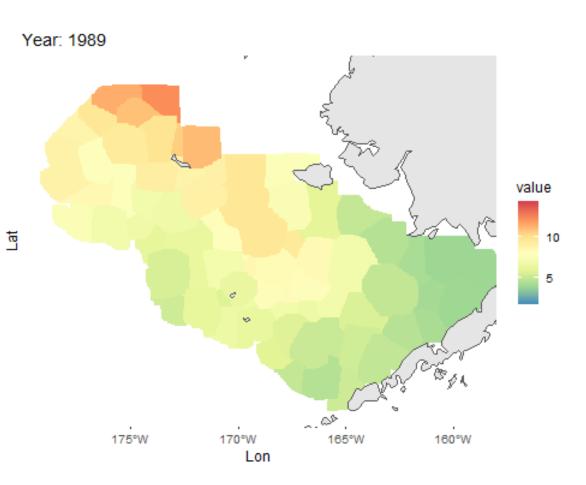
- Q2 : Distributed of fishing mortality in space
 - By calculating exploitation rate

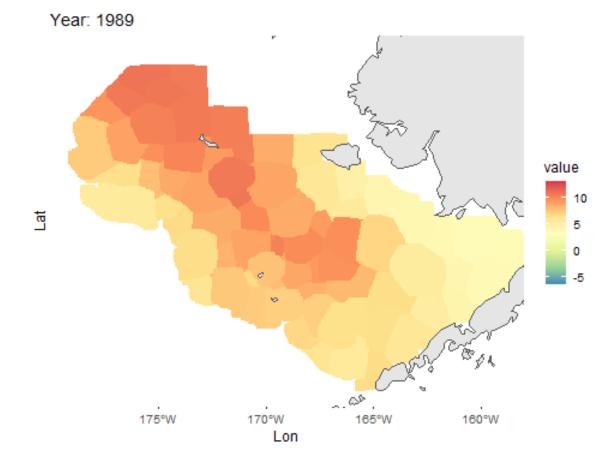
RESULTS

|RESULTS| Spatiotemporal changes in abundances (log scale)

Size class 1 : 0-40mm

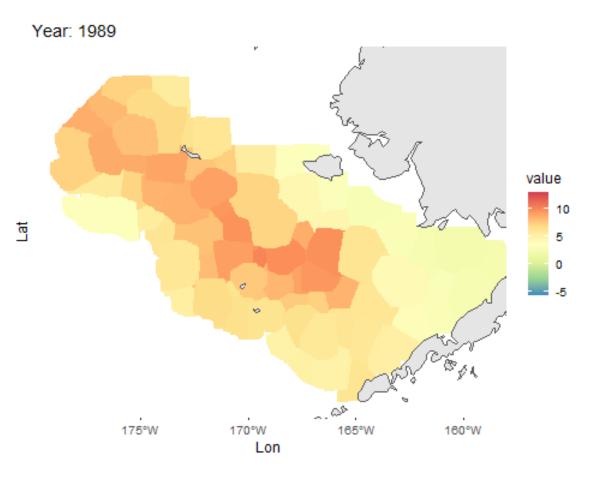
Size class 2 : 40-78mm



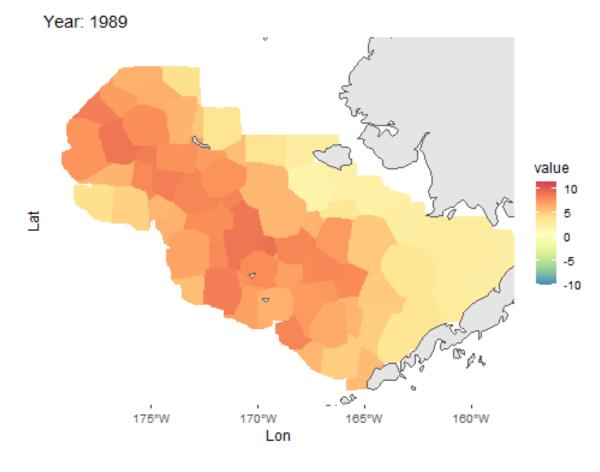


|RESULTS| Spatiotemporal changes in abundances (log scale)

Size class 3: 78-101mm

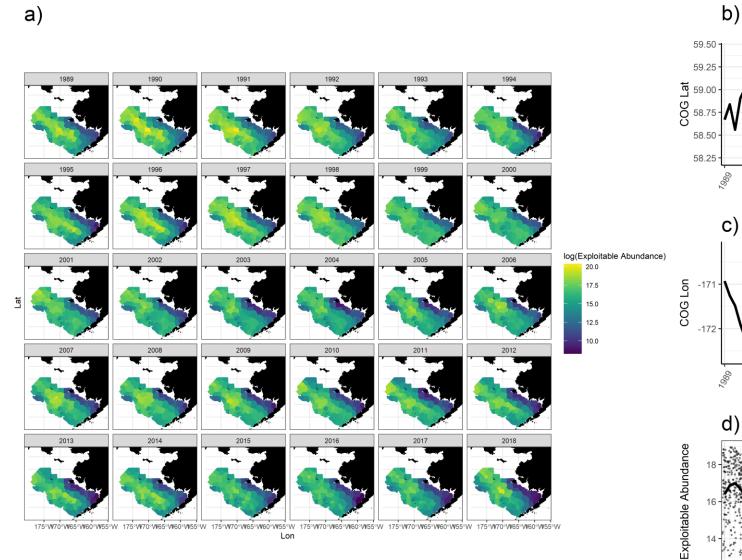


Size class 4 : >101mm



[RESULTS] Spatiotemporal changes in exploitable abundance

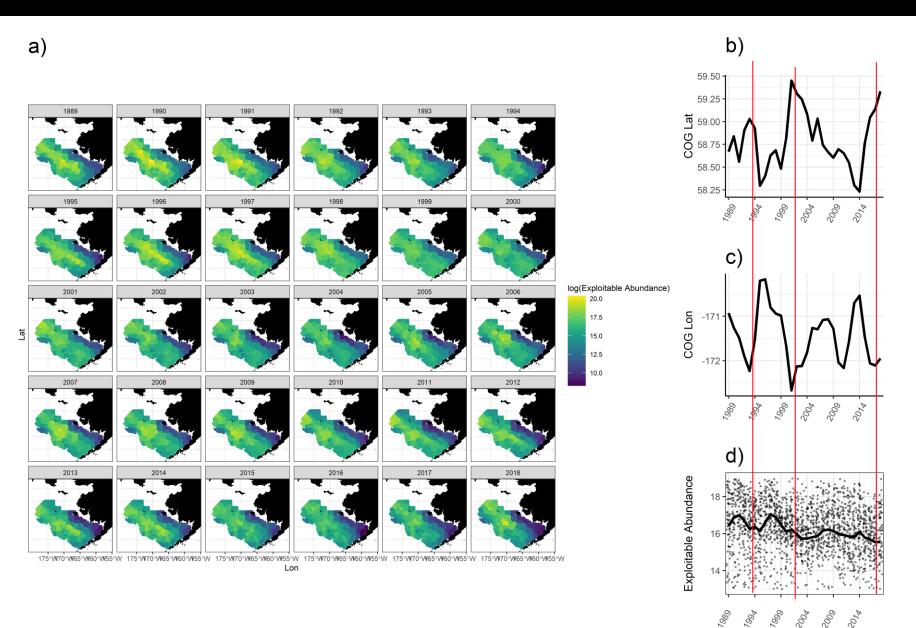
a)



