Bristol Bay red king crab (BBRKC) proposed models May 2023

Katie Palof¹,

¹Alaska Department of Fish and Game, katie.palof@alaska.gov

May 2023

Summary

The model explorations presented here include those suggested by CPT and SSC, and model sensitivity to GMACS updates. The model explorations can be divided into four areas of exploration: 1) starting the base model in 1985, which has been considered in prior years, 2) models to explore the base level of natural mortality for males, and 3) models to begin an exploration of Q estimation for the NMFS trawl survey, and 4) exploration of model output without including the survey retow data for females in years where retows were performed (1999, 2000, 2006 to 2012, 2017, and 2021). The models presented here are the beginning of work to explore these topics and the author acknowledges that further exploration is warranted. Additionally, an updated version of GMACS was used for these model explorations and model fit was similar with slight differences in reference point calculations with these updates.

The results of these model explorations are presented in this document in section C. Background on the Bristol Bay red king crab modeling approach, modeling framework (GMACS), and history of the stock and fisheries can be found in the last full SAFE published on the NPFMC website and will not be repeated here. (link here: BBRKC 2022 SAFE)

B. Responses to SSC and CPT

CPT and SSC Comments on Assessments in General

Response to SSC Comments (June 2022, Oct 2022):

"The SSC recommends that the RKC authors work together to complete a stock structure template for June 2023."

Response: A draft stock structure template for RKC in the Bering Sea will be presented at the May 2023 CPT meeting.

"The SSC suggests that the CPT develop guidelines for when to change model start dates"

Response: This topic was taken up at the Jan 2023 CPT meeting, with some basic guidelines presented in those minutes that included keeping data unless there was a strong reason (environmental, poor data quality, model instability) to exclude the data and data exclusion did not lead to drastic model output changes. Model 22.0, where data starts in 1985 vs 1975, is presented in this document.

Response to SSC Comments (from February 2022):

"The SSC supports the CPT general recommendations that all stock assessments include results from the currently accepted model with new data (base model) so that changes in model performance can be assessed. Values for management-related quantities for all models that may be recommended by the CPT or SSC should also be available."

Response: We have followed these recommendations.

CPT and SSC Comments on BBRKC assessment

Response to CPT Comments (from May 2021):

"The CPT was concerned that the 'information' content of the data with respect to natural mortality could be related to strong assumptions elsewhere in the model, and recommended further exploration of natural mortality after September and suggested attending the June 2021 CAPAM workshop on natural mortality, which may provide some insights into best practices. A large increase in estimated natural mortality would likely increase fishing mortality reference points, with management implications."

Response: Model runs in May 2022 addressed some variations on M. Estimated M values in the lengthbased crab models tend to have higher values than the other approaches, and confounding among estimated M, survey selectivity/catchability, and recruitment in a length-based model makes it difficult to accurately estimate M in the model. Among the models presented here four address variations in M for males, including higher fixed M values and estimated M for males.

"The CPT was interested in more exploration of the retrospective patterns, which seem to have increased since the last assessment despite no new data being added. Reported Mohn's rhos were starting to reach concerning magnitudes in the proposed models?"

Response: The catch and by catch updates in May 2022 made the retrospective patterns slightly worse than before. Higher than expected BSFRF survey biomass during 2007-2008 and 2013-2016 and NMFS survey biomass in 2014 likely caused these biases. Also, much lower than expected NMFS survey biomass during 2018-2019 and 2021-2022 results in lower biomass estimates in recent years. The biases for total abundance are much smaller than mature male biomass. Explorations further, since May 2022, on retrospective patterns are underway but not presented here.

Response to CPT Comments (from September 2021):

"When projecting the stock to determine whether it is approaching an overfished condition, identify the uncertainties included and ignored in the projection. It is particularly important to distinguish those that are captured in the projection (i.e. those associated with the model) and the additional uncertainties that form the basis for the ABC buffer."

Response: Uncertainties are discussed in the projection section here and will be included in the final SAFE in Sept. 2023.

"When projecting MMB, label figures with the date to which it is projected (e.g., Feb. 15, 2022), not just the year (which can lead to confusion)."

Response: We followed this recommendation.

"Consider a model in which the data starts in 1985 (as suggested by the CIE reviewers)."

Response: Model 22.0 start in 1985, and was presented in May 2022, Sept 2023, and in this document. After discussions during the Jan/Feb council cycle the author is uncertain whether removing the early part of the time series is appropriate. However, this model is presented here as an option.

Response to CPT Comments (from May 2022):

"The CPT recommended examining how the initial conditions of abundance are treated as a future analysis"

Response: This has not yet been addressed, but is on the list for future work.

Response to SSC Comments specific to this assessment (from June 2021):

"The SSC supports exploring more modern methods for estimating natural mortality, but notes that this method still relies strongly on the maximum age for BBRKC. The SSC recommends continued research to validate the ages for this stock."

Response: We agree with this suggestion. The maximum age was determined by old tagging data, and due to funding and personnel constraint, age validation for BBRKC is more likely a long-term goal than a short-term project.

"The likelihood profile suggests that the values of M for male and female might be similar and that the current difference may be because of the constraint of base M to a low value. When M is misspecified, it can be the cause of a strong positive retrospective pattern, which BBRKC has. The SSC would have liked to have seen compositional fits and a retrospective analysis for model 19.6 or some model with a higher M value, particularly to see if it fits the plus group better. Despite the increase in F35%, there was not a commensurate increase in OFL. An exploration of the underlying reasons for this outcome is needed."

Response: Based on our past modelling experience, when M values for males and females are estimated separately, estimated M values tended to be always higher for females than for males. The likelihood profile was created through fixing M values for males and estimating M values for females, and when the fixed M values for males were very high, estimated M values for females tended to be similar to M values for males. The increase in F35% but not a commensurate increase in OFL is due to reduction of mature male biomass caused by the high M.

As a reference, we copied the likelihood profile computed in May 2020 below. Model 19.6 uses male base M of 0.257 estimated by Then et al. (2015), and the likelihood profile of base M from 0.1 to 0.4 is as follow:

It appears that the maximum likelihood value is achieved with a base M of 0.31 for males and 0.321 for females.

Figure 1: Likelihood profile on M from May 2020 and 2021, current values of M are circled on the profile.

