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Purpose
Previous efforts to develop an age-structured population dynamics model for weathervane scallops
(Patinopectan carinus) have been promising (Zheng 2018; Jackson 2023), though extension of these models
to the broader stock is unlikely. Complex integrated assessment models require considerable resources for
model development, review, and continued research. Development of stock-wide assessment is made more
complicated by large disparities in data availability throughout the stock and spatially explicit life history
traits like growth, size-at-maturity, and (likely) natural mortality. Though sufficient observer and recent
survey data are available for key portions of the stock, data-limited approaches are likely better suited for the
Alaska weathervane scallops given resources allocated to stock assessment, management needs, and economic
benefit of the fishery.

Here, I explore a simple, state-space random walk model (REMA; Sullivan et al., 2022) using ADF&G dredge
survey biomass estimates from 2016 - 2023 and fishery catch-per-unit-effort (CPUE) data on a portion of the
stock comprising ~ 80% of annual landings. I then present an avenue for estimating a stock-wide overfishing
limit that combines data-limited harvest control rules based on the surveyed and non-surveyed portions of
the stock, and discuss various issues and limitations with the approach.

Modelling approach
Data
Survey biomass

Observed ADF&G dredge survey biomass was estimated for sampled beds in the Kodiak Shelikof (KSH),
Kodiak Northeast (KNE), Prince William Sound (E), and Yakutat (YAK) districts by methods described in
Burt et al., (2021). In the absence of a clear size at maturity estimate by district, exploited biomass (shell
height ≥ 100 mm) was used as a proxy. Scallops in most districts likely mature at a slightly smaller size
(Hennick 1970). Round biomass was used as opposed to meat weight biomass, since meat weight at size is
known to vary between surveys, likely due to fluctuation in survey and reproductive timing (Hennen and
Hart 2012). Observed district biomass computed as the sum of bed biomass estimates. Biomass of beds that
were not surveyed in a given year that other beds in the district were, were filled in with predicted values of a
weighted linear model in the form of

ln(Bt,j) = Y eart +Bedb,j + ε (1)

with weights equal to the inverse of the coefficient of variation (CV) on Bt,j . Since the EK1 bed spans the
boundary between the E and YAK districts, EK1 was modeled with the YAK District. Samples that included
only the EKI portion of EK1 in 2016 were removed from analysis. The beds KSH2 and KSH3 (Kodiak
Shelikof District), and KNE4 (Kodiak Northeast District) were also removed from analysis since they were
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only surveyed once, and contribute only a marginal proportion of biomass in each district. Biomass estimates
by bed and district from 2016 - 2023 are listed in Table 1.

Fishery CPUE index

Fishery CPUE indices were derived from at-sea observer data from the 2009/10 - 2023/24 seasons. CPUE
was defined as the total round weight of the catch per dredge-hour. Prior to analysis, fishery log-book data
were filtered so that core data only included hauls that employed 13 or 15 ft dredges and adequate dredge
performance. Zero catches were removed since they are typically rare and indicate poor gear performance.
Hauls were also limited to the inner 95% of CPUE and depth.

CPUE standardization models were fit using general additive models (GAM) as implemented in the R package
mgcv (Wood 2004). All models assumed a Gamma error distribution with log-link. Null models by district
included only year (of season opening) as an explanatory variable

ln(CPUEi) = Y eary,i (2)

The full scope of models evaluated included vessel, depth, dredge width, month and bed. Bed was not
included for WKI District, since it only contains a single bed. Depth was fit as a thin plate regression spline,
with smoothness determined by generalized cross-validation (Wood 2004). All other variables were fit as
factors. The effects of variable addition were evaluated by forward and backward stepwise selection. The
addition of a new variable was considered significant if CAIC (Anderson et al., 1998) decreased by at least
two per degree of freedom lost and deviance explained (R2) increased by at least 0.01. The best model forms
by district are listed in Table 2. The marginal effects of selected covariates are in Figures 1 - 3.

The standardized CPUE index was extracted from the models as the year coefficient (βi) with the first level
set to zero and scaled to canonical coefficients (β′i) as

β′i = βi

β̄
(3)

where

β̄ = ni

√√√√ nj∏
i=1

βi (4)

and nj is the number of levels in the year variable (Table 3). Nominal CPUE was scaled by the same method
for comparison (Figure 4).