Decline in exploitable abundance

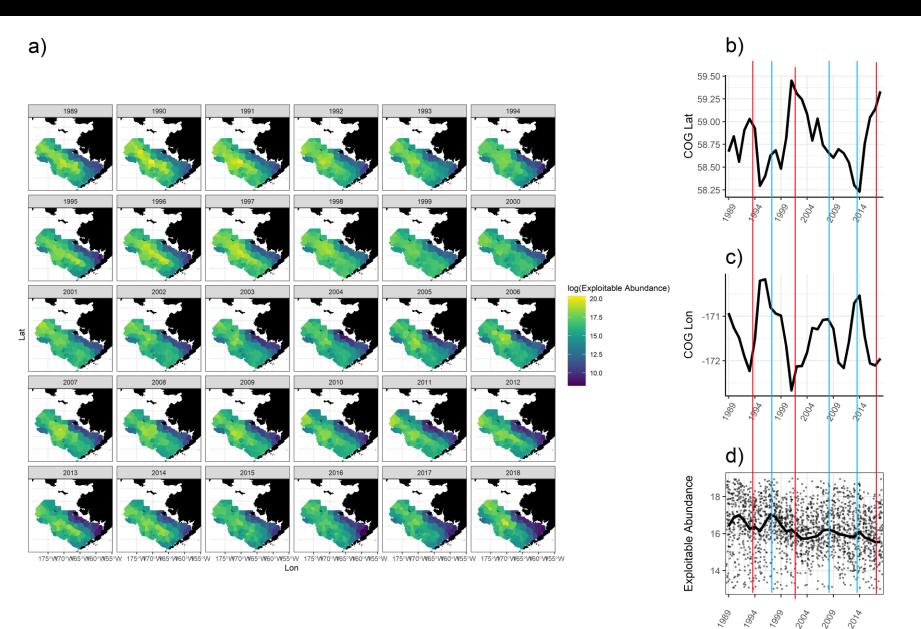
³⁹⁹

[RESULTS] Spatiotemporal changes in exploitable abundance



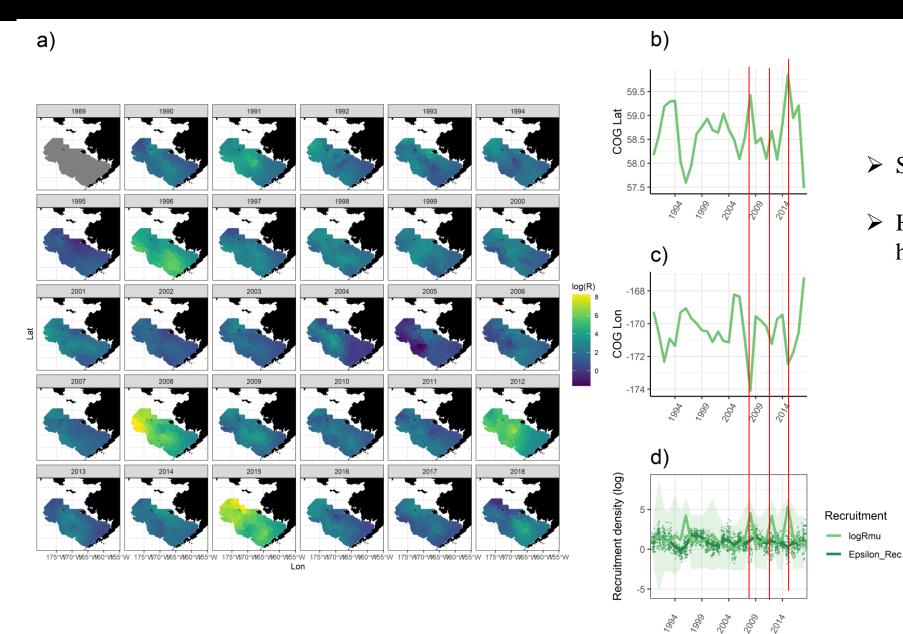
- Decline in exploitable abundance
- Years with marked declines, COG in high latitude

[RESULTS] Spatiotemporal changes in exploitable abundance



- Decline in exploitable abundance
- Years with marked declines, COG in high latitude
- Peak of abundances, COG in low latitude

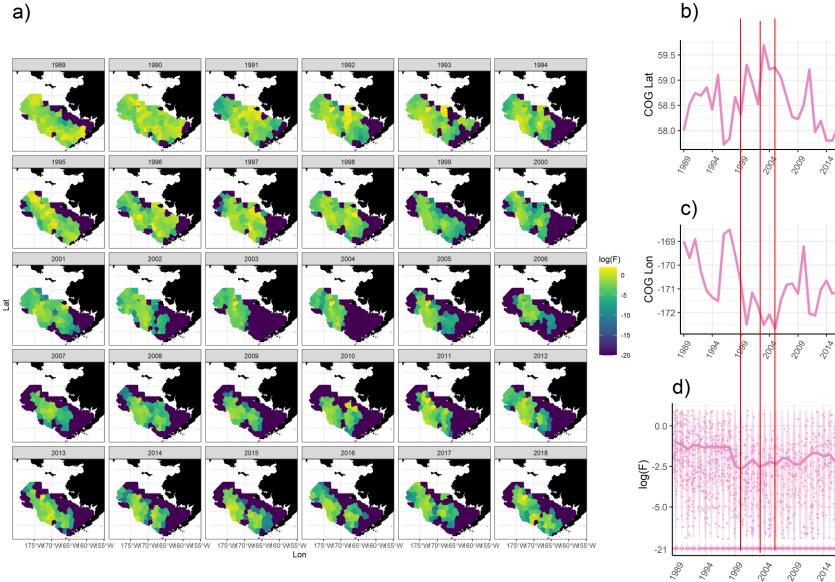
[RESULTS] Spatiotemporal changes in recruitment