In May 2023, models 23.0, 23.0a, 23.0b, and 23.3 all involve variations of higher base M values for males. Higher base M values do not appear to improve the plus group fittings.

"In addition to the CPT recommended models (19.3d, 19.3e, and 19.3g), the SSC recommends a simplified version of model 19.3d that estimates one natural mortality parameter across sex and time, and one shared catchability and selectivity curve for the NMFS trawl survey to help make several selectivity parameters better defined."

Response: We named this as model 21.0 and included it in the September 2021 assessment.

"The SSC requests that the current crab management zones be included in the maps of VAST model-derived spatial distributions of BBRKC."

Response: We will ask Dr. Jon Richar to add the current crab management zones to the VAST spatial plots.

"The SSC also looks forward to the summary report from the March 2021 CIE Review for this stock."

Response: The summary report of the 2021 CIE review is included in Appendix D of the last full SAFE (see link in summary above).

Response to SSC Comments specific to this assessment (from October 2021):

"The SSC requests that in addition to temperature effects on the timing of the molt-mate cycle, the authors explore other potential drivers (e.g., prey quality or quantity) that could underlie the incomplete molt-mate cycle observed in 2021. Based on NMFS trawl survey female biomass estimates, the State of Alaska closed the BBRKC fishery. Next year's assessment should estimate the probability that the stock is currently in the overfished condition."

Response: NMFS staff did an evaluation of re-tow survey protocol in Spring 2022, no changes were adopted at that time. Probabilities in the overfished condition for some models were estimated in September 2021, May 2022, and for the base model in September 2022. Model 23.2 is presented here, in May 2023, was an exploration of the base model (21.1b) without the retow data for females. This model does not drastically affect the federal harvest control rules, but does estimate a lower biomass for females which would directly affect the State harvest strategy.

"The SSC recommends that authors should carefully consider assessment implications of the stock boundaries given the evidence of crabs outside of the managed area. The SSC suggests that the authors should still be able to use data from outside stock boundaries, even if not used in the input survey abundance estimates. For example, the abundance seen outside stock boundaries could be treated as covariate informing catchability within the model. This analysis seems particularly important for females that are increasingly outside of the current stock boundaries and are at low abundance, triggering the State closure. The SSC recommends that the authors formulate separate survey abundance time series inside and outside of the defined area that could prove useful in the assessment model (e.g., informing catchability). If this is not an option in the stock assessment, then it highlights the need for ESRs or ESPs to track movement of these crabs both through survey results and developing indices from local knowledge."

Response: The current version of GMACS seems not to be able to use the Northern RKC survey index to inform BBRKC survey catchability. We tried to add a model to include both BBRKC and Northern RKC data, but the groundfish fisheries bycatch is not currently available in the Northern area. IN the last full SAFE - September 2022 - we plotted more proportional data of the Northern RKC in Figures 35a and 35b. Overall, the proportions of different size groups of the Northern RKC during a recent dozen years are higher than in the past and do not trend higher except for mature females in 2021. The high survey mature female abundance in the Northern area in 2021 was primarily from three tows and one of them is more than 50% of total mature females. The survey abundance of the Northern RKC will continue to be plotted in the SAFE report in the future. After migration patterns between BBRKC and the Northern RKC are fully understood, we will model them in the stock assessment.

"The SSC supports the BSFRF collaborative work with ADF&G and NMFS to tag BBRKC."

Response: We fully support tagging efforts, especially those to understand seasonal movement and the flow of individuals in or out of the Bristol Bay management area.

"It would be useful to investigate if there is a mechanism for higher natural mortality or fishing mortality for females only during that early time period while following the CPT recommendation of looking at model 21.0 with constant but separate Ms by sex. Since Model 21.0 estimates a very high level of fishing mortality, but does seem to account for the decline in large females, there may be a fishery selectivity issue in that period. If the modelers choose not to continue to use historic data prior to 1985, this suggestion may not be useful."

Response: Figuring out the exact causes of high mortality in the early 1980s is always difficult and we summarize the potential causes in Appendix A of the last full SAFE, section C-vi, "Potential Reasons for High Mortality during the Early 1980s". The directed fishery does not catch many large females and small crab, so it is difficult to remove these crab from the fishery. If this period of high natural mortality was a concern, it would be preferred to start the model in 1985, which has two advantages: avoiding the early 1980s period so that a constant M over time can be used, and the same NMFS survey gear throughout the whole model time period.

"The SSC supports continued exploration of the use of VAST estimates for this assessment, particularly if their use will inform mechanisms underlying shifting distributions outside of the current management area."

Response: We also support improvement of VAST estimates and are willing to provide feedback to Jon for further improvement. In general the CPT has not prioritized using VAST output in crab models, we hope to revisit this soon.

Response to SSC Comments specific to this assessment (from June 2022):

The SSC noted that during preliminary model runs in May, a full document need not be produced, but one that focuses a summary of model features and runs would be sufficient.

Response: The May 2023 proposed model run document reflects these changes, focusing on model runs and explorations. Model structure and historical information is linked to via the NPFMC website in the summary section and not repeated in this document. The author welcomes further suggestions on the "proposed model" run documents since the CPT does not formally have a format for these.

"The SSC recommends exploring how to estimate both catchabilities (NMFS trawl survey and BSFRF survey), but with a linked prior to influence them to scale together (i.e., assume some approximate value of how much higher q is for that survey)."

Response: This is on the authors list of future work to be addressed with explorations of catchability for both surveys, but has not yet been explored in this document.

Response to SSC Comments specific to this assessment (from October 2022):

"The SSC recommends that a high priority be placed on trying to isolate factors that reduce the retrospective bias in mature male biomass."

Response: The author agrees that this should be a high priority, however current explorations are still ongoing.

C. Modeling Approaches and Explorations for spring 2023

Assessment Methodology

This assessment model uses the GMACS modeling framework (since 2019) and is detailed in Appendix A of the last full SAFE report (link in the summary section). An updated version of GMACS (version 2.01.M.01, 2023-03-13) was used. The fall 2022 assessment used version 2.01.F (2022-04-16). Progress of GMACS development has been documented on the GitHub development site (link GMACS GitHub).