State-space random walk model, REMA
The REMA R package (Sullivan et al., 2022) was developed as a consensus version of the state-space random
walk model used to estimate biomass for data-limited stock assessments by the NPFMC Groundfish Plan
Team since 2013. REMA underwent a favorable Center for Independent Experts review in 2023. In this
model, observed survey biomass by scallop management district (Bt,j) is related to the latent state variable
(B̂t,j ; true district biomass) by

ln(Bt,j) = ln(B̂t,j) + εBj (5)

where εBj
∼ N (0, σ2

ln(Bt,j)) and σln(Bt,j) is the standard error of log-transformed survey biomass approximated
using the CV of Bt,j . The process model estimates B̂t,j as
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ln(B̂t,j) = ln(B̂t−1,j) + ηt−1,j (6)

where ηt,j ∼ N (0, σ2
PE) and σ2

PE is process error variance. Process error variance was estimated as being
pooled among districts and separately for each district. District biomass (B̂t,j) is estimated as a random
effect. Total biomass among districts is the sum of district biomass estimates and associated standard error
is estimated via the delta method.

Scallop fishery catch per unit effort (CPUE) has been used a proxy for a biomass index by scallop fishery
managers since the beginning of the fishery. Here, annual CPUE index by district (It,j) is fitted using the
equation

ln(It,j) = ln(Ît,j) + εIj
(7)

where εIj
∼ N (0, σ2

ln(It,j)) and σln(It,j) is the standard error of the CPUE index approximated using the CV
of It,j . Predicted CPUE index Ît,j is related to B̂t,j by the scaling parameter, qj .

Ît,j = qje
B̂t,j (8)

Since CVs associated with annual CPUE index were unrealistically low, extra standard error (στ ) was
estimated so that

σln(It,j) =
√
ln((

σIt,j

It,j
)2 + στ + 1) (9)

Extra standard error was estimated as a single parameter shared among districts or separately by district,
στ,j . REMA is fit using marginal maximum likelihood estimation as implemented in Template Model Builder
(TMB; Kristensen et al., 2016). More details of the REMA model can be found on GitHub (REMA GitHub).

REMA model scenarios
The following model parameterizations were evaluated:

• 24.0: Base REMA model with four strata (KSH, KNE, WKI, YAK), a fishery CPUE index, shared
σ2
PE and στ ;

• 24.1: 24.0, with σ2
PE estimated by stratum and a prior on σ2

PE for WKI (see Results for explanation);

• 24.2: 24.1, with an emphasis factor of 0.5 on fishery CPUE index likelihood component (following
Echave et al., 2021);

• 24.3: 24.2, with στ estimated by stratum.

Harvest control rules
Biological reference points for surveyed areas were estimated using the tier 4 FOFL control rule as specified in
the fishery management plan for Bering Sea/Aleutian Islands (BSAI) king and Tanner crab (NPFMC 2023).

FOFL =



0 Bprj

BMSY, proxy
≤ 0.25

M(
Bprj

BMSY, proxy
−α)

1−α 0.25 < Bprj

BMSY, proxy
≤ 1

M Bprj > BMSY, proxy

(10)
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Here, BMSY, proxy was defined as the average predicted biomass since the standardization of the observer
program (2009 - 2023) and α = 0.1. Instantaneous natural mortality rate (M) was set to 0.13 yr−1 (Kruse
and Funk 1995) as specified in the FMP. Current biomass (Bprj) is the predicted biomass in the last year of
the model projected from the time of the survey (May 1) to the end of the fishery. Fishing occurs throughout
the season depending on year and district, so for simplicity catch was assumed to occur as a pulse fishery at
the approximate midpoint of the regulatory season (Nov 1). The time period between the survey and the
fishery is τsf = 0.504.

Bprj = B̂e−Mτsf − CT (11)

The overfishing limit (OFL) of the surveyed portion of the stock (OFLs) in units of meat weight is computed
as

OFLs = γBprj(1− e−FOFL) (12)

with round biomass was converted to meat biomass using γ = 0.1 (NPFMC 2014). The overfishing limit for
non-surveyed areas OFLns was computed under a total-catch harvest control rule so that OFL is equal to
the average total catch from either the FMP reference period (1990-94; 1996-97) or the 2009-2023 reference
period used for BMSY, proxy. Since there is no observer coverage in Area H (Cook Inlet), discard mortality
was estimated based on the average ratio of discards to retained catch by year. In years prior to the observer
program (1990 - 1994), discard mortality was estimated based on the average discard ratio by district (Table
4). The OFL for the full stock was the sum of OFLs for surveyed and non-surveyed areas.

