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|CONTEXT| Motivations : accounting for spatial heterogeneity 

• Addressing spatial heterogeneity in population dynamics → critical to better manage natural resources

• Accounting for spatial processes in population dynamic is complex

• Management of natural resources → simplify assumptions about population spatial structure
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|CONTEXT| Solution : State-space spatiotemporal IPM

• Spatiotemporal IPMs can be implemented at a finer spatial scale 

o Allow population processes to vary continuously across space by utilizing spatial correlation to account for a 

continuous approximation of spatial dynamics 

o Can directly fit to fishery and survey data at the scale they are collected 

o Attribute variation in survey data among sampling location to both sampling error and spatial process heterogeneity
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|CONTEXT| Solution : State-space spatiotemporal IPM

• Spatiotemporal IPMs can be implemented at a finer spatial scale 

o Allow population processes to vary continuously across space by utilizing spatial correlation to account for a 

continuous approximation of spatial dynamics 

o Can directly fit to fishery and survey data at the scale they are collected 

o Attribute variation in survey data among sampling location to both sampling error and spatial process heterogeneity

• But still some key demographic processes to refine

o Movement 

▪ Explicitly

→ How to account for movement when the spatial distribution of the stock may change between the survey and the fishery 

▪ Implicitly
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|CONTEXT| Case study : Snow Crab EBS

• Spatial considerations are important for snow crabs in the EBS

o Biomass strongly declined recently (Zacher et al., 2021) 

→ A need to better understand the spatiotemporal dynamic 

o Spatially concentrated fishery

o Ontogenetic migration

o Stock’s association with the cold pool 

o The potential for marine heat waves to influence dynamics

www.fisheries.noaa.gov
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|CONTEXT| Purpose of the study

• Refine the representation of spatial processes in IPMs (migration)

• Use this spatially explicit framework to explore important questions  

o To facilitate understanding of the drivers of the spatiotemporal population dynamics

▪ Q1 : The effect of the cold pool on spatio-temporal variation in juvenile distribution ?

o To Improve management advice

▪ Q2 : Distribution of fishing mortality in space ? 
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|CONTEXT| Purpose of the study

• The basic framework of our model is conceptually similar to Cao et al. (2020)
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|CONTEXT| Purpose of the study

• The basic framework of our model is conceptually similar to Cao et al. (2020)

• With several improvements

▪ Fit to real data

▪ The representation of several biological and sampling processes is improved (e.g. selectivity and maturity) and we account 

implicitly for seasonal movement.
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|METHODS| 
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|METHODS| A Spatiotemporal size-structured population model 

• Size structure spatiotemporal population model 

o Combines theory and methods from population dynamics and geostatistics

o Assumes population density varies continuously across space

o Tracks variation in population density for multiple life stages and their expected dynamics across space and time
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|METHODS| A Spatiotemporal size-structured population model 

1. POPULATION DYNAMIC

2. DATA AND LIKELIHOOD

o Movement : accounts implicitly for seasonality 

3. PARAMETERS

o Pre-specified

o Estimated

▪ Fixed effects

▪ Random effects
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|METHODS| 1. Population Dynamic

• Densities 𝑑 at size for a given size class l, location s and time t+1 is expressed as

d𝑡+1,𝑙,𝑠 = 𝑔 d𝑡,𝑠,𝑙 × eε𝑡,𝑠,𝑙
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|METHODS| 1. Population Dynamic 𝒈 𝐝𝐭,𝐬,𝐥
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|METHODS| 1. Population Dynamic 𝒈 𝐝𝐭,𝐬,𝐥 𝒆𝜺𝒕,𝒔,𝒍

dt,l,s

1-Maturityt,l

Maturityt,l

Ft,l,s M

𝐺l,l+1

Rt+1,𝑙,𝑠

dt+1,l,s

• ε𝑡,𝑠,𝑙 accounts for unmodelled spatial and temporal process and follows a multivariate                   