Model explorations

Model explored in this document:

- **21.1b**: base model, accepted for specifications in Fall 2022
- **21.1b** (update): base model + updated GMACS version
- **22.0:** 21.1b model with data after 1985 instead of 1975
- 23.0: 21.1b + "base" M value for males fixed at M=0.257 (based on Then et al. 2015)
- 23.0a: 21.1b + "base" M value for males estimated in the model
- 23.0b: 21.1b + "base" M value for males fixed at M=0.31 (best estimate based on 2020 likelihood profile work)
- **23.1a**: 21.1b + double CV on NMFS Q prior
- 23.2: 21.1b without the retow data for females from the NMFS trawl survey (biomass and size comps)
- 23.3: 23.0a (base M for males estimated) + 23.1a (double CV on NMFS q prior)

Reasoning for model explorations

Nine model scenarios are presented in this report. The first two models have very close results and were compared to determine the sensitivity of the base model to GMACS updates (version 2.01E vs version 2.01.M.01). Small differences in the reference points are present with this update, but overall model fit is nearly identical, including the MLE and likelihood components (Table 4 and 5).

The rest of the model scenarios can be divided into four areas of exploration: 1) starting the base model in 1985, which has been considered in prior years (model 22.0), 2) models to explore the base level of

natural mortality for males (models 23.0, 23.0a, 23.0b, and 23.3), and 3) models to begin an exploration of q estimation for the NMFS trawl survey (23.1a and 23.3), and 4) exploration of a model (model 23.2) without including the survey retow data for females in years where a retows were performed (1999, 2000, 2006 to 2012, 2017, and 2021).

The model start date has been discussed in prior modeling scenarios, most specifically in spring of 2022, and was a suggestion from the latest CIE review. Beginning the model in 1985 has advantages which include: a fixed base M value for males, avoiding the dramatic abundance declines of the early 1980s, and recruitment associated with the extremely large M is not including in the $B_{35\%}$ estimate. However, the retrospective pattern on mature male biomass increased with this truncated model, which is troubling and a reason to be cautious in adopting it before determining the cause of the retrospective bias.

Exploring natural mortality has been a repeated theme in this model, with explorations being performed the last few years during spring model scenarios. The models runs here build on those explorations. They include two models with higher fixed base M for males - one at 0.257, which is the estimate of natural mortality based on Then et al. (2015) and is documented in May 2021 proposed runs with a max age of 25, and one at 0.31, which is the estimate of natural mortality for males based on a likelihood profile performed in 2020 (graphical output is included in the SSC/CPT comment responses). Additionally, a model was run that included estimating the base M for males using a log-normal prior with a mean of 0.18 and a CV of 0.04.

Both the recent years CPT/SSC comments and the simpler modeling workshop report suggested that further work be done to determine the most appropriate method to estimate catchability (Q) for the NMFS trawl survey. Currently, initial trawl survey catchability is estimated to be 0.896 with a standard deviation of 0.025 (CV about 0.03) that is based on double-bag experiment results (Weinberg et al. 2004). However, the appropriateness of this prior and the relationship between NMFS trawl survey Q and that assumed for the BSFRF survey should be explored further. The models presented here are just a beginning of this exploration since they assume the same prior distribution mean but increase the variability to a CV of 0.06.

The final model scenario (model 23.2) explored in this document is one to determine the sensitivity of model output to the female retow data being included in the modeling process. Female BBRKC have been observed to delay the molt and mate cycle in cold temperature years. When this occurs catch of females on leg 1 of the NMFS trawl survey can be low and include many females that have egg conditions that are barren, eyed, or hatching. The historic protocol has been to resample females llater in the summer when the percentage of females that have not completed the molt-mate cycle is greater than 10%. Historically this has occurred in eleven years since 1999. When resampling is performed the "retow" data for females at those stations resampled replaces the original data in the biomass and size composition data sets. The male information from the retows is not used. Model 23.2 is the base model (21.1b) with a new data file which includes the original leg 1 female data. More information on the retow procedure and data can be found in the Jan and May 2022 CPT meeting agendas on the NPFMC website.

Results

a. Sensitivity to new GMACS versions

Models 21.1b and 21.1b (update) reflect sensitivities of the model to updates in GMACS. The likelihoods for these two models are identical (Table 4). However, there are slight differences in terminal year MMB, $B_{35\%}$, and resulting F_{off} and specifications (Table 2). The estimated $F_{35\%}$ is the same for both models.

b. Effective sample sizes and weighting factors

• CVs are assumed to be 0.03 for retained catch biomass, 0.04 for total male biomass, 0.07 for pot bycatch biomasses, 0.10 for groundfish bycatch biomasses, and 0.23 for recruitment sex ratio. Models also estimate sigmaR for recruitment variation and have a penalty on M variation and many prior-densities.

• Initial trawl survey catchability (Q) is estimated to be 0.896 with a standard deviation of 0.025 (CV about 0.03) based on the double-bag experiment results (Weinberg et al. 2004). These values are used to set a prior for estimating Q in all models, except models 23.1a and 23.3 which the same distribution with a CV of 0.06.

b. Tables of estimates

- Negative log-likelihood values are summarized in Tables 4-6 for all models, while parameter estimates are summarized in Tables 7-10 for a few respesentative models.
- Natural mortality estimates are shown in Table 3.
- Abundance, MMB, and recruitment time series for a few representative models are found in Tables 11 15.

c. Evaluation of the fit to the data and model estimates.

• Selectivities by length (Figures 15, 16, and 17)

One of the most important results is estimated trawl survey selectivity. Survey selectivity affects not only the fitting of the data but also the absolute abundance estimates. These estimated survey selectivities are generally smaller than the capture probabilities in Figure A1 (refer to last full SAFE draft) because survey selectivities include capture probabilities and crab availability. The NMFS survey catchability (Q) is estimated to be 0.896 from the trawl experiment. The reliability of estimated survey selectivities will greatly affect the application of the model to fisheries management. Under- or over-estimates of survey selectivities will cause a systematic upward or downward bias of abundance estimates, respectively. Information about crab availability in the survey area at survey times will help estimate the survey selectivities. Higher estimated natural mortalities generally result in lower NMFS survey selectivities, while the estimated survey selectivities after 1981 are similar among the models. Those models with a higher CV on the prior distribution of Q for the NMFS survey both estimated a value above 1.