- Sporadic pattern
- High values associated with high latitude

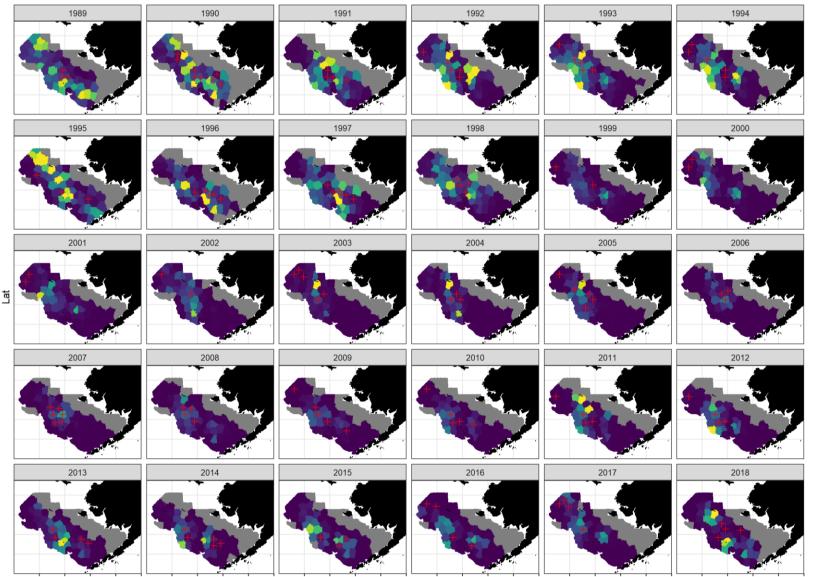
[RESULTS] Spatiotemporal changes in fishing mortality

a)



- ➤ High fishing mortality : 1989-1990
- Years of low fishing mortality (1999-2010)
 - more constrained spatial distribution of fishing mortality
 - COG in high latitude and western longitutde

[RESULTS] Spatiotemporal changes in exploitation rates



- 1989 to 1998, the western part of the EBS was strongly exploited
 - some areas the catches represent 80% of the abundance
- After 1999, when the stock was declared overfished, exploitation was strongly reduced

Exploitation Rate

0.8

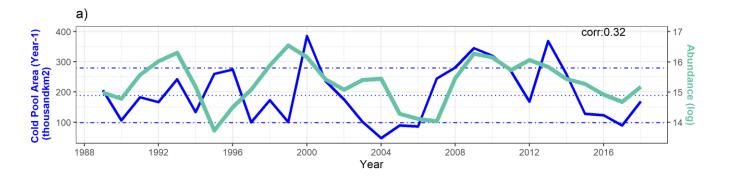
0.6 0.4

0.2

 Some areas have high abundance but very low harvest

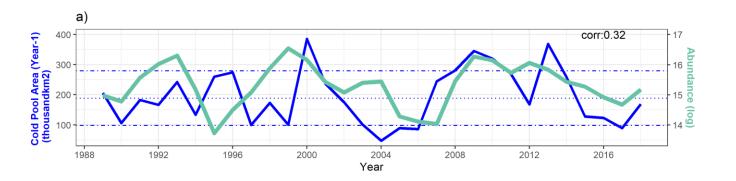
175°W170°W165°W160°W155°W 175°W170°W165°W160°W155°W 175°W170°W165°W160°W155°W 175°W170°W165°W160°W155°W 175°W170°W165°W160°W155°W 175°W170°W165°W160°W155°W

[RESULTS] Link between spatiotemporal dynamic and cold pool extend?



 correlation between the time-series of abundance for size-class 1 and the cold pool extend is positive

[RESULTS] Link between spatiotemporal dynamic and cold pool extend?



b)

175°W170°W165°W160°W

175°W170°W165°W160°W

1989 1990 1991 1992 1993 1994 56°N 1995 1996 1997 1998 1999 2000 2003 2005 2001 2002 2004 2006 2007 2008 2009 2010 2011 2012 2017 2013 2014 2015 2016 2018 58°N

175°W 170°W 165°W 160°W

175°W 170°W 165°W 160°W

175°W170°W165°W160°W

175°W 170°W 165°W 160°W

Bottom_Temp (Year-1) 1 0 -1 -2 Env.Con (Year-1) Cold Warm NA Abundances (percentiles) 0.5 0.95

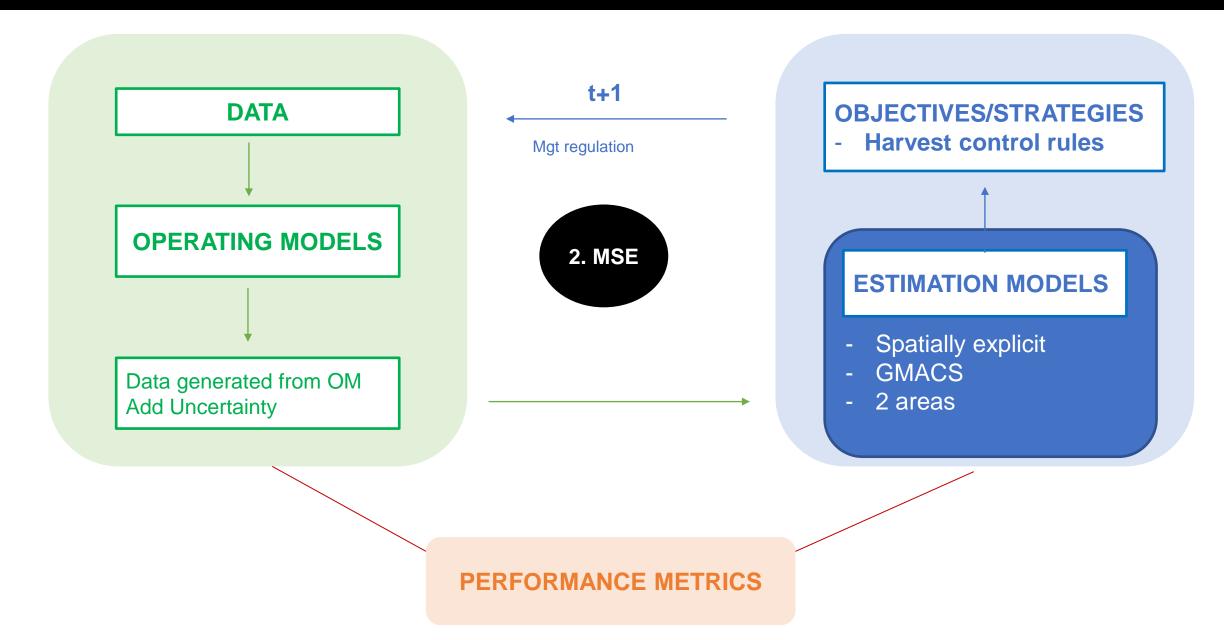
- correlation between the time-series of abundance for size-class 1 and the cold pool extend is positive
- spatiotemporal dynamics of the abundance of juveniles seems to be driven by the cold pool
 - cold years : the spatial distribution of the CP and abundance match and could extend over the entire EBS
 - warm years : the spatial distribution of abundance was more restricted, as was that of the cold pool

|DISCUSSION| Take home messages

• We developed a size structure spatiotemporal model

- accounting implicitly for seasonal movement between survey and fishery
- to estimate fine scale spatial dynamic and fishing impacts.
- We applied the model to snow crabs in the Eastern Bering Sea,
 - Provided for the first time, spatiotemporal variations in key quantities
- The model showed a declines a in exploitable biomass and in fishing mortality, with the latest not evenly distributed.
- Results also show a sporadic recruitment, spatially concentrated in the northeast part of the EBS.
- Our result highlight that spatial distribution of juveniles are related to the cold pool

