Examining biological processes in the assessment for eastern Bering Sea snow crab

Cody Szuwalski

March meeting guidance

- Recent problems
- Let biology lead
- Think outside of historical decisions made

First step in larger revision

- Few tables, likelihoods, residuals, etc.
- Big picture questions

Models

- Status quo
- Research model
- Bridging models
- Simplest

What happened updates

- Still in review

Build from biology first

- Snow crab data are impressive
- NMFS survey (abundance indices, size comps, chelae height etc.)
- BSFRF survey selectivity experiments
- Growth increment data
- Terminal molt to maturity is important to capture appropriately because of its impacts on growth
- Survey selectivity is important to capture because it scales the index
- Natural mortality is a tricky parameter

We need to represent these processes appropriately in the model to ensure good estimates of biomass at the time of the next fishery to provide catch advice.

Build from biology first

- Snow crab data are impressive
- NMFS survey (abundance indices, size comps, chelae height etc.)
- BSFRF survey selectivity experiments
- Growth increment data
- Terminal molt to maturity is important to capture appropriately because of its impacts on growth
- Survey selectivity is important to capture because it scales the index
- Natural mortality is a tricky parameter

We need to represent these processes appropriately in the model to ensure good estimates of biomass at the time of the next fishery to provide catch advice.

50

Build from biology first

- Snow crab data are impressive
- NMFS survey (abundance indices, size comps, chelae height etc.)
- BSFRF survey selectivity experiments
- Growth increment data
- Terminal molt to maturity is important to capture appropriately because of its impacts on growth
- Survey selectivity is important to capture because it scales the index
- Natural mortality is a tricky parameter

We need to represent these processes appropriately in the model to ensure good estimates of biomass at the time of the next fishery to provide catch advice.

Build from biology first

- Snow crab data are impressive
- NMFS survey (abundance indices, size comps, chelae height etc.)
- BSFRF survey selectivity experiments
- Growth increment data
- Terminal molt to maturity is important to capture appropriately because of its impacts on growth
- Survey selectivity is important to capture because it scales the index
- Natural mortality is a tricky parameter

We need to represent these processes appropriately in the model to ensure good estimates of biomass at the time of the next fishery to provide catch advice.

Past problems

- Convergence issues and bimodality in management quantities
- Retrospective patterns
- Undesirably high target fishing mortality rates
- Unrealistic catch advice

Past problems

- Convergence issues
- Bimodality in management quantities
- Retrospective patterns
- Undesirably high target fishing mortality rates
- Unrealistic catch advice

Past problems

- Convergence issues
- Bimodality in management quantities
- Retrospective patterns
- Undesirably high target fishing mortality rates
- Unrealistic catch advice

Past problems

- Convergence issues
- Bimodality in management quantities
- Retrospective patterns
- Undesirably high target fishing mortality rates
- Unrealistic catch advice

Past problems

- Convergence issues
- Bimodality in management quantities
- Retrospective patterns
- Undesirably high target fishing mortality rates
- Unrealistic catch advice

	Status quo	Research model	Bridge
Sex	Male + female	Male	Male + female
Maturity	Single estimated ogive	Input as yearly data	Input as yearly data
BSFRF.data	Treated as an additional survey with estimated availability	Treated as prior on survey selectivity	Treated as prior on survey selectivity
Survey.sel.	Logistic by sex (1982-1988; 1989-present	Non-parametric	Non-parametric; shared by sex 1982-present
Growth	Linear estimated	Linear specified	Linear estimated
Natural.M	Immature + Mature by sex; offset in 2018 and 2019	Immature + Mature; time- varying	Immature + Mature by sex; offset in 2018 and 2019

1. How should the 'reference' biological process be defined?
2. Should natural mortality vary annually or only large mortality events delineated?
3. How should estimated parameters be chosen? (Andre's sufficient statistics)
4. How to define $B_{M S Y}$ when using Tier 4?
5. What data should be fit? Both indices and time span.
6. What is the relative confidence in each data set available?

RESEARCH MODEL

- Simple sandbox for ideas
- Simpler version simulation tested—shows time-varying M might be reasonably estimated under some circumstances
- Why bother doing something out of GMACS?
- Out growth of "What happened?" project
- Biggest differences from status quo:
- Male only
- BSFRF data as priors on non-parametric survey selectivity
- Maturity and growth data are input
- Estimates annually varying natural mortality
- Fits to abundances, not biomass

Research model

- Fits immature and mature indices of abundance well
- Aggregate size composition data well fit

Research model

- Fits immature and mature indices of abundance well
- Aggregate and annual size composition data well fit

Research model

- Fits immature and mature indices of abundance well
- Aggregate and annual size composition data well fit

Research model

- Fits immature and mature indices of abundance well
- Aggregate and annual size composition data also well fit
- Retained and discard catches well fit, save a couple of years of discard
- Largest males overrepresented in retained catch (growth?)