normal distribution

𝑣𝑒𝑐[𝑬𝑡]~ 𝑀𝑉𝑁𝑜𝑟𝑚𝑎𝑙(𝑹𝑠𝑝𝑎𝑡𝑖𝑎𝑙 ۪𝜣𝐿 )

eε𝑡,𝑠,𝑙

20



|METHODS| 1. Population Dynamic 𝒈 𝐝𝐭,𝐬,𝐥 𝒆𝜺𝒕,𝒔,𝒍

dt,l,s

1-Maturityt,l

Maturityt,l

Ft,l,s M

𝐺l,l+1

Rt+1,𝑙,𝑠

dt+1,l,s

• ε𝑡,𝑠,𝑙 accounts for unmodelled spatial and temporal process and follows a multivariate                   

normal distribution

𝑣𝑒𝑐[𝑬𝑡]~ 𝑀𝑉𝑁𝑜𝑟𝑚𝑎𝑙(𝑹𝑠𝑝𝑎𝑡𝑖𝑎𝑙 ۪𝜣𝐿 )

eε𝑡,𝑠,𝑙

Spatial covariance matrix : between 2 locations 

follows a Matern function
Covariance among size classes l 21



|METHODS| 2. Data – Survey Data
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|METHODS| 2. Data – Survey Data : Densities (Ab/km2) – 1989 -2018

0-40mm

40-78mm

78-101mm

>101mm
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|METHODS| 2. Data – Survey Data : Densities (Ab/km2) – 1989 -2018

• Likelihood function

o Poisson link delta model (Thorson, 2017) to fit dt,l,s to samples of observed abundance density

o Probability density function 

▪ Encounter probability 

▪ Positive catch rates

24



|METHODS| 2. Data – Fisheries data
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|METHODS| 2. Data – Fisheries data

• Temporal mismatch between Survey (summer) and Fisheries (winter)

o Because of ontogenetic migrations → Spatial mismatch 

→ Accounting implicitly for seasonality in the model 

• Strategy : Account for movement between survey and fisheries

o Determine the spatial distribution of Fisheries in Summer
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|METHODS| 2. Data – Fisheries data

• Accounting implicitly for movement : Difference of COG between Fisheries and Survey
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|METHODS| 2. Data – Fisheries data – Example Year = 2017 
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|METHODS| 2. Data – Fisheries data – Example Year = 2017 
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|METHODS| 2. Data – Fisheries data – Example Year = 2017 
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|METHODS| 2. Data – Fisheries data – Example Year = 2017 
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|METHODS| 3. Parameters

dt,l,s

1-Maturityt,l

Maturityt,l

Ft,l,s M
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|METHODS| 3. Parameters – Pre-specified

dt,l,s

1-Maturityt,l

Maturityt,l

Ft,l,s M

𝐺l,l+1

Rt+1

dt+1,l,s
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|METHODS| 3. Parameters – Fixed Effects

Ssl Ssl

dt,l,s

1-Maturityt,l

Maturityt,l

Ft,l,s M

𝐺l,l+1

Rt+1
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|METHODS| 3. Parameters – Random effects (State space parametrization) 

dt,l,s

1-Maturityt,l

Maturityt,l

Ft,l,s M

𝐺l,l+1

Rt+1

dt+1,l,s
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|METHODS| 3. Parameters – Random effects – Fishing Mortality 

dt,l,s

1-Maturityt,l

Maturityt,l

Ft,l,s M

𝐺l,l+1

Rt+1

dt+1,l,s

log 𝑓𝑡,𝑠,𝑙 | log 𝑓𝑡−1,𝑠,𝑙 ~ 𝑁(log, 𝑓𝑡−1,𝑠,𝑙 𝜎𝑓𝑙
2 )
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|METHOD| Derived quantities : Some explorations using this framework

• Q1 : The effect of the cold pool on spatio-temporal variation in juvenile distribution ?

o Potential underlying mechanisms : cold pool acts as a thermal barrier to Pacific cod and imposes a spatial mismatch 

between Pacific cod and juvenile crab distributions.

o Expectation 

✔ During cold years the distribution of juvenile crab is spread across the Eastern Bering sea shelf

✔ Whereas during warm years we expect that the distribution of juvenile crab to contract as a result of a smaller

cold pool providing a smaller thermal refuge from cod predation.