OUTLINE OF THIS TALK | A Summary of 2 postdoc projects on snow crab



PURPOSE OF THE MSE PROJECT

WHAT | Understand how fisheries respond and will respond to climate change

- Investigate the ability of management strategies to achieve fisheries management objectives considering current and future impacts of climate change
- Within a spatially explicit framework to
 - Better represent the mechanisms driving the system
 - Test for spatial management strategies

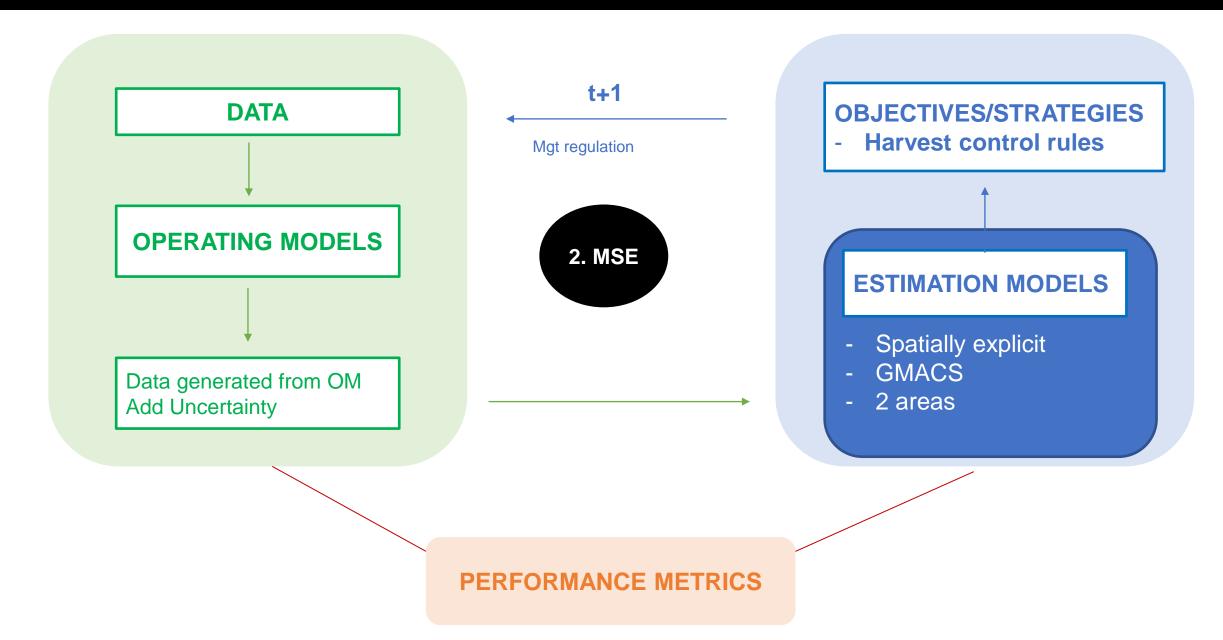
PURPOSE OF THE MSE PROJECT

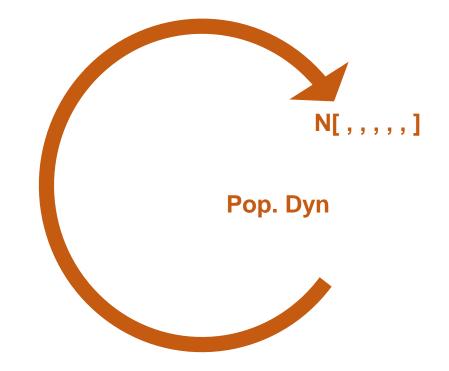
? WHAT | Understand how fisheries respond and will respond to climate change

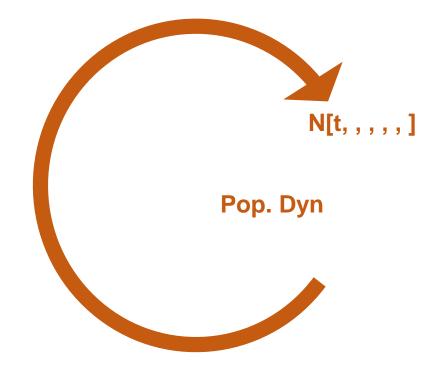
- Investigate the ability of management strategies to achieve fisheries management objectives considering current and future impacts of climate change
- Within a spatially explicit framework to
 - Better represent the mechanisms driving the system
 - Test for spatial management strategies

→ Test different management strategies under climate change scenarios

OUTLINE OF THIS TALK | A Summary of 2 postdoc projects on snow crab

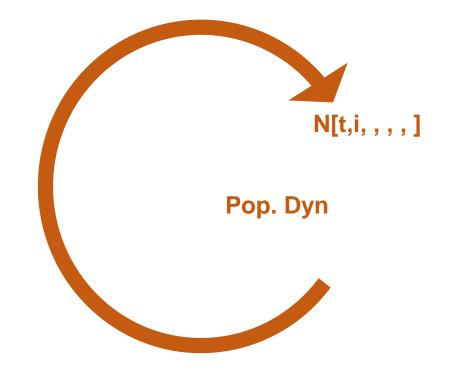


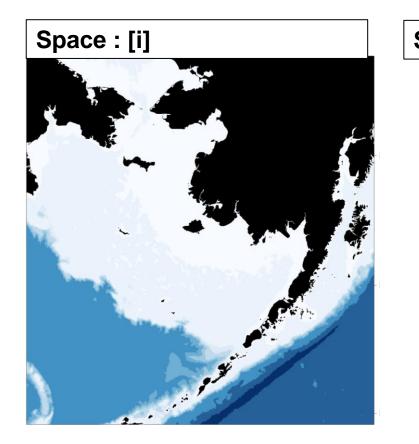


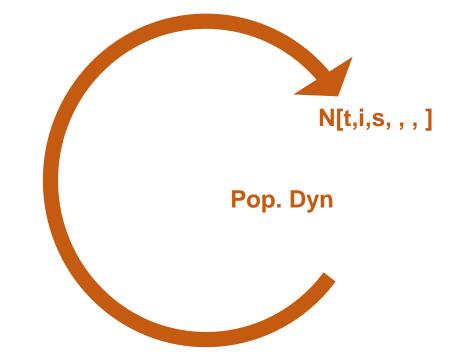


Time [t]

