Pribilof Islands Red King Crab

Cody Szuwalski Bob Foy Jack Turnock

A comparison of three different assessment methods:

Assessment method	Harvest strategy
Weighted 3-year running average	Tier 4 HCR
Integrated assessment	Tier 4 HCR
Integrated assessment	Tier 3 HCR

OFLs:

RunAvg + Tier 4 > IntA + Tier 3 > IntA + Tier 4

But, no directed fishery...

May CPT to do list

- Add likelihood profile for survey catchability
- Initialize the model before the first year of data to reduce the number of parameters used
- Consider a more generalized growth model
- Do not calculate likelihood contributions for length-bins with very low frequency (~0)
- Explore sensitivities to the size of length bin
- Include lognormal confidence intervals for the survey estimates of numbers and biomass
- Consider ADFG pot survey data and retained catch size frequency data
- Include more detail on the model

X-27 W-28 W-27 V-29V-28 V-27 V-26 V-25 Ŭ-29 U-28 U-27 U-26 U-25 T-30 Т-29Т-28 Т-27 Т-26 Т-25 S-31 531 S-29 S-33 S-32 -32 B-31 R-30 R-33 ^{R-32} S-27 S-26 S-25 S-24 S-23 S-22 S-28 R-28 R-27 R-29Q-29 Q-27 Q-28 Q-28 R-26 R-25 R-24 R-23 R-22 Q-26 Q-25 Q-23 Q-22 Q-21Q-20 Q-19 Q-18 Q-01 Q-02 QP2720P262P2520P2423 ____ Q-30 P-33 P-32 P-3P-30 P-29 P-28 P-27 P-26 P-25 P-24 P-23 P-22 P-21 P-20 P-19 P-18 P-01 6026260252602423 -26 0-25 0-24 0-23 0-22 0-21 0-20 0-19 0-18 0-01 0-02 0-03 0-04 0N20262524 0-32 0-31 0-30 0-29 0-28 N-38-31 N-30 N-29 N-28 N-27 N-26 N-25 N-24 N-23 N-22 N-21 N-20 N-19 N-18 N-01 N-02 N-03 N-04 N-05 N-06 N-07 N-09 M-33 M-32 M-31 M-30M-29 M-28 M-27 M-26M-25 M-24 M-23 M-22 M-21M-20 M-19M-18 M-01 M-02 M-03M-04 M-05 M-06 M-07M-08 M-09 L-31 L-30 L-29L-28 L-27 L-26 L-25L-24 L-23 L-22 L-21 L-20 L-19 L-18 L-01 L-02 L-03L-04 L-05 L-06 L-07 L-08 L-09 L-13 i -14 K-27 K-26 K-25 K-24 K-23 K-22 K-21 K-20 K-19 K-18 K-01 K-02 K-03 K-04 K-05 K-06 K-07 K-08 K-09 K-10 K-11 K-12 K-13 K-14 HG21162116201651918 G-25 G-24 G-23 G-22G-21 G-20G-19 G-18 G-01 G-02 G-03 G-04 G-05G-06G-07 G-08G-09 G-10G-11 G-12 G-13 G-14G-15 GF220F21262000F1918 F-25 F-24 F-23 F-22 F-21 F-20 F-19F-18 F-01 F-02 F-03F-04 F-05 F-06 F-07F-08 F-09F-10F-11 F-12 F-13 F-14 F-15 G-26-26G-25 G-24 G-23 E-23 E-22 E-21 E-20E-19 E-18 E-01 E-02 E-03 E-04 E-05 E-06 E-07 E-08 E-09 E-10 E-11 E-12 D-22 D-22 D-21 D-18D-01 D-02 D-03 D-04 D-05 D-06 D-07D-08 D-09只_10D-11 D-1⊉-13 C⁻¹⁹C⁻¹⁹C⁻¹⁸C⁻⁰¹C⁻⁰²C⁻⁰³C⁻⁰⁴C⁻⁰⁵C⁻⁰⁶C⁻⁰⁷C⁻⁰⁸C⁻⁰⁹C⁻¹⁹ ^{B-18} B-01 B-02 B-03B-04 B-05B-06 B-07B-08^{B-09} A-01A-02A-03 A-04 A-05A-06 A-07 Z-04 Z-05

Pribilof district: south of 58.65 and west of -168

35 stations have ever reported a single red king crab Belong to 22 of the 400² nm grids

0

Included in assessment:

Source	Years		
Survey index of abundance	1975-2014		
Survey length frequencies	1975-2014		
Catch in directed fishery	1993-1998		
Bycatch in groundfish trawl fishery	1991-2013		