• Q2 : Distributed of fishing mortality in space 

o By calculating exploitation rate
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|RESULTS|
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|RESULTS| Spatiotemporal changes in abundances (log scale)

39

Size class 1 : 0-40mm Size class 2 : 40-78mm



|RESULTS| Spatiotemporal changes in abundances (log scale)

40

Size class 3: 78-101mm Size class 4 : >101mm



|RESULTS| Spatiotemporal changes in exploitable abundance

➢ Decline in exploitable 

abundance
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|RESULTS| Spatiotemporal changes in exploitable abundance

➢ Decline in exploitable 

abundance

➢ Years with marked declines, 

COG in high latitude 
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|RESULTS| Spatiotemporal changes in exploitable abundance

➢ Decline in exploitable 

abundance

➢ Years with marked declines, 

COG in high latitude 

➢ Peak of abundances, COG in 

low latitude
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|RESULTS| Spatiotemporal changes in recruitment

➢ Sporadic pattern

➢ High values associated with 

high latitude
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|RESULTS| Spatiotemporal changes in fishing mortality

➢ High fishing mortality : 1989-

1990

➢ Years of low fishing 

mortality (1999-2010) 

▪ more constrained spatial 

distribution of fishing 

mortality 

▪ COG in high latitude and 

western longitutde
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|RESULTS| Spatiotemporal changes in exploitation rates

➢ 1989 to 1998, the western part 

of the EBS was strongly 

exploited 

▪ some areas the catches 

represent 80% of the 

abundance

➢ After 1999, when the stock 

was declared overfished, 

exploitation was strongly 

reduced

➢ Some areas have high 

abundance but very low harvest
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|RESULTS| Link between spatiotemporal dynamic and cold pool extend ?

➢ correlation between the time-series 

of abundance for size-class 1 and the 

cold pool extend is positive
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|RESULTS| Link between spatiotemporal dynamic and cold pool extend ?

➢ correlation between the time-series 

of abundance for size-class 1 and the 

cold pool extend is positive

➢ spatiotemporal dynamics of the 

abundance of juveniles seems to be 

driven by the cold pool

▪ cold years : the spatial 

distribution of the CP and 

abundance match and could 

extend over the entire EBS

▪ warm years :  the spatial 

distribution of abundance was 

more restricted, as was that of 

the cold pool
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|DISCUSSION| Take home messages

• We developed a size structure spatiotemporal model 

o accounting implicitly for seasonal movement between survey and fishery

o to estimate fine scale spatial dynamic and fishing impacts.

• We applied the model to snow crabs in the Eastern Bering Sea, 

o Provided for the first time, spatiotemporal variations in key quantities

• The model showed a declines a in exploitable biomass and in fishing mortality, with the latest not evenly 

distributed. 

• Results also show a sporadic recruitment, spatially concentrated in the northeast part of the EBS. 

• Our result highlight that spatial distribution of juveniles are related to the cold pool
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PURPOSE OF THE MSE PROJECT

WHAT | Understand how fisheries respond and will respond to climate change

o Investigate the ability of management strategies to achieve fisheries management objectives considering current and 

future impacts of climate change

o Within a spatially explicit framework to 

▪ Better represent the mechanisms driving the system

▪ Test for spatial management strategies 



WHAT | Understand how fisheries respond and will respond to climate change

o Investigate the ability of management strategies to achieve fisheries management objectives considering current and 

future impacts of climate change

o Within a spatially explicit framework to 

▪ Better represent the mechanisms driving the system

▪ Test for spatial management strategies 

CASE STUDY | Snow Crab 

→ Test different management strategies under climate change scenarios 

PURPOSE OF THE MSE PROJECT



53

- Spatially explicit

- GMACS

- 2 areas

OBJECTIVES/STRATEGIES

- Harvest control rules

DATA

OPERATING MODELS

ESTIMATION MODELS

PERFORMANCE METRICS

t+1

Mgt regulation

Data generated from OM 

Add Uncertainty 

|OUTLINE OF THIS TALK| A Summary of 2 postdoc projects on snow crab 

2. MSE



The population dynamicOPERATING MODELS

Pop. Dyn

N[ , , , , , ]