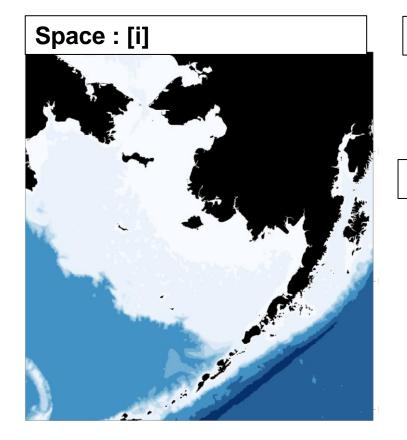




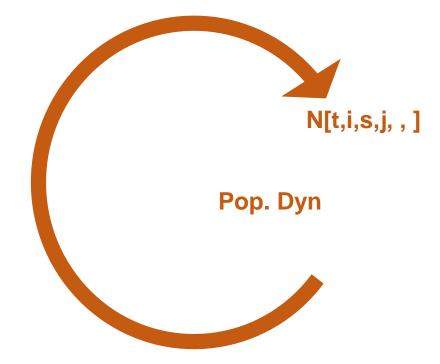




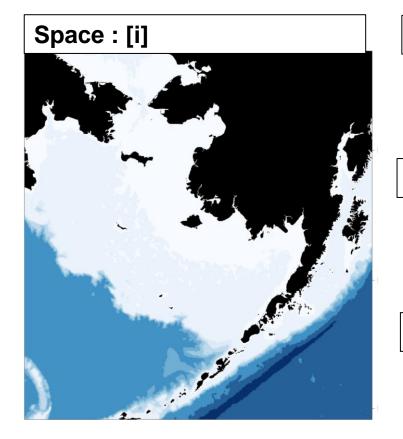
Time [t]

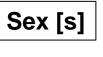


Shell Cond [j]



Time [t]



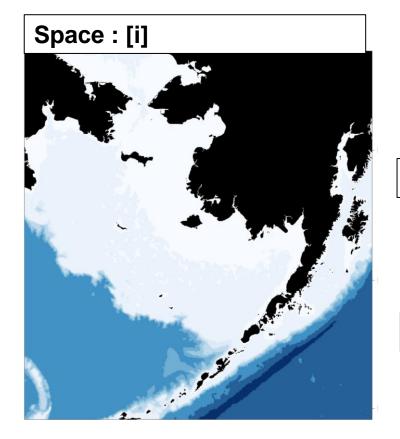


Shell Cond [j]

Maturity [m]

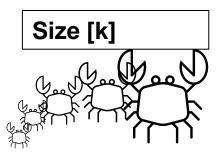


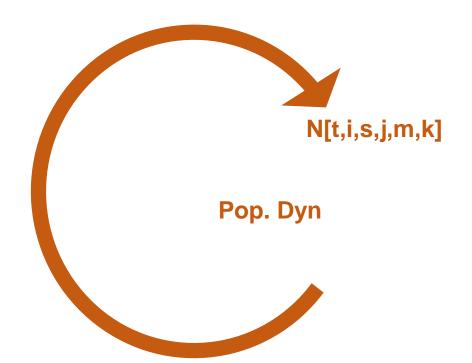
Time [t]



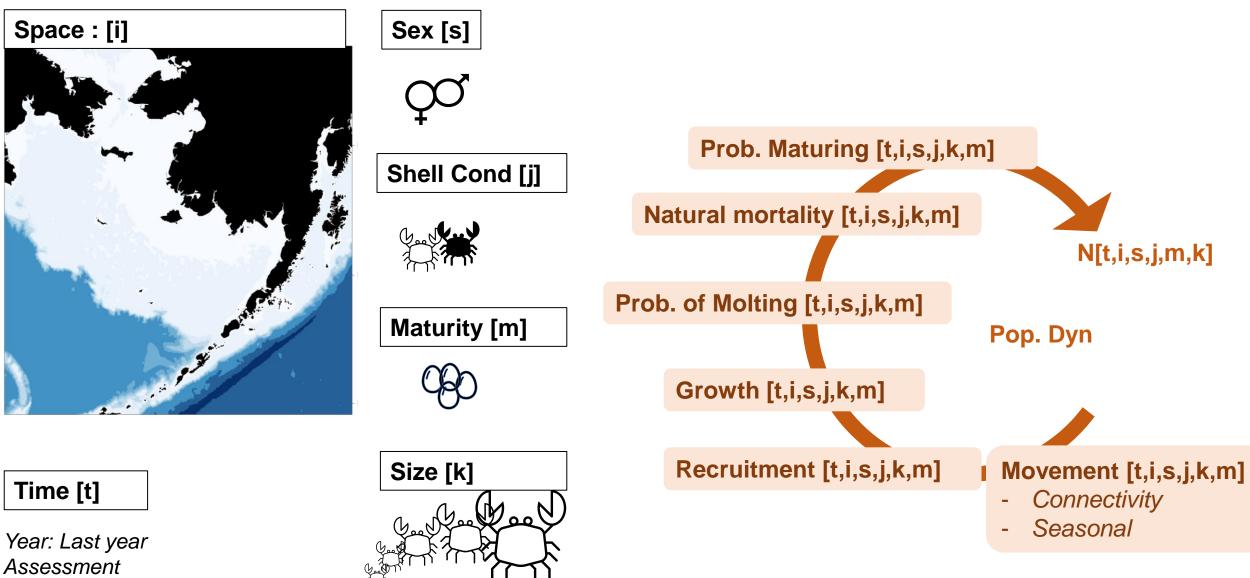
Shell Cond [j]

Maturity [m]





OPERATING MODELS The population dynamic & Life History Processes (LHP)



Season

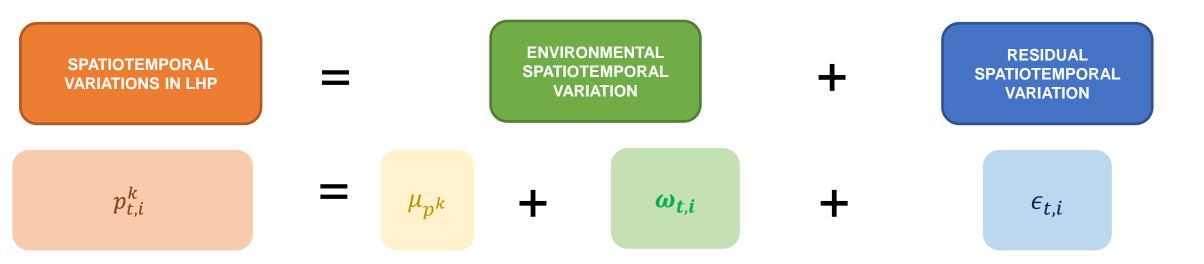
Generating life history processes

- **1.** Different scenarios
 - i. Scenario I : Unconstrained \rightarrow Random field
 - ii. Scenario 2 : Predefined scenario ex: latitudinal increase
 - iii. Scenario 3 : Spatiotemporal variations : ARI
 - iv. Scenario 4 : Spatiotemporal variation + Environmental variations
 - a. Scenario 4.a : No preferential habitat
 - b. Scenario 4.b : Preferential habitat

