

Size-weight modeling refinements for EBS crab stocks: May 2021 update

JONATHAN RICHAR JON.RICHAR@NOAA.GOV ALASKA FISHERIES SCIENCE CENTER KODIAK LABORATORY

Refresher

- Update model parameters used to calculate biomass estimates based on size-weight relationships
 - Allowing for factors affecting the relationships that were not accounted for in work that developed currently used parameters (Chilton 2009, 2011)
- Red king crab, tanner crab, opilio crab
 - Shell condition
- Red king crab only
 - Thermal regime of given survey year

Refresher 2

	N
Male BBRKC - NS	1756
Male BBRKC - OS	552
Male BBRKC - NS - cold	1265
Male BBRKC - NS - warm	491
Male Tanner crab - NS	3314
Male Tanner crab - OS	2064
Male Opilio crab - NS	4531
Male Opilio crab - OS	1979

Refresher 3

January CPT comments

- Apply bias correction methods (Brodziak 2012)
 - Bias correction procedures implemented for all stocks and will be presented
- Provide biological basis for reevaluating size-weight parameters
 - Chris Long consulted, and biological basis provided
- Include Bering Sea blue king crab stocks
 - St. Matthew Blue King crab included
- Include females for major stocks
 - Females analyzed
 - Maturity status (requested approach)
 - Clutch state; immature + barren vs clutch bearing mature (current approach)

January CPT comments

Treat temperature as a continuous variable instead of designating warm/cold years

- Working on implementing this
- January meeting?
- Use all available historical data
 - Currently used data is from 2000 onwards
 - Good sample sizes
 - Only data previous to 2000 is from 1975 (Bairdi and opilio)

Why reevaluate size-weight relationships?

- Shell condition influences the size-at-weight relationship
 - Carapace composition
 - ► Tissue fill within carapace
- ► Temperature
 - Delayed molt timing,
 - Reduced tissue fill in cold years due to reduced time between molt and sampling
 - Thermal stress
- Models used for current parameters did not account for these (Chilton 2009, 2011)
- Biomass estimates may be biased to varying degrees in any given year, due to for example shell condition proportions

Methods

Methods I

- Up to date size-weight data
- ▶ 2000 2019
- Collected randomly on the EBS summer bottom trawl survey
- Clean (no/minimal epibionts), intact (no carapace cracks or missing/regenerating limbs)
- Weight (g)
 - Digital scale
- Carapace size (CL/CW) to 0.1mm
 - Vernier caliper (prior to 2016)
 - Digital caliper (2016 to present)

Methods II

Stock specific data grouped based on variable of interest

- Male Bristol Bay red king crab, SMBKC, EBS Bairdi, EBS opilio
 - Shell condition
- Female Bristol Bay red king crab
 - Maturity and ovigerous state
 - Shell condition not examined
- Female St Matthew blue king crab
 - Maturity status only
 - ► Limited data
- ► Female opilio and Bairdi
 - Maturity and ovigerous state
 - Shell condition for mature and ovigerous crab

Methods III

- Weight (g) = a *(Carapace size (mm))^b
- Parameters a and b estimated separately
 - linear regression fitted to log-transformed size-weight data
 - Parameter a is the intercept in log-scale and log-1
 - ▶ Bias corrected as per Brodziak (2012)
 - Parameter b is the slope
- Slopes compared to baseline estimates using t-tests
- Biomass estimates calculated using final parameter estimates, and compared to baseline estimates calculated using current parameters

Results

Male red king crab – shell condition

Male BBRKC (New shell and old shell log-transformed)

Female red king crab – maturity

Male SMBKC- shell condition

SMBKC females – maturity status

Male Bairdi crab – shell condition

Male bairdi(New shell and old shell) log-transformed Original: $Log(W_{OS}) = 0.000208 * CW^{3.091966}$ Bias corrected: $Log(W_{OS}) = 0.000208 * CW^{3.091966}$ Significantly different from baseline $R^2 = 0.98$ Ln(Weight) SC Slopes and intercepts significantly different Original: Log(W_{NS}) = 0.000273 * CW^{3.014254} 2. Bias corrected: $Log(W_{NS}) = 0.000274 * CW^{3.014254}$ Not significantly different from baseline $R^2 = 0.99$ 3.0 3.5 4.0 4.5 5.0 Ln(Width)

Female Bairdi – maturity/shell condition

Female Bairdi- maturity/clutch status

EBS CB females(mature ovigerous NS and OS, and non-ovigerous (black line))log transformed

Male opilio crab – shell condition

Male opilio (New shell and old shell log-transformed)

Calculated weight anomalies relative to current models

Males

Females

Conclusions

Bias corrections

- minimally affect parameters/model output
- Shell condition
 - Minor effects (BBRKC, SMBKC, EBS CO)
 - > SE (in new models ~ $\frac{1}{2}$ to $\frac{1}{4}$ size of baseline)
- ► EBS CB
 - Greater effect
 - ► OS
- Statistical support for updating parameters is not there
 - ► OS Bairdi?

Future work

Applying bias-correction procedures to current model parameters

- Nonlinear models for L-W parameters
 - Avoid log-transformation
- ► Finish female work
 - ► SMBKC
 - Investigate large anomalies
 - Investigate trends seen in BBRKC females
 - ► Temperature
 - Barren mature females

Literature cited

- Brodziak, J. 2012. Fitting length-weight relationships with linear regression using the log-transformed allometric model with biascorrection. Pacific Islands Fisheries Science Center Administrative Report H-12-03.
- Chilton, E.A. 2009. Updates to size-weight relationships of eastern Bering Sea commercial crab species. Presentation.
- Chilton, E.A. 2011. Size-weight relationships of commercial crab in the eastern Bering Sea.

Questions?