OFL = OFLs + OFLns (13)

Results and discussion
Model estimation
All REMA models successfully converged with satisfactorily low gradient components. Model 24.1 was unable
to estimate a non-zero process error variance for WKI without a prior, which was based on the model 24.1
estimate run through 2022, so that Pr(ln σ2

PE, WKI) ∼ N (-1.64, 0.38). Models 24.0 and 24.1 preferentially
fit CPUE data over survey biomass despite extra error on CPUE data. This is presumably due to data
availability in the early half of the time series. Both models 24.0 and 24.1 fit CPUE data near exactly (Figure
5). Estimated extra standard error was much smaller for models 24.0 and 24.1, than models 24.2 and 24.3
(Table 5). Naturally, fits to survey biomass were better for models 24.2 and 24.3 (i.e., models with less
emphasis on CPUE data), especially in KSH and YAK (Figure 6). Variation in predicted biomass was more
attenuated for models 24.2 and 24.3, as would be expected from a long-lived, mostly sessile population. Total
biomass remained stationary from 2009 until the time series low in 2017, and then steadily increased to a
peak in 2022 before leveling off (Figure 7).

Although, Akaike Information Criterion (AIC) suggests model 24.1 is the best model (Table 6), model 24.2 is
the recommended choice. Model 24.2 fits the survey biomass data better, which is preferred, since survey
biomass is a more reliable indicator of stock trends. Fishery data in this analysis are used more as an auxiliary
index of abundance for years when survey data are lacking. Additonally, model 24.2 results in an expected
biomass trajectory that better aligns with the biology of the stock and lack of data in the first half of the
time series.

Reference points
Biological reference points were only computed for the surveyed portion of the stock using model 24.2.
Terminal year biomass projected to the conclusion of the 2023/24 fishery was Bprj = 11,133 t (24.54 mil
lb) round weight. Average predicted biomass for the time series (i.e, BMSY, proxy) was 9,601 t (21.17 mil
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lb) round weight, thus stock status was greater than 1, so FOFL = M = 0.13. The overfishing limit of the
surveyed portion of the stock was estimated to be OFLs = 136 t (0.3 mil lb) shucked meats (Table 7).

Using different reference periods for the non-surveyed portion of the stock resulted in substantially different
average total catch estimates. The period from 1990 - 1997, excluding 1995, resulted in a total catch OFLns
= 156 t (0.34 mil lb) shucked meats, while the period of the standardized observer program (2009 - 2023)
resulted in OFLns = 29 t (0.06 mil lb) shucked meats (Table 7). The more recent reference period likely better
captures the current productivity of the non-surveyed portions of the stock, which have become non-core to
the fishery since they were prospected in the mid-1990s. Since 2009, fishing west of Kodiak (Area K) in the
Alaska Peninsula (Area M), Dutch Harbor (Area O), or Bering Sea (Area Q) has primarily only been done by
the F/V Ocean Hunter, F/V Arctic Hunter, and F/V Polar Sea as was convenient before vessels switched
to BSAI groundfish fisheries. Fishing performance of Area Q has not recovered following a steep decline in
2014/15 concurrent with observations of “weak meats” (Ferguson etal., 2021), and interest in fishing west of
Area K has waned since the 2020/21 season. Further, the Kodiak Southwest District (KSW) has become a
somewhat major contributor to stock-wide harvests averaging ~ 13% of landings since 2016, though it has
only been fished consistently since 2009 (Figure 8).

Conclusions
REMA makes good use of available survey biomass estimates, is able to accommodate multiple survey areas,
and does not require a disproportional amount of analyst time and resources. That said, REMA does not
use size composition data that are ubiquitous among districts in which there have been fishery observers or
surveys. Development of a simplified statistical catch-at-length model may make better use of the full suite
of data, but again, it would be important to balance assessment efforts with the scope of management needs.