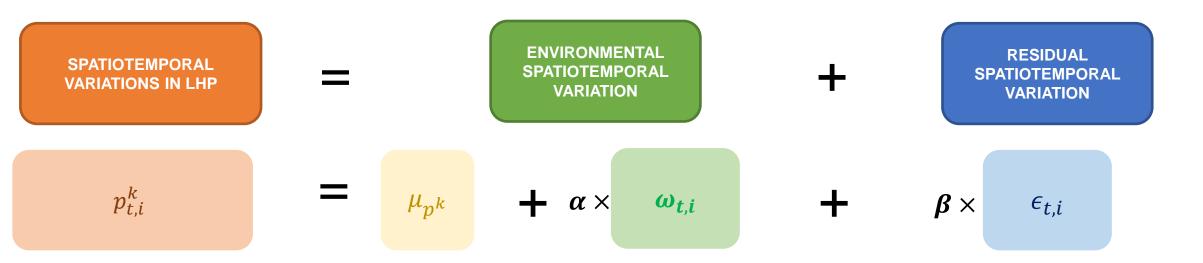
Generating life history processes

- **1.** Different scenarios
 - i. Scenario I : Unconstrained \rightarrow Random field
 - ii. Scenario 2 : Predefined scenario ex: latitudinal increase
 - iii. Scenario 3 : Spatiotemporal variations : ARI
 - iv. Scenario 4 : Spatiotemporal variation + Environmental variations
 - a. Scenario 4.a : No preferential habitat
 - b. Scenario 4.b : Preferential habitat

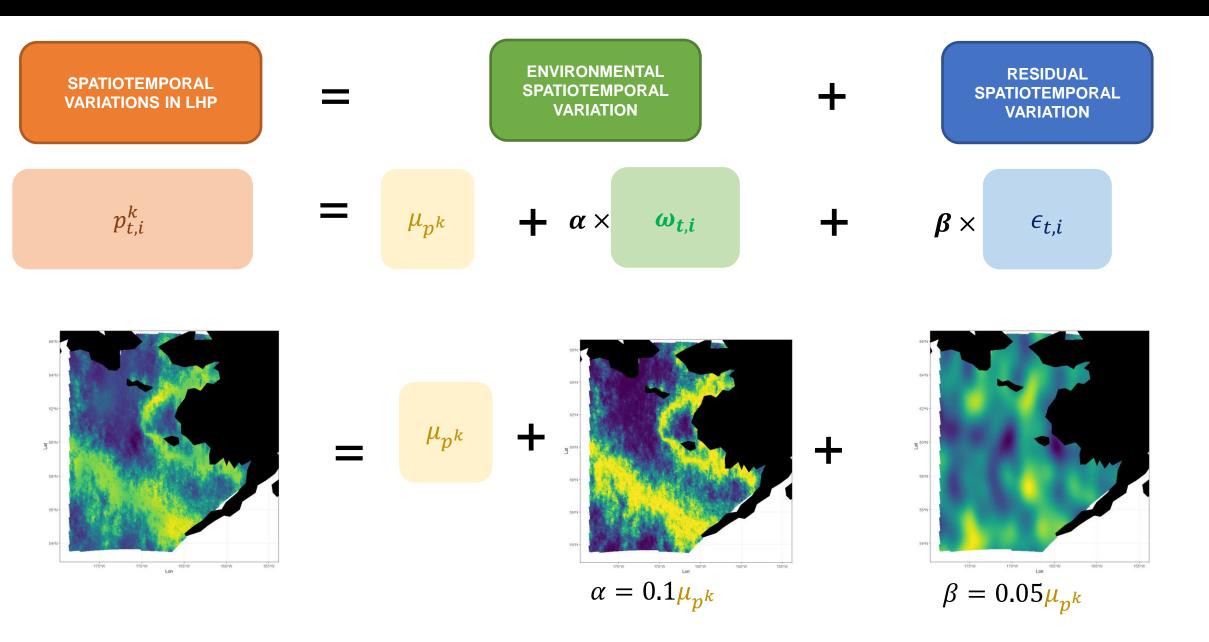
$$LHP_{t,i} = f(p_{t,i}^1 \dots p_{t,i}^n)$$