55

Time [t] 

Year: Last year 

Assessment

Season 

Pop. Dyn

The population dynamicOPERATING MODELS

N[t, , , , , ]



56

Space : [i]

Time [t] 

Year: Last year 

Assessment

Season 

Pop. Dyn

The population dynamicOPERATING MODELS

N[t,i, , , , ]



57

Space : [i] Sex [s]

Time [t] 

Year: Last year 

Assessment

Season 

Pop. Dyn

The population dynamicOPERATING MODELS

N[t,i,s, , , ]



58

Space : [i] Sex [s]

Shell Cond [j]

Time [t] 

Year: Last year 

Assessment

Season 

Pop. Dyn

The population dynamicOPERATING MODELS

N[t,i,s,j, , ]



59

Space : [i] Sex [s]

Shell Cond [j]

Time [t] 

Year: Last year 

Assessment

Season 

Maturity [m] Pop. Dyn

The population dynamicOPERATING MODELS

N[t,i,s,j,m, ]



60

Space : [i] Sex [s]

Shell Cond [j]

Time [t] 

Year: Last year 

Assessment

Season 

Maturity [m] Pop. Dyn

Size [k] 

The population dynamicOPERATING MODELS

N[t,i,s,j,m,k]



61
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The population dynamic & Life History Processes (LHP)OPERATING MODELS



Generating life history processes 

1. Different scenarios 

i. Scenario 1 : Unconstrained → Random field

ii. Scenario 2 : Predefined scenario – ex: latitudinal increase

iii. Scenario 3 : Spatiotemporal variations : AR1

iv. Scenario 4 : Spatiotemporal variation + Environmental variations

a. Scenario 4.a : No preferential habitat

b. Scenario 4.b : Preferential habitat 
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SCENARIO 4 → Life history process driven by Env. Variations + Pref. Hab

SPATIOTEMPORAL 

VARIATIONS IN LHP 
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SPATIOTEMPORAL 

VARIATION=

𝜖𝑡,𝑖+ + =

= + + 

𝜇𝑝𝑘

𝜇𝑝𝑘

𝝎𝒕,𝒊𝜶 × 𝜷 ×

𝛼 = 0.1𝜇𝑝𝑘 𝛽 = 0.05𝜇𝑝𝑘
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SCENARIO 4 → Life history process driven by Env. Variations + Pref. Hab
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|SIMULATION GROWTH| Year= 2030  | Clim. Sc = rcp85 | sex = Male

HYPOTHESIS

• Preferential habitat function

• Additive effect

Class 1 -> 1 Class 1 -> 2

Class 2 -> 3 Class 3-> 4



HYPOTHESIS

• Preferential habitat function

• Additive effect

COULD GENERATE SOME 

UNCERTAINTIES

• Preferential habitat 

o Linear

o Quadratic 

o Logistic 

• Effect

o Multiplicative

|SIMULATION GROWTH| Year= 2030  | Clim. Sc = rcp85 | sex = Male

Class 1 -> 1 Class 1 -> 2

Class 2 -> 3 Class 3-> 4



|SIMULATION GROWTH| Climate scenarios vs Years | HP function = quadrat.
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Class 1 -> 2



|SIMULATION GROWTH| Years vs Preferential habitat function
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Class 1 -> 2



DISCUSSION : SOME FEEDBACK

• How much can vary the parameters with the potential climate scenarios ? 
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|RESULTS| Spatiotemporal changes in abundances

➢ Decline in average abundance

➢ Strong spatial variability in 

abundances

➢ Strong spatiotemporal 

correlations between large size 

classes
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