Dividing the stock into (relatively) data-rich and data-poor areas may be the only path to a better informed
reference point calculation. It is unlikely that ADF&G could expand the dredge survey to non-core areas
west of Area K, and fishery data in those areas are sparse, when available. Further, interpreting fishery data
from such a small fleet (i.e., currently two vessels, one in non-core areas) is difficult as vessels maintain a
small footprint which shifts from year to year, and individual fishing behaviors are more apparent in the data.
Data-rich (i.e., surveyed) areas could satisfy information necessary to utilize the BSAI king and Tanner crab
tier 4 FOFL control rule which requires: 1) a reliable biomass estimate, 2) a target biomass BMSY, proxy, and
3) an estimate of natural mortality rate, M . The control rule determines the maximum fishing mortality rate
based on the current productive capacity of the stock (i.e., mature biomass) relative to the target level and
closes the fishery when stock status is below a specified threshold. The maximum allowable fishing mortality
increases along a ramp as stock status approaches the target level and caps at FOFL = M when stock status is
greater than 1 (i.e., B > BMSY, proxy) (NPFMC 2023). The difficulty in using this approach for weathervane
scallops is defining an appropriate BMSY, proxy. Survey data are only available to 2016 from major harvest
areas, though the fishery began in earnest during the early 1990s. Fishery observer data go back as far as
1996, but data become less reliable prior to standardization of the observer program in 2009. The current
analysis assumes that the scaling parameter, q, that relates fishery CPUE to survey biomass remains constant
for the full 2009 - 2023 time series, and thus can be used to predict biomass pre-2016, though that may be less
likely for fishery data from 1996 - 2008. Determining when the reference period for BMSY, proxy should end is
also difficult, as the fishery is currently rebounding from a rut in the mid-2010s, thus there is not a clear
steady state in the available time series. Defining BMSY, proxy as the time series average, as done here, may
not be a suitable long-term biomass target since BMSY, proxy would slowly decrease whilst allowing fishing
should biomass take on a continued downward trajectory, so long as stock status remained above threshold.
On the other hand, fishing opportunity may be not fully exploited should a period of intense productivity
result in an increasing BMSY, proxy.

The current analysis suggests that fishing at 2023/24 GHLs (combined 374,700 lb) during the next season
would be overfishing, but this analysis may be conservative for several reasons. Here, I used exploitable
biomass (100 mm shell height) as a proxy for mature biomass. Scallops become vulnerable to commercial
gear at 100 mm, though size at 50% retention is typically 10 - 30 mm larger (Jackson, unpublished data).
Hennick (1970) described the onset of maturity occurring between ages 3 - 4 yr or 74 - 128 mm shell height
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in Kodiak and 73 - 92 mm in Yakutat. ADF&G is currently re-evaluating size-at-maturity and qualitative
gonad scoring using histological analysis on scallops collected in the Kodiak and Yakutat Areas, though
results are not yet available. Defining productive capacity of the stock as mature biomass as opposed to
exploitable biomass would presumably result in a larger harvestable surplus. The current estimate of natural
mortality is also somewhat dated. Kruse and Funk (1995) estimated M using various methods, including age
data collected by Kaiser (1986) and Hennick (1973), and settled on a median value of M = 0.13, which is
currently used in the FMP (NPFMC 2014). Estimation of M using more recent age, growth, and catch data
would be a useful comparison. Naturally, if M were larger than 0.13 (as assumed by Zheng 2018; Jackson
2023) the computed OFL would also be larger.

Survey analysis has long used a dredge efficiency of 0.83 (Gustafson and Goldman 2012), though the basis for
this coefficient is undocumented and the survey dredge it applied to was retired in 2022. Re-visiting this
analysis in the future with the CamSled and new survey dredges may be prudent, although assuming full gear
efficiency could be used as a conservative measure. Lastly, most inside waters are closed to dredging (SAFE
Figure 1), yet several of these areas contain scallop beds. The ADF&G large-mesh trawl survey catches
scallops of exploitable size in closed areas of the western GOA (Jackson 2021). The extent to which closed
area beds contribute to the fished population is unknown. Excluding this portion of the population in stock
assessment would be wise until better knowledge of connectivity exists.

Tables

Table 1: Survey round biomass estimates (tonnes) and CV (in parentheses) by district from 2016 - 2023.