• Molting probability by length (Figures 18, 19, and 20)

For all models, estimated molting probabilities during 1975-2022 are generally lower than those estimated from the 1954-1961 and 1966-1969 tagging data (Balsiger 1974, Figure 9a and 9b in the last full SAFE). Lower molting probabilities mean more oldshell crab, possibly due to changes in molting probabilities over time or shell aging errors. Overestimates or underestimates of oldshell crab will result in lower or higher estimates of male molting probabilities.

• NMFS trawl survey biomass and BSFRF surveys (Figures 2 – 9).

The survey male biomass estimates in 2022 are slightly higher than those in 2018, 2019, and 2021, but the survey female biomass estimates are lower than 2018 and 2019, and up slightly from 2021. Estimated population biomass increased dramatically in the mid-1970s then decreased precipitously in the early 1980s. Estimated biomass had increased during 1985-2003 for males and during 1985-2007 for females, then declined, and have steadily declined since the late 2000s.

Among the model scenarios, model estimated relative NMFS survey biomasses are similar, with some changed in scale due to changes in M and Q which is expected. All models fit the catch and by catch biomasses very well and similarly so they are not presented in this document. Residuals of survey biomasses did not show any consistent patterns for all models (Figures 10 and 11).

The fit to BSFRF survey data are similar among the models, with some variability in scale due to changes in M and trawl survey Q, however these are expected due to the large additional CV placed on these data. • Recruitment (Figures 12, 13, and 14)

Recruitment time series are plotted for all model scenarios (Figure 12), and also in groups of like models. Recruitment is estimated at the end of year in GMACS and is moved up one year for the beginning of next year. Estimated recruitment time series are generally similar in trends for all models, with those models with higher M values having generally higher recruitment. Like the results of previous models, the terminal year recruitment analysis with model 21.1b suggests the estimated recruitment in the last year should not be used for estimating $B_{35\%}$ (2022 BBRKC SAFE).

• Fishing mortality (Figure 24)

The average of estimated male recruits from 1984 to 2021 for models starting in 1975 and from 1986 to 2021 for models starting in 1985 (Figure 12a) and mature male biomass per recruit are used to estimate B35%. The full fishing mortalities for the directed pot fishery at the time of fishing are plotted against mature male biomass on Feb. 15 in the last full SAFE (See BBRKC 2022 SAFE link and Figures 13a, 13.b and 13c). Estimated fishing mortalities in most years before the current harvest strategy was adopted in 1996 were above F35%. Under the current harvest strategy, estimated fishing mortalities were at or above the F35% limits in 1998-1999, 2005, 2007-2010, and 2014-2019 for models 21.1b, but below the F35% limits in the other post-1995 years. For model 21.1b, estimated full pot fishing mortalities ranged from 0.00 to 2.27 during 1975-2020, with estimated values over 0.40 during 1975-1982, 1984-1987, 1990-1991, 1993, 1998 and 2007-2009 (Figure 24). Estimated fishing mortalities for pot female and groundfish fisheries bycatches are generally small and less than 0.07.

• Estimated mature male biomsss (Figures 25, 26, and 27)

Estimated mature male biomass for all models have a similar trend over time, however the scaling of the biomass is highly dependent, as expected, on estimates of natural mortality (M) and Q in the model. Overall, higher estimates of M for males produce larger estimates of mature male biomass for most of the time series. Recent mature male biomass, in the last five years or so, was relatively similar for all models except model 23.1 with the increase in estimated NMFS Q. Model 23.3, which estimates M for males and has a larger CV on the Q prior, produced similar results to the base model, with the except of the last five years (Figure 26). All models were compared to model 22.0 in Figure 27, which allows for a closer look at the more recent time frame since this plot starts in 1985.

• Size composition fits by length and residual bubble plots (Figures 28 – 37).

All models fit the length composition data similarly and well. Modal progressions are tracked well in the trawl survey data, particularly beginning in mid-1990s. Cohorts first seen in the trawl survey data in 1975, 1986, 1990, 1995, 1999, 2002 and 2005 can be tracked over time. Bycatch size composition data provide little information to track modal progression and is not displayed graphically. Residuals of proportions of length are plotted to examine their patterns. Residuals were calculated as observed minus predicted and standardized by the estimated standard deviation. Generally, residuals of proportions of survey males and females appear to be random over length and year for all models, however models with higher base M - models 23.0 and 23.0b - improve the plus group fittings slightly.

d. Retrospective and historical analyses

Retrospective analysis was performed for a selection of models - 21.1b, 22.0, 23.0a, and 23.3 - to represent the base model and determine if the retrospective pattern is reduced by estimating M (model 23.0a), or estimating M and relaxing the prior on Q (model 23.3) (Figures 44 – 47). Retrospective analysis were performed using the GMACS retrospective feature which runs the current years model (2022) and sequentially excludes one year of data to evaluate current model performance in hindcast.

The retrospective pattern for MMB did improve with estimation of M for males, as reported in the Mohn's rho values on Figures 46 and 47, from a Mohn's rho of 0.373 to 0.226. While overall model fit was not improved with estimate of M for males (see likelihood tables) the improved retrospective pattern in MMB maybe a reason to consider this model for specifications in the fall. The base model (21.1b) has a fairly larger retrospective pattern (Mohn's rho = 0.373), and this pattern is increased in model 22.0. The source of the increased retrospective pattern in model 22.0 is one of the hesitations of adopting this reduced data version of model 21.1b for specifications. Further work is needed to understand this increased pattern.

e. Uncertainty and sensitivity analyses.

- Estimated standard deviation of parameters are summarized in Tables 7 10 for a few respesentative models.
- The last completed SAFE document in 2022 details uncertainty estimates in the current base model parameterization in further detail (link here: BBRKC 2022 SAFE).

f. Sensitity to NMFS female data in retow years

Model fit and overall performance were similar for the base model run with (21.1b) and without (23.2) the retow data, as reflected in the likelihood table (Table 6). However, the reference points and specifications in this table reflect the overall differences in mature male biomass and subsequent reductions in OFL without the female retow data. Figures 38 - 42 are provided to illustrate the differences in the data sets and estimated mature male biomass (MMB).