$$LHP_{t,i} = f(p_{t,i}^1 \dots p_{t,i}^n)$$



$$LHP_{t,i} = f(p_{t,i}^1 \dots p_{t,i}^n)$$



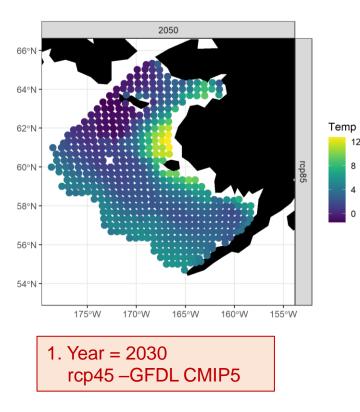
ENVIRONMENTAL SPATIOTEMPORAL VARIATION

 $\omega_{t,i}$

12

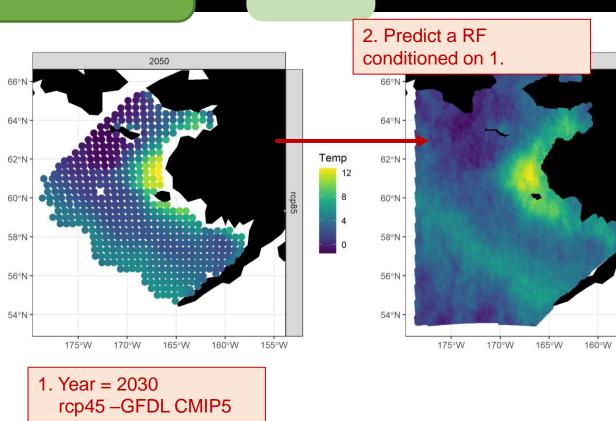
8 4

0



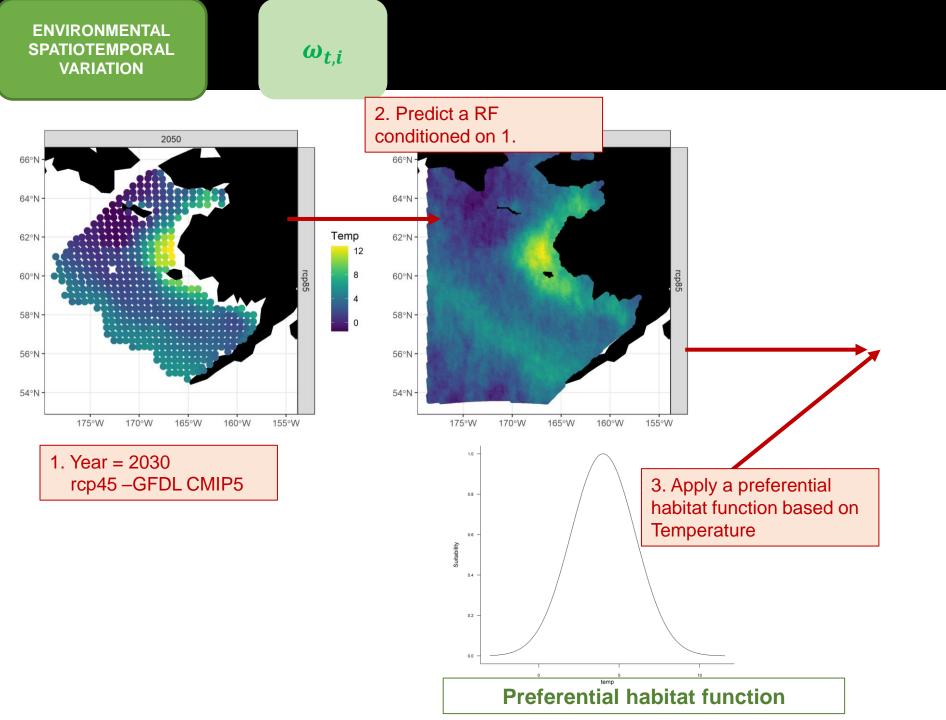
ENVIRONMENTAL SPATIOTEMPORAL VARIATION

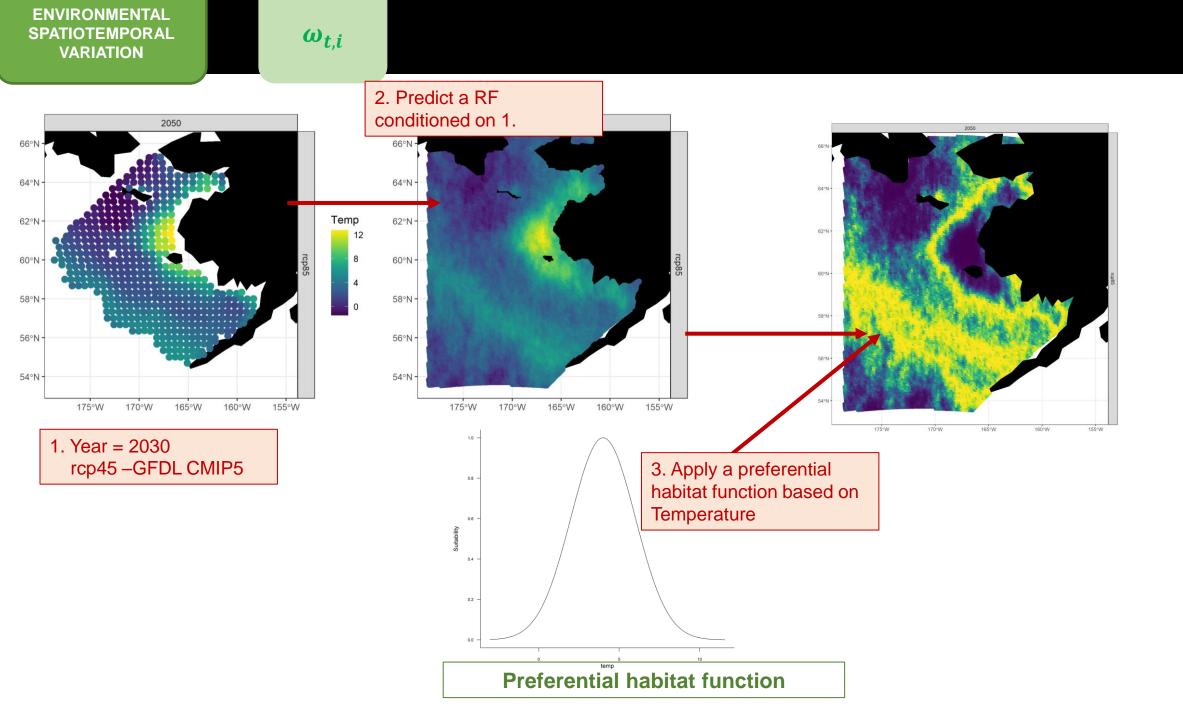
ω_{t,i}

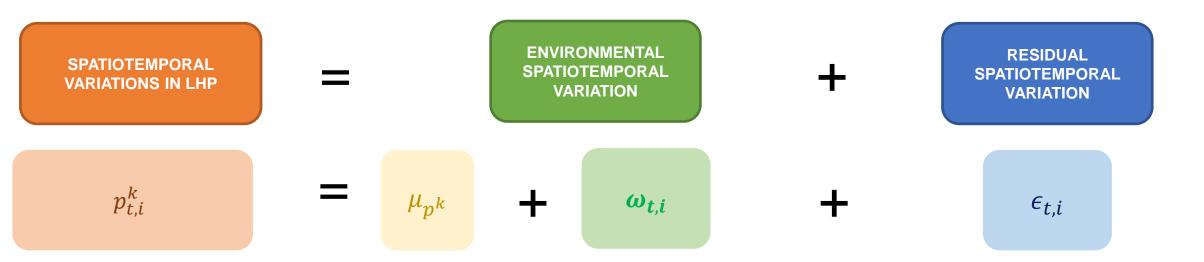


rcp85

155°W







LHP_{t,i} =
$$f(p_{t,i}^1 \dots p_{t,i}^n)$$

||
GROWTH

|SIMULATION GROWTH| Year= 2030 | Clim. Sc = rcp85 | sex = Male

1.00

0.75

0.50

0.25

0.00

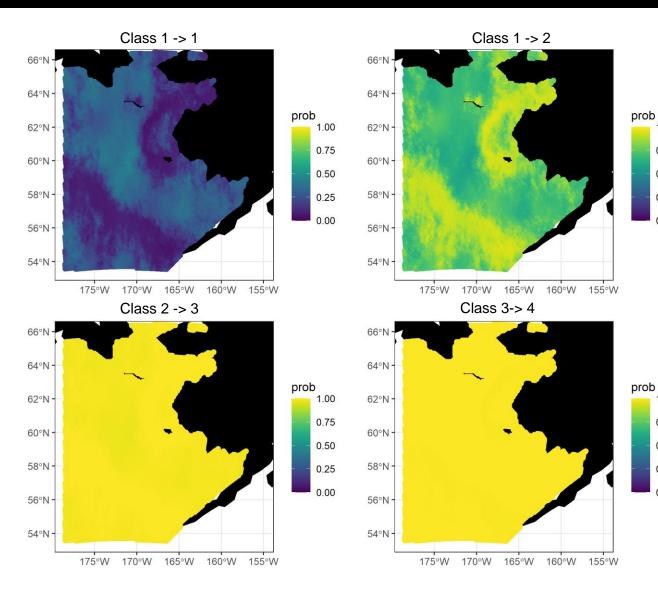
1.00

0.75

0.50

0.25

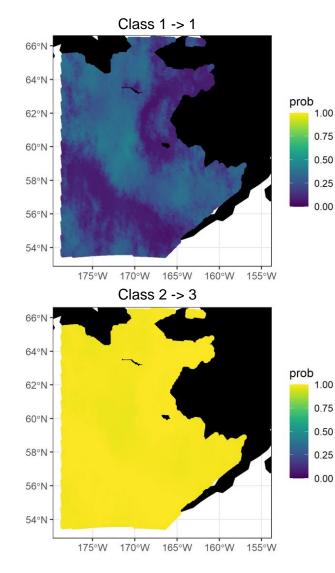
0.00

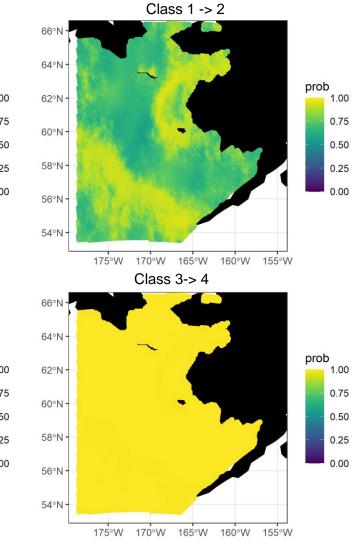


HYPOTHESIS

- Preferential habitat function
- Additive effect

|SIMULATION GROWTH| Year= 2030 | Clim. Sc = rcp85 | sex = Male





HYPOTHESIS