Year KSH KNEa WKI YAKb,c
2016 1,082 (0.13) 1,031 (0.38)
2017 870 (0.14) 635 (0.28) 4,585 (0.15)
2018 1,234 (0.11) 6,002 (0.12)
2019 865 (0.37) 6,805 (0.1)
2020 3,655 (0.18) 1,192 (0.4)
2021 1,244 (0.3) 5,833 (0.2)
2022 4,524 (0.2) 2,657 (0.46)
2023 992 (0.3) 7,592 (0.19)
aKNE1, KNE5, YAK3 were not surveyed in 2017
bYAK4, YAK5 were not surveyed in 2018
cYAK1, YAK2 were not surveyed in 2019
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Table 2: Residual degrees of freedom, AIC, and R2 for the best model for each District.

K. Shelikof Residual DF AIC R2

Form (∆ DF) (∆ AIC) (∆ R2)
Year + Month + Dredge Width + s(depth) 9,517.59 123,241 0.52
+ Vessel -3.24 -103.69 0.007
+ Bed -1.97 -31.65 0.003

K. Northeast Residual DF AIC R2

Form (∆ DF) (∆ AIC) (∆ R2)
Year + Month + Dredge Width + s(depth) + Bed 4,655.85 64,623 0.47
+ Vessel -3.02 12.02 0.002

West Kayak Is. Residual DF AIC R2

Form (∆ DF) (∆ AIC) (∆ R2)
Year 296 4,439 0.33
+ Dredge Width -0.00 -0.00 0.000
+ s(depth) -8.58 -7.12 0.128
+ Month -0.00 -0.00 -0.000
+ Vessel -0.00 -0.00 -0.000

Yakutat Residual DF AIC R2

Form (∆ DF) (∆ AIC) (∆ R2)
Year + Bed + Vessel + Dredge Width + s(depth) 21,378.62 288,325 0.25
+ Month -5.96 -118.10 0.006

Table 3: Fishery round biomass CPUE index and CV (in parentheses) by district from 2009/10 - 2022/23.

Season KSH KNE WKI YAK
2009 0.891 (0.01) 1.124 (0.03) 1.035 (0.05) 0.758 (0.01)
2010 0.918 (0.01) 0.895 (0.04) 0.801 (0.01)
2011 0.978 (0.01) 0.996 (0.02) 0.704 (0.01)
2012 0.832 (0.01) 0.791 (0.03) 0.815 (0.01)
2013 0.75 (0.02) 0.739 (0.03) 1.027 (0.01)
2014 0.669 (0.02) 1.176 (0.03) 0.877 (0.01)
2015 0.661 (0.02) 0.765 (0.03) 1.035 (0.01)
2016 0.594 (0.03) 0.403 (0.07) 0.871 (0.05) 1.314 (0.01)
2017 0.689 (0.03) 0.493 (0.07) 0.77 (0.05) 1.04 (0.01)
2018 0.878 (0.02) 0.494 (0.09) 0.725 (0.06) 1.196 (0.01)
2019 1.186 (0.02) 1.739 (0.03) 1.028 (0.01)
2020 1.674 (0.01) 1.553 (0.03) 1.02 (0.01)
2021 1.817 (0.01) 2.054 (0.02) 1.446 (0.04) 1.14 (0.01)
2022 1.789 (0.01) 2.156 (0.02) 1.161 (0.04) 1.221 (0.01)
2023 1.958 (0.01) 1.616 (0.02) 1.182 (0.04) 1.288 (0.01)
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Table 4: Retained catch, estimated discard mortality, and total catch (retained + discard M) in units of
tonnes of shucked meats by season from 1990 - present. Discard mortality was based on discard ratios by
year for Area H and by district from 1990-1994.

Season (start year) Retained (t) Discard Mortality (t) Total Catch (t)
1990 91.04 3.12 94.16
1991 86.14 1.90 88.04
1992 53.83 0.04 53.87
1993 388.97 6.61 395.58
1994 271.91 4.15 276.05
1995 12.22 0.45 12.67
1996 103.82 0.65 104.47
1997 82.05 1.08 83.12
1998 102.28 1.89 104.17
1999 121.68 1.32 122.99
2000 106.00 1.06 107.06
2001 73.01 0.92 73.93
2002 48.46 0.63 49.09
2003 26.50 0.59 27.10
2004 7.33 0.15 7.49
2005 13.88 0.24 14.12
2006 21.98 0.46 22.44
2007 22.68 0.41 23.09
2008 28.35 0.84 29.19
2009 26.53 0.54 27.07
2010 31.29 1.19 32.48
2011 41.25 0.51 41.75
2012 48.51 0.85 49.36
2013 41.77 0.55 42.32
2014 27.74 0.41 28.15
2015 23.88 0.30 24.18
2016 27.78 0.45 28.23
2017 23.71 1.04 24.75
2018 22.93 1.27 24.20
2019 22.91 1.11 24.02
2020 11.77 0.31 12.08
2021 15.91 0.27 16.18
2022 23.92 0.87 24.79
2023 11.49 0.12 11.61
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Table 5: Parameter estimate and standard error (in parentheses) by model scenario.