Research model

- Fits immature and mature indices of abundance well
- Aggregate and annual size composition data also well fit
- Retained and discard catches well fit, save a couple of years of discard
- Largest males overrepresented in retained catch (growth?)

Research model

- Fits immature and mature indices of abundance well
- Aggregate and annual size composition data also well fit
- Retained and discard catches well fit, save a couple of years of discard
- Largest males overrepresented in retained catch (growth?)

Research model

- Estimate mature mortality higher than immature
- Peaks in natural mortality in 2018 and 2019
- Peaks in fishing mortality in the early 1990s and 2020

Research model

- Estimate mature mortality higher than immature
- Peaks in natural mortality in 2018 and 2019
- Peaks in fishing mortality in the early 1990s and 2020
- Recent estimated recruitment largest in 2010

Research model

- Estimate mature mortality higher than immature
- Peaks in natural mortality in 2018 and 2019
- Peaks in fishing mortality in the early 1990s and 2020
- Recent estimated recruitment largest in 2010
- Estimated survey selectivity less than prior for small crab and larger than prior for most large crab

Research model summary

- Fits the data well
- Estimated population process mostly reasonable
- Good example that a focused model with the desired characteristics can 'work'
- Not having females eliminates some linkages that appear to be influential

Status quo and bridge models

- Research assumptions included:
- BSFRF as prior on nonparametric survey selectivity
- Maturity data input
- 'Focused + vary M^{\prime} has timevarying M

Survey biomass

Status quo and bridge models

- Survey index fits similar trends, but yearly differences

Survey biomass

Status quo and bridge models

Catch (labels wrong)

- Survey index fits similar trends, but yearly differences
- All catches well fit

Status quo and bridge models

- Survey index fits similar trends, but yearly differences
- All catches well fit
- Growth data similarly fit

Status quo and bridge models

- Survey index fits similar trends, but yearly differences
- All catches well fit
- Growth data similarly fit
- Catch size composition data similarly fit

Gear $=$ Pot_Fishery, Sex $=$ Male, Season $=2$

Retained

Status quo and bridge models

- Survey index fits similar trends, but yearly differences
- All catches well fit
- Growth data similarly fit
- Catch size composition data similarly fit

Status quo and bridge models

- Survey index fits similar trends, but yearly differences
- All catches well fit
- Growth data similarly fit
- Catch size composition data similarly fit

Status quo and bridge models

- Survey index fits similar trends, but yearly differences
- All catches well fit
- Growth data similarly fit
- Catch size composition data similarly fit

Status quo and bridge models

- Survey index fits similar trends, but yearly differences
- All catches well fit
- Growth data similarly fit
- Catch size composition data similarly fit

Status quo and bridge models

- Survey index fits similar trends, but yearly differences
- All catches well fit
- Growth data similarly fit
- Catch size composition data similarly fit
- Some differences in survey size comp fits

Gear $=$ NMFS_Trawl_1982, Sex $=$ Male, Season $=1$

Status quo and bridge models

- Survey index fits similar trends, but yearly differences
- All catches well fit
- Growth data similarly fit
- Catch size composition data similarly fit
- Some differences in survey size comp fits

Gear $=$ NMFS_Trawl_1982 , Sex $=$ Male, Season $=1$

1984

Status quo and bridge models

- Survey index fits similar trends, but yearly differences
- All catches well fit
- Growth data similarly fit
- Catch size composition data similarly fit
- Some differences in survey size comp fits

Gear $=$ NMFS_Trawl_1982, Sex $=$ Female, Season $=1$

Status quo and bridge models

Gear $=$ NMFS_Trawl_1982, Sex $=$ Female, Season $=1$

- Survey index fits similar trends, but yearly differences
- All catches well fit
- Growth data similarly fit
- Catch size composition data similarly fit
- Some differences in survey size comp fits

Status quo and bridge models

- Survey index fits similar trends, but yearly differences
- All catches well fit
- Growth data similarly fit
- Catch size composition data similarly fit
- Some differences in survey size comp fits

Gear $=$ NMFS_Trawl_1989, Sex $=$ Male, Season $=1$

Status quo and bridge models

- Survey index fits similar trends, but yearly differences
- All catches well fit
- Growth data similarly fit
- Catch size composition data similarly fit
- Some differences in survey size comp fits

Gear $=$ NMFS_Trawl_1989, Sex $=$ Male, Season $=1$

Mid-point of size-class (mm)

Status quo and bridge models

- Survey index fits similar trends, but yearly differences
- All catches well fit
- Growth data similarly fit
- Catch size composition data similarly fit
- Some differences in survey size comp fits

Gear $=$ NMFS_Trawl_1989, Sex $=$ Female, Season $=1$

Mid-point of size-class (mm)