Excluded from assessment:

Source	Years
Bycatch in crab pot fisheries	1998-2013
Bycatch in fixed gear groundfish fishery	1991-2013

Model brief

- Very similar in structure to the snow crab assessment
- 5mm length bins (37.5-207.5)
- Males and females
- Maturity state
- Fixed survey catchability at 1, M at 0.18
- MCMC in ADMB was performed to characterize uncertainty in estimated and derived quantities

Fixed parameters (11 [down from 18])	Number		
Natural mortality	1		
Molting probability	3		
Fishery selectivity	2		
Weight	4		
Survey catchability	1		

Estimated parameters (87 [down from 142])			
Growth	6*		
Proportion recruiting	2*		
Log average recruitment	1		
Log recruitment deviations	45*		
Log average fishing mortality (directed)	1		
Log fishing mortality deviations (directed)	6		
Log average fishing mortality (trawl)	1		
Log fishing mortality deviations (trawl)	23		
Survey selectivity	2		

Powell, G.C. 1967. Growth of king crabs in the vicinity of Kodiak Island, Alaska. Informational Leaflet 92, Alaska Department of Fish and Game, 58 p.

Estimated growth parameters

Mating

Recruitment

4/12 M

Maturity (fixed) 1.0 0.8 Probability of molting 0.6 Female maturity Male maturity -----0.4 0.2 Mating 0.0 50 100 150 200

Length

тететенее

Weighting

<u>Likelihood</u>

$$\begin{aligned} \text{Sample size} & L_{1} = \begin{cases} \sum_{s} \sum_{y} \sum_{l} -\gamma_{y} p_{surv,l,y,s}^{obs} \ln(p_{surv,l,y,s}^{pred} + \kappa) & \text{if } p_{surv,l,y,s}^{obs} \ge 0.01 \\ \text{if } p_{surv,l,y,s}^{obs} \le 0.01 \end{cases} \\ \text{if } p_{surv,l,y,s}^{obs} < 0.01 \end{cases} \\ \begin{array}{l} \text{CV} \\ \text{(.36-1)} \\ \text{CV} \\ \text{(.36-1)} \\ \text{CV} \\ \text{(0.005)} \\ \end{array} \\ \begin{array}{l} L_{2} = \sum_{y} \frac{\left(\ln(N_{y}^{pred} + \kappa) - \ln(N_{y}^{obs} + \kappa)\right)^{2}}{\sqrt{\ln(CV_{y,surv})^{2} + 1}} \\ L_{3} = \sum_{y} \frac{\left(\ln(C_{y,dir}^{pred} + \kappa) - \ln(C_{y,dir}^{obs} + \kappa)\right)^{2}}{\sqrt{\ln(CV_{y,dir})^{2} + 1}} \\ L_{3} = \sum_{y} \frac{\left(\ln(C_{y,dir}^{pred} + \kappa) - \ln(C_{y,dir}^{obs} + \kappa)\right)^{2}}{\sqrt{\ln(CV_{y,dir})^{2} + 1}} \end{aligned}$$

Survey catchability likelihood profile

Males (10mm)

Females (5mm)

Females (10mm)

5mm; growth estimated

5mm; growth fixed

5mm; growth estimated

10mm; growth estimated

5mm; growth estimated

Tier	Assessment Method	OFL	B _{MSY}	Cur. MMB	B/B _{MSY} (MMB)	γ	Years to define B _{MSY}	F _{MSY}	P*	ABC
4	Running Average	1359	5742	8894	1.55	1.0	1991/1992- 2013/2014 (MMB)	0.18	0.49	1338
3	Integrated assessment	801	1034	2239	2.16	1.0	1983-present (recruitment)	0.53	0.49	771
4	Integrated assessment	320	2754	2239	0.81	1.0	1991/1992- 2013/2014 (MMB)	0.18	0.49	311

May CPT to do list

- Add likelihood profile for survey catchability
- Initialize the model before the first year of data to reduce the number of parameters used
- Consider a more generalized growth model
- Do not calculate likelihood contributions for length-bins with very low frequency (~0)
- Explore sensitivities to the size of length bin
- Include lognormal confidence intervals for the survey estimates of numbers and biomass
- Consider ADFG pot survey data and retained catch size frequency data
- Include more detail on the model

Future issues

- Molting probability, growth, and M
- Bin sizes/midpoints
- Environmental influence on recruitment
- Markdown, github, GMACS?