Figures 38 and 39 reflect differences in area-swept biomass estimates and model fit to these data. As expected there are no noticeable differences for males since this data is not resampled, however female fit is reduced overall due to the removal of retow stations (Figure 38). Figure 38 reflects the difference in area-swept and model fit in years with retow data, which are shown with two data points in those years. In the retow years the lower data point reflects the "no retow" data set, since leg 1 female biomass in those years is lower than the retow biomass. The lower biomass in the leg 1 survey data for females reflects the females still undergoing their molt-mate cycle and likely being unavailable to the survey sampling area or gear. Years with retow data (99, 00, 06 – 12, 17, 21) have differences in survey size compositions and size composition fits (Figure 40). These differences reflect the larger sample sizes of females in the retows in those years with retow data and the general rightward shift of size distributions in retow data due to those females having completed the molt-mate cycle. Estimated mature male biomass in the model without retow data (23.2) is lower than the base model, reflecting the effects of having less female biomass in the population dynamics model in retow years (Figure 41).

While the overall dynamics and estimation of males in the model are minimally effected by the lack of female retow data, female abundance, specifically, mature female abundance is reduced in most years (Table 15, Figure 43). Mature female abundance (and biomass) is a vital part of the State of Alaska harvest strategy which can trigger closures of this fishery when it drops below a threshold, as has occurred in both the 2021/2022 and the 2022/2023 fisheries. The author supports continuation of the retow/resampling protocol in those years where there are sufficient females that haven't completed the molt-mate cycle. Sampling females at the same time in their annual cycle is vital to accurately modeling the population (both abundance and size compositions) and when this is delayed due to spring temperatures or other factors, changes in the sampling timing (retows) are vital to tracking the population. This analysis did not address the appropriateness of the 10% threshold currently in place, but this has been discussed during the Jan and May 2022 CPT meetings.

g. Comparison of alternative model scenarios.

In this report (May 2023), nine models are compared. For negative likelihood value comparisons (Tables 4 and 5), none of the model runs improved the total likelihood over the base model (21.1b). The base model

was run using the most recent updates to GMACS (version 2.01.M.01) and compared to output from the runs in September 2022. The likelihood components of these runs were identical out to three digits, however reference point differences, although small, do exist (Table 4). The difference were determined to be minimal and this updated version of GMACS was used for the rest of the models runs in this report. The rest of the model scenarios are compared to this updated version of the base model 21.1b (update).

Model 22.0 represents the base model with a start date for the data of 1985 instead of 1975. This model was explored in both May 2022 and September 2022, and is presented here as an option to bring forward in September of 2023 if the reduction in data is appropriate. Concerns over the increased retrospective pattern in this model still exist (Figure 45)

Four models (23.0, 23.0a, 23.0b, 23.3) either had higher base natural mortality (M) estimates for males or estimated M. Of these models the two that estimated male natural mortality had slightly better fits than those with higher fixed values, however none of these models improved fit over the base model (21.1b). All of these models increased natural mortality on both the male and female portions of the population, since female mortality is estimated as on offset of males (Table 3). Increases in natural mortality produce models results that increase the scale of recruitment and mature male biomass, but had similar fits to survey data. Larger size classes did appear to fit better with higher natural mortality but this was not reflected in the overall fit to size compositions. Increasing natural mortality on males also leads to higher $F_{35\%}$ values and therefore larger F_{OFL} values. Based on the likelihood profile performed in 2020 (see CPT/SSC comments section Figure 1) it does appear that male natural mortality should be higher than the assumed 0.18 in the base model, however model explorations here did not reflect this improvement in total likelihood. While the author does acknowledge that natural mortality should be updated, determining the correct value or prior to estimate M is important due to the large ramifications on the references points. Future work on natural mortality could include repeating the likelihood profile from 2020, exploring the sensitivity to estimating M with different prior configurations and exploring the relationship between estimating M and Q simultaneously with less informative priors.

Two models (23.1a and 23.3) evaluated increased variability (double the CV) on the very informative prior on Q for the NMFS trawl survey. Increasing the variability in the prior distribution resulted in a Q estimate >1 for both of these models (Table 5). Since the models assume the BSFRF survey catchability (Q) is 1.0, it is not realistic for the Q value for the NMFS survey to be greater than 1. The BSFRF survey uses small mesh sizes, the net footrope goes into mud, and the camera records the net footrope touching and leaving the sea bottom. Therefore, theoretically, it is reasonable to assume its catchability to be 1.0. Earlier model explorations in May 2022 suggested that, when it is allowed to be estimated, the BSFRF catchability is estimated to be greater than 1. Overall, more work is needed to fully address the need to explore Qestimation in this model and how it relates to the assumed catchability of 1.0 for the BSFRF survey. As discussed at the simpler modeling workshop in March 2023, further work is needed to explore the interplay between these two catchability estimates and to determine a prior on NMFS Q that would be less strict and more appropriate.

Based on the above considerations, we recommend model continuing to use the base model (21.1b) for overfishing definition determination in September 2023 due to a simple approach: a fixed base M of 0.18 for males, less confounding between estimating M and survey catchability, and acceptable data fittings. Model 22.0 is also an option, however this reduced data version of the base model has a larger retrospective pattern for mature male biomass, suggesting some caution in transitioning to this version of the base model. We are open to bringing forward variations of models that increase natural mortality but do not have a preferred model at this time for that improvement.

D. Calculation of the OFL and ABC

Tier 3 control rules and methodology behind these calculations are explained in detail in the last full SAFE report published on the NPFMC website (see summary section for link).

Model	Current MMB	B35	MMB/B_{MSY}	F35	$F_{\rm OFL}$	OFL	avg rec	maleM
21.1b (2022-update)	16.76	22.25	0.75	0.30	0.22	3.21	15.26	0.18
21.1b (2022)	16.95	24.03	0.71	0.30	0.20	3.04		0.18
$22.0\ 1985$	16.97	20.48	0.83	0.30	0.24	3.64	13.99	0.18
$23.0 \text{ M}{=}0.257$	14.97	19.14	0.78	0.46	0.35	4.52	25.77	0.26
23.0a Mest	15.43	19.79	0.78	0.40	0.31	4.13	21.97	0.23
23.0b M = 0.31	14.09	18.21	0.77	0.58	0.44	5.28	36.23	0.31
23.1a inc CV q	15.49	21.66	0.72	0.30	0.20	2.78	14.68	0.18
23.3 Mest incCV	14.97	19.92	0.75	0.37	0.27	3.49	18.93	0.22

Table 1: Changes in management quantities for each scenario explored. Reported quantities are derived from maximum likelihood estimates. MMB, B35, OFL are reported in 1,000 t. Average recruitment is males and females combined in millions of animals.