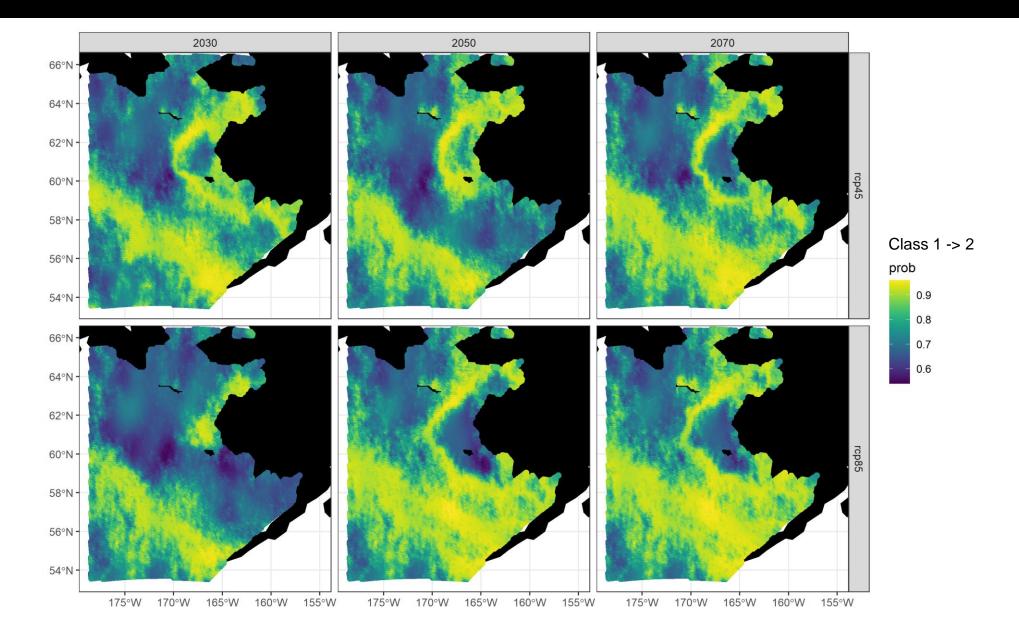
- Preferential habitat function
- Additive effect

COULD GENERATE SOME UNCERTAINTIES

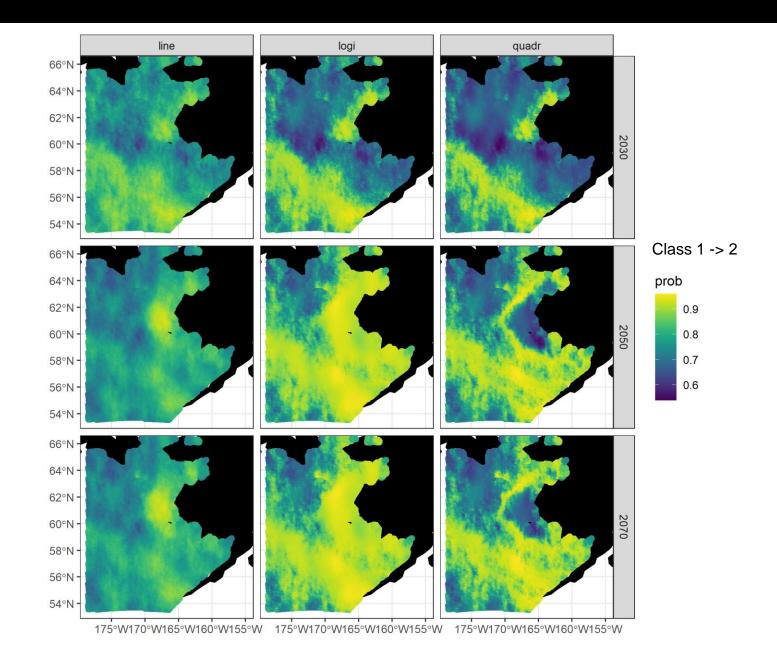
- Preferential habitat
 - \circ Linear
 - o Quadratic
 - Logistic
- Effect

 Multiplicative

SIMULATION GROWTH Climate scenarios vs Years | HP function = quadrat.



SIMULATION GROWTH Years vs Preferential habitat function



DISCUSSION : SOME FEEDBACK

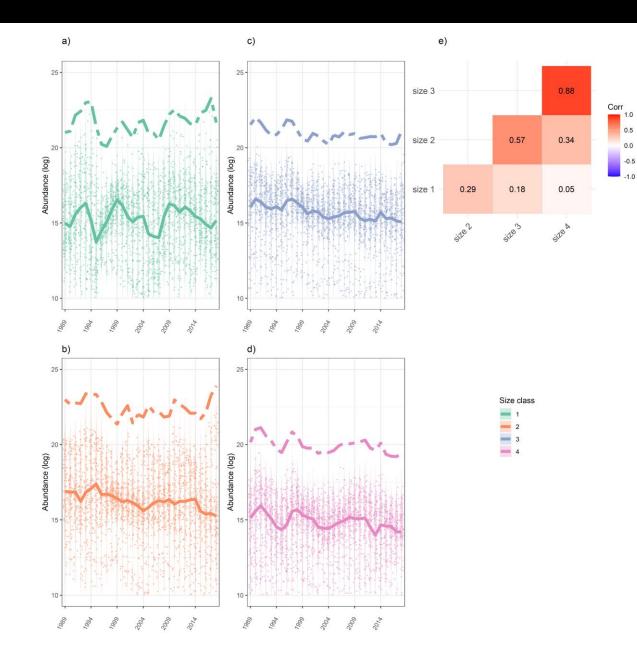
• How much can vary the parameters with the potential climate scenarios?

THANK YOU VERY MUCH

- Cody Szuwalski
- Andre Punt
- Jie Cao
- Jim Thorson
- Cole Monnahan
- Kirstin Holsman
- William T. Stockhausen
- Anne Hollowed
- Alan Haynie
- ACLIM2 Collaborators

molmos@uw.edu

|RESULTS| Spatiotemporal changes in abundances



- Decline in average abundance
- Strong spatial variability in abundances
- Strong spatiotemporal correlations between large size classes