Status quo and bridge models

- Survey index fits similar trends, but yearly differences
- All catches well fit
- Growth data similarly fit
- Catch size composition data similarly fit
- Some differences in survey size comp fits

Gear $=$ NMFS_Trawl_1989, Sex $=$ Female, Season $=1$

Status quo and bridge models

- Estimated fishing mortality much higher for 'focused' models

Status quo and bridge models

- Estimated fishing mortality much higher for 'focused' models
- Focused models do away with estimated availability for BSFRF data

Status quo and bridge models

- Estimated fishing mortality much higher for 'focused' models
- Focused models do away with estimated availability for BSFRF data

Status quo and bridge models

- Estimated fishing mortality much higher for 'focused' models
- Focused models do away with estimated availability for BSFRF data
- Status quo model has a much lower probability of terminal molt

Status quo and bridge models

- Estimated fishing mortality much higher for 'focused' models
- Focused models do away with estimated availability for BSFRF data
- Status quo model has a much lower probability of terminal molt
- Natural mortality estimates similar to research model

[^0]
Status quo and bridge models

- Estimated fishing mortality much higher for 'focused' models
- Focused models do away with estimated availability for BSFRF data
- Status quo model has a much lower probability of terminal molt
- Natural mortality estimates similar to research model
- Estimated MMB trajectories quite different across models

Year

Status quo and bridge models

- Estimated fishing mortality much higher for 'focused' models
- Focused models do away with estimated availability for BSFRF data ${ }_{300}$
- Status quo model has a much lowệ probability of terminal molt
- Natural mortality estimates similar to research model
- Estimated MMB trajectories quite different across models
- Retrospective patterns were somewhat smaller and in the
 opposite direction than historically seen

Status quo and bridge models

- Estimated fishing mortality much higher for 'focused' models
- Focused models do away with estimated availability for BSFRF data
- Status quo model has a much lower probability of terminal molt
- Natural mortality estimates similar to research model
- Estimated MMB trajectories quite different across models
- Retrospective patterns were somewhat smaller and in the opposite direction than historically seen

Status quo and bridge models

- Estimated fishing mortality much higher for 'focused' models
- Focused models do away with estimated availability for BSFRF data
- Status quo model has a much lower probability of terminal molt
- Natural mortality estimates similar to research model
- Estimated MMB trajectories quite different across models
- Retrospective patterns were
 somewhat smaller and in the opposite direction than historically seen
- Bimodality no longer seen

Why didn't the bridging work as well as the research model?

- Unrealistic population processes (fishing mortality in particular)
- Lack of convergence when trying to estimate survey selectivity
- Different data sets fit (biomass vs. abundance...immature indices added in research)
- Linkages between females and males may still be influencing estimation, particularly of fishery processes
- Fit different indices?
- Remove females?

Reference points

- Tier 4 is the only available option in the tier system that makes sense when maturity is specified appropriately

Model	MMB	B35	F35	FOFL	OFL
Status quo	41.2	183.1	1.5	0.32	10.32
Focused	93.9	80.3	83.8	41.43	21.87
Focused + vary M	39.4	44.9	127.8	21.13	8.19
Status quo (tier 4)	41.4	249.1	0.28	0.000	0.11
Focused (tier 4)	93.9	215.3	0.41	0.092	0.50
Focused + vary M (tier 4)	39.4	162.4	0.19	0.000	0.03

- TAC is $\sim 40 \%$ of the $A B C$ on average.
- OFLs from research were comparable to the TAC when the $\mathrm{F}_{\text {MSY }}$ proxy was 0.27
- OFLs were more comparable to the ABCs when using average M.
- tier 4 produced the most conservative management advice.

September models

Status quo
A working bridge model
Tier 4

1. How should the 'reference' biological process be defined?
2. Should natural mortality vary annually or only large mortality events delineated?
3. How should estimated parameters be chosen? (Andre's sufficient statistics)
4. How to define $B_{M S Y}$ when using Tier 4?
5. What data should be fit? Both indices and time span.
6. What is the relative confidence in each data set available?
7. How should the 'reference' biological process be defined?
8. Natural mortality and terminal molting
9. Should natural mortality vary annually or only large mortality events delineated?
10. What would be sufficient rationale for choosing annually varying?
11. How does the longevity assumption for M apply when there are life transitions like terminal molt?
12. How should estimated parameters be chosen? (Andre's sufficient statistics)
13. Growth? Maturity? Selectivity?
14. How to define $B_{M S Y}$ when using Tier 4?
15. Hard to know when the stock was 'fished at $F M S Y$ "
16. What data should be fit? Both indices and time span.
17. Abundance or biomass? Both maturity states? Should an index of commercially sized males be included? Should the early part of the survey be excluded?
18. What is the relative confidence in each data set available?
19. Is everyone convinced that the BSFRF data should be used as priors? How to make sure these data 'speak' loudly enough?

[^0]: Year
 Year