E. Projections and Future Outlook

Projections into the future will be performed in the Sept. 2023 assessment with the models selected from this document.

The projections are subject to many uncertainties. Constant population parameters estimated in the models used for the projections include M, growth, and fishery selectivities. The uncertainty of abundance and biomass estimates in the terminal year also affects the projections. Uncertainties of the projections caused by these constant parameters and abundance estimates in the terminal year would be reduced by the 20% ABC buffer. However, if an extreme event occurs, like a sharp increase of M during the projection period, the ABC buffer would be inadequate, and the projections might underestimate uncertainties. The largest uncertainty is likely from recruitment used for the projections. Higher or lower assumed recruitment would cause too optimistic or too pessimistic projections. Overall, recruitment and M used for projections are main factors for projection uncertainties.

J. Acknowledgements

Drs. Andre Punt, James Ianelli, and D'Arcy Webber first applied BBRKC data to GMACS for stock assessments and our GMACS model mainly comes from their work. Thanks to Tyler Jackson (ADF&G) for assistance with survey data summaries, REMA modeling code and review of this document.

K. References

References can be found in the last full SAFE published on the NPFMC website and will not be repeated here. (link here: BBRKC 2022 SAFE)

Tables

Catch, sample size, and survey results tables are not repeated here but can be found in the last full completed SAFE (link in summary).

.nc	mood estimates. Avera	age recruitment	is males	and le.	males co	monieu	III IIIIII0II
-	Model	Current MMB	B35	F35	$F_{\rm OFL}$	OFL	avg rec
-	21.1b (2022-update)	16.76	22.25	0.30	0.22	3.21	15.26
	21.1b (2022)	16.95	24.03	0.30	0.20	3.04	
	22.0 1985	16.97	20.48	0.30	0.24	3.64	13.99
	$23.0 \text{ M}{=}0.257$	14.97	19.14	0.46	0.35	4.52	25.77
	23.0a Mest	15.43	19.79	0.40	0.31	4.13	21.97
	23.0b M = 0.31	14.09	18.21	0.58	0.44	5.28	36.23
	23.1a inc CV q	15.49	21.66	0.30	0.20	2.78	14.68
	23.3 Mest incCV	14.97	19.92	0.37	0.27	3.49	18.93

Table 2: Changes in management quantities for each scenario explored. REport quantities are derived from maximum likelihood estimates. Average recruitment is males and females combined in millions of animals.

Table 3: Natural mortality estimates for model scenarios during different year blocks.

Model	Sex	baseM	1980-84	1985-22
21.1b (2022-update)	Female	0.24	1.17	
21.1b (2022-update)	Male	0.18	0.89	
22.0 1985	Female			0.23
$22.0\ 1985$	Male			0.18
23.0 M=0.257	Female	0.29	1.15	
$23.0 \text{ M}{=}0.257$	Male	0.26	1.04	
23.0a Mest	Female	0.27	1.16	
23.0a Mest	Male	0.23	0.99	
23.0b M=0.31	Female	0.32	1.16	
23.0b M = 0.31	Male	0.31	1.13	
23.1a inc CV q	Female	0.24	1.18	
23.1a inc CV q	Male	0.18	0.88	
23.3 Mest incCV	Female	0.26	1.17	
23.3 Mest incCV	Male	0.22	0.96	

Table 4: Company	sons of nega	tive log-likel	mood values	s and some p	barameters in	or an model	scenarios.
Component	Ref22	Ref23s	m23.0	m23.0a	m23.0b	m23.1a	m23.3
Pot-ret-catch	-60.88	-60.88	-62.32	-61.86	-63.32	-61.59	-61.97
Pot-totM-catch	26.55	26.55	25.44	25.87	24.37	25.25	25.29
Pot-F-discC	-55.70	-55.70	-55.72	-55.71	-55.72	-55.69	-55.71
Trawl-discC	-63.75	-63.75	-63.75	-63.75	-63.75	-63.74	-63.75
Tanner-M-discC	-43.54	-43.54	-43.54	-43.54	-43.54	-43.54	-43.54
Tanner-F-discC	-43.48	-43.48	-43.52	-43.51	-43.52	-43.48	-43.50
Fixed-discC	-36.04	-36.04	-36.04	-36.04	-36.04	-36.04	-36.04
Traw-suv-bio	-35.47	-35.47	-37.38	-37.66	-35.69	-36.47	-37.70
BSFRF-sur-bio	-2.94	-2.94	-5.51	-4.83	-6.47	-1.74	-3.28
Pot-ret-comp	-3932.20	-3932.20	-3941.02	-3938.84	-3945.00	-3933.46	-3937.79
Pot-totM-comp	-2369.46	-2369.46	-2370.57	-2370.25	-2371.05	-2370.45	-2370.66
Pot-discF-comp	-1449.36	-1449.36	-1449.76	-1449.83	-1449.45	-1449.48	-1449.91
Trawl-disc-comp	-5836.10	-5836.10	-5846.22	-5843.90	-5849.24	-5833.97	-5840.29
Tanner-disc-comp	-1274.28	-1274.28	-1277.41	-1276.99	-1277.43	-1274.82	-1276.69
Fixed-disc-comp	-3393.50	-3393.50	-3389.38	-3390.67	-3386.48	-3393.24	-3391.35
Trawl-sur-comp	-6984.67	-6984.67	-6994.36	-6993.08	-6993.27	-6989.36	-6994.41
BSFRF-sur-comp	-843.53	-843.53	-845.00	-845.16	-843.83	-844.36	-845.40
Recruit-dev	70.56	70.56	71.88	71.47	72.93	70.39	71.06
Recruit-ini	0.00	0.00	0.00	0.00	0.00	0.00	0.00
Recruit-sex-R	76.98	76.98	76.98	76.98	77.02	76.95	76.96
$Log_f dev_0$	0.00	0.00	0.00	0.00	0.00	0.00	0.00
M-deviation	43.83	43.83	39.05	40.27	36.96	43.73	41.22
Sex-specific-R	0.01	0.01	0.02	0.01	0.04	0.01	0.00
Ini-size-struct		30.88	35.30	33.72	39.36	31.28	33.07
PriorDensity	267.30	267.30	227.65	252.04	220.97	271.19	259.03
Tot-likelihood	-25908.79	-25908.79	-25985.17	-25955.27	-25992.17	-25912.63	-25945.36
Tot-likeli-no-PD	-25641.49	-25641.49	-25757.52	-25703.23	-25771.20	-25641.45	-25686.33
Tot-parameter	372.00	372.00	372.00	373.00	372.00	372.00	373.00
MMB35	24026.11	22250.75	19136.75	19786.44	18209.52	21655.02	19919.11
MMB-terminal	16952.82	16761.49	14970.68	15431.45	14092.35	15489.83	14971.20
F35	0.30	0.30	0.46	0.40	0.58	0.30	0.37
$F_o fl$	0.20	0.22	0.35	0.31	0.44	0.20	0.27
OFL	3035.63	3213.98	4517.20	4132.66	5284.13	2783.29	3492.78
ABC	2428.50	2571.19	3613.76	3306.13	4227.30	2226.63	2794.22
NMFS Q	0.97	0.97	0.93	0.94	0.91	1.05	1.01