Parameter 24.0 24.1 24.2 24.3
σ2
PE 0.247 (0.033)
σ2
PE, KNE 0.444 (0.088) 0.324 (0.105) 0.313 (0.116)
σ2
PE, KSH 0.175 (0.035) 0.295 (0.079) 0.275 (0.081)
σ2
PE, WKI 0.189 (0.045) 0.159 (0.053) 0.159 (0.053)
σ2
PE, YAK 0.161 (0.032) 0.127 (0.057) 0.11 (0.045)
στ, KNE 0.385 (0.146)
qKNE 9.12e-04 (1.89e-04) 9.06e-04 (1.85e-04) 9.52e-04 (2.34e-04) 9.81e-04 (2.79e-04)
qKSH 6.06e-04 (4.39e-05) 6.11e-04 (3.97e-05) 5.78e-04 (7.80e-05) 5.83e-04 (6.98e-05)
qWKI 0.001 (1.81e-04) 0.001 (1.76e-04) 0.001 (2.10e-04) 0.001 (2.11e-04)
qYAK 1.82e-04 (1.27e-05) 1.80e-04 (1.10e-05) 1.82e-04 (2.30e-05) 1.83e-04 (1.69e-05)
στ 0.068 (0.047) 2.68e-06 (0.092) 0.222 (0.052)
στ, KNE 0.385 (0.146)
στ, KSH 0.179 (0.083)
στ, WKI 0.223 (0.133)
στ, YAK 0.13 (0.048)

Table 6: Objective function, number of parameters, and AIC by model scenario.

Model NLL N. Parameters AIC ∆ AIC
24.1 2.634 9 23.3 0.0
24.0 6.112 6 24.2 0.9
24.2 19.655 9 57.3 34.0
24.3 17.494 12 59.0 35.7

Table 7: Management quantities based on a combination of BMSY, proxy and total catch harvest control rules.

(t) Surveyed Stock Non-Surveyed Stock Total
Model B̂2023 Bprj BMSY, proxy

Bprj

BMSY, proxy
FOFL OFLs Ref. Period OFLns OFL

24.2 13,529 11,138 9,598 1.16 0.13 136 1990-97 156 292
2009-23 27 163

(mil lb) Surveyed Stock Non-Surveyed Stock Total
Model B̂2023 Bprj BMSY, proxy

Bprj

BMSY, proxy
M OFLs Ref. Period OFLns OFL

24.2 29.83 24.56 21.16 1.16 0.13 0.30 1990-97 0.34 0.64
2009-23 0.06 0.36
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Figures

Figure 1: Marginal effects of month, dredge width, and a smooth spline on depth with associated partial
residuals for the best model fit to CPUE in the KSH District. Dashed lines indiciate 95% confidence intervals.
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Figure 2: Marginal effects of month, dredge width, bed, and smooth spline on depth with associated partial
residuals for the best model fit to CPUE in the KNE District. Dashed lines indiciate 95% confidence intervals.
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Figure 3: Marginal effects of vessel, dredge width, bed, and smooth spline on depth with associated partial
residuals for the best model fit to CPUE in the YAK District. Dashed lines indiciate 95% confidence intervals.
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Figure 4: Standardized and nominal fishery CPUE indices by district from 2009-2023.
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Figure 5: Fits to fishery CPUE index. Blue shaded area represents a 95% confidence band for predicted
values and grey error bars indicate observed 95% confidence intervals based on estimated additional standard
error for model 24.2.
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Figure 6: Fits to survey round biomass. The grey shaded area represents a 95% confidence band for predicted
values for model 24.2.

Figure 7: Predicted total round biomass among all surveyed districts. The grey shaded area represents a 95%
confidence band for model 24.2.
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Figure 8: Total catch (tonnes of shucked meats) from 1990 - 2023 by district for non-surveyed districts.
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