Table 4: Comparisons of negative log-likelihood values and some parameters for all model scenarios.

Component	Ref22	Ref23s	m22.0	m23.1a	m23.3
Pot-ret-catch	-60.88	-60.88	-34.89	-61.59	-61.97
Pot-totM-catch	26.55	26.55	26.55	25.25	25.29
Pot-F-discC	-55.70	-55.70	-55.70	-55.69	-55.71
Trawl-discC	-63.75	-63.75	-51.28	-63.74	-63.75
Tanner-M-discC	-43.54	-43.54	-26.12	-43.54	-43.54
Tanner-F-discC	-43.48	-43.48	-26.08	-43.48	-43.50
Fixed-discC	-36.04	-36.04	-36.04	-36.04	-36.04
Traw-suv-bio	-35.47	-35.47	-44.09	-36.47	-37.70
BSFRF-sur-bio	-2.94	-2.94	-3.33	-1.74	-3.28
Pot-ret-comp	-3932.20	-3932.20	-3131.80	-3933.46	-3937.79
Pot-totM-comp	-2369.46	-2369.46	-2370.52	-2370.45	-2370.66
Pot-discF-comp	-1449.36	-1449.36	-1449.09	-1449.48	-1449.91
Trawl-disc-comp	-5836.10	-5836.10	-4681.05	-5833.97	-5840.29
Tanner-disc-comp	-1274.28	-1274.28	-1273.40	-1274.82	-1276.69
Fixed-disc-comp	-3393.50	-3393.50	-3394.74	-3393.24	-3391.35
Trawl-sur-comp	-6984.67	-6984.67	-5503.89	-6989.36	-6994.41
BSFRF-sur-comp	-843.53	-843.53	-842.35	-844.36	-845.40
Recruit-dev	70.56	70.56	41.27	70.39	71.06
Recruit-ini	0.00	0.00	0.00	0.00	0.00
Recruit-sex-R	76.98	76.98	60.67	76.95	76.96
$Log_f dev_0$	0.00	0.00	0.00	0.00	0.00
M-deviation	43.83	43.83	0.00	43.73	41.22
Sex-specific-R	0.01	0.01	0.15	0.01	0.00
Ini-size-struct		30.88	50.88	31.28	33.07
PriorDensity	267.30	267.30	233.93	271.19	259.03
Tot-likelihood	-25908.79	-25908.79	-22510.90	-25912.63	-25945.36
Tot-likeli-no-PD	-25641.49	-25641.49	-22276.97	-25641.45	-25686.33
Tot-parameter	372.00	372.00	308.00	372.00	373.00
MMB35	24026.11	22250.75	20482.89	21655.02	19919.11
MMB-terminal	16952.82	16761.49	16974.17	15489.83	14971.20
F35	0.30	0.30	0.30	0.30	0.37
$F_o fl$	0.20	0.22	0.24	0.20	0.27
OFL	3035.63	3213.98	3644.53	2783.29	3492.78
ABC	2428.50	2571.19	2915.62	2226.63	2794.22
NMFS Q	0.97	0.97	0.94	1.05	1.01

Table 5: Comparisons of negative log-likelihood values and some parameters for year and Q model scenarios.

Component	Ref23s	m23.2	Ref23s - m23.2
Pot-ret-catch	-60.88	-61.13	0.25
Pot-totM-catch	26.55	26.33	0.22
Pot-F-discC	-55.70	-55.69	-0.01
Trawl-discC	-63.75	-63.75	0.00
Tanner-M-discC	-43.54	-43.54	0.00
Tanner-F-discC	-43.48	-43.48	0.00
Fixed-discC	-36.04	-36.04	0.00
Traw-suv-bio	-35.47	-28.41	-7.06
BSFRF-sur-bio	-2.94	-2.32	-0.62
Pot-ret-comp	-3932.20	-3930.20	-2.00
Pot-totM-comp	-2369.46	-2369.30	-0.16
Pot-discF-comp	-1449.36	-1446.12	-3.24
Trawl-disc-comp	-5836.10	-5839.11	3.01
Tanner-disc-comp	-1274.28	-1276.42	2.14
Fixed-disc-comp	-3393.50	-3389.12	-4.38
Trawl-sur-comp	-6984.67	-6988.66	3.99
BSFRF-sur-comp	-843.53	-851.34	7.80
Recruit-dev	70.56	70.46	0.10
Recruit-ini	0.00	0.00	0.00
Recruit-sex-R	76.98	76.80	0.18
$Log_f dev_0$	0.00	0.00	0.00
M-deviation	43.83	43.34	0.49
Sex-specific-R	0.01	0.00	0.00
Ini-size-struct	30.88	30.13	0.75
PriorDensity	267.30	270.47	-3.17
Tot-likelihood	-25908.79	-25907.09	-1.71
Tot-likeli-no-PD	-25641.49	-25636.62	-4.87
Tot-parameter	372.00	372.00	0.00
MMB35	22250.75	21948.38	302.37
MMB-terminal	16761.49	16096.94	664.55
F35Fofl	0.22	0.21	0.01
OFL	3213.98	2986.65	227.34
ABC	2571.19	2389.32	181.87
NMFS Q	0.97	0.96	0.01

Table 6: Comparisons of negative log-likelihood values and some parameters for base with WITHOUT retowdata. The differnce between values in the base model (21.1b) and the no retow model calculated here.ComponentRef23sm23.2Ref23s - m23.2

Index	Name	Value	StdDev	index	name	value	stddev
1	theta[2]	0.2806	0.0137	47	log-slx-pars[1]	4.7589	0.0081
2	theta[4]	19.8230	0.0492	48	log-slx-pars[2]	2.2637	0.0457
3	theta[5]	16.2130	0.1382	49	log - slx - pars[3]	4.5067	0.0164
4	theta[7]	0.6801	0.1269	50	log - slx - pars[4]	2.0196	0.1128
5	theta[9]	-0.4722	0.2300	51	log - slx - pars[5]	5.1532	0.0562
6	theta[13]	0.9585	0.4197	52	log - slx - pars[6]	2.8524	0.0451
7	theta[14]	0.6513	0.4686	53	log - slx - pars[7]	4.7198	0.2203
8	theta[15]	0.8577	0.3327	54	log - slx - pars[8]	2.1642	0.3057
9	theta[16]	0.7070	0.3050	55	log - slx - pars[9]	4.7461	0.0776
10	theta[17]	0.5437	0.2950	56	log - slx - pars[10]	0.9000	0.3036
11	theta[18]	0.4993	0.2773	57	log - slx - pars[11]	4.7902	0.0225
12	theta[19]	0.3417	0.2776	58	log - slx - pars[12]	2.3401	0.0861
13	theta[20]	0.3758	0.2641	59	log - slx - pars[13]	4.1063	0.1760
14	theta[21]	0.4077	0.2585	60	log - slx - pars[14]	2.2340	0.3785
15	theta[22]	0.1806	0.2815	61	log - slx - pars[15]	3.7730	0.6042
16	theta[23]	0.1583	0.2773	62	log - slx - pars[16]	3.2901	0.4094
17	theta[24]	0.0527	0.2871	63	log - slx - pars[17]	4.4273	0.0293
18	theta[25]	0.1687	0.2626	64	log - slx - pars[18]	2.4346	0.0717
19	theta[26]	-0.0101	0.2037	65	log - slx - pars[19]	4.9232	0.0015
20	theta[27]	-0.2385	0.1957	66	log - slx - pars[20]	0.6733	0.0533
21	theta[28]	-0.3903	0.1978	67	log - slx - pars[21]	4.9323	0.0020
22	theta[29]	-0.7380	0.2114	68	log - slx - pars[22]	0.7269	0.0987
23	theta[30]	-1.1978	0.2326	69	log - fbar[1]	-1.5741	0.0424
24	theta[31]	-1.2427	0.2349	70	log - fbar[2]	-4.3057	0.0753
25	theta[52]	1.2937	0.6788	71	log - fbar[3]	-5.5994	0.2891
26	theta[53]	1.4536	0.4621	72	log - fbar[4]	-6.5135	0.0720
27	theta[54]	1.3953	0.3671	73	log - fdev[1]	0.8181	0.1187
28	theta[55]	1.1698	0.3356	74	log - fdev[1]	0.7763	0.0905
29	theta[56]	1.0828	0.2950	75	log - fdev[1]	0.6876	0.0742
30	theta[57]	0.6001	0.3185	76	log - fdev[1]	0.7811	0.0603
31	theta[58]	0.2144	0.3527	77	log - fdev[1]	0.9930	0.0541
32	theta[59]	-0.0245	0.3616	78	log - fdev[1]	1.8613	0.0563
33	theta[60]	-0.2143	0.3548	79	log - fdev[1]	2.3941	0.1192
34	theta[61]	-0.5455	0.3741	80	log - fdev[1]	0.8159	0.1766
35	theta[62]	-0.9321	0.3856	81	log - fdev[1]	-8.8971	0.1258
36	theta[63]	-1.1898	0.3902	82	log - fdev[1]	1.1431	0.1123
37	theta[64]	-1.4206	0.3887	83	log - fdev[1]	1.2166	0.0892
38	theta[65]	-1.7907	0.3767	84	log - fdev[1]	1.3864	0.0731
39	theta[66]	-1.8971	0.3727	85	log - fdev[1]	0.9205	0.0641
40	theta[67]	-1.8384	0.3524	86	log - fdev[1]	-0.0176	0.0529
41	$\operatorname{Grwth}[21]$	0.9724	0.1853	87	log - fdev[1]	0.0970	0.0474
42	$\operatorname{Grwth}[42]$	1.4543	0.1221	88	log - fdev[1]	0.7447	0.0387
43	Grwth[85]	142.5000	1.7272	89	log - fdev[1]	0.7579	0.0413
44	Grwth[86]	0.0577	0.0101	90	log - fdev[1]	0.2422	0.0460
45	Grwth[87]	139.8900	0.5962	91	log - fdev[1]	0.9096	0.0506
46	Grwth[88]	0.0709	0.0033	92	log - fdev[1]	-4.2422	0.0485
93	log - fdev[1]	-4.6513	0.0420	143	log - fdev[2]	-0.2215	0.1035
94	log - fdev[1]	-0.1805	0.0407	144	log - fdev[2]	-0.9811	0.1029
95	log - fdev[1]	-0.1322	0.0411	145	log - fdev[2]	-0.2115	0.1028
96	log - fdev[1]	0.7830	0.0435	146	log - fdev[2]	-0.5106	0.1026

Table 7: Summary of estimated model parameter values and standard deviations for model 21.1b for Bristol Bay red king crab.

97	log - fdev[1]	0.4264	0.0425	147	log - fdev[2]	-0.6040	0.1023
98	log - fdev[1]	-0.1598	0.0410	148	log - fdev[2]	-0.3709	0.1023
99	log - fdev[1]	-0.2393	0.0406	149	log - fdev[2]	-0.6464	0.1022
100	log - fdev[1]	-0.1277	0.0395	150	log - fdev[2]	-0.4768	0.1020
101	log - fdev[1]	0.3365	0.0383	151	log - fdev[2]	-0.3992	0.1020
102	log - fdev[1]	0.2944	0.0383	152	log - fdev[2]	-0.4264	0.1022
103	log - fdev[1]	0.5850	0.0388	153	log - fdev[2]	-0.7837	0.1023
104	log - fdev[1]	0.3386	0.0382	154	log - fdev[2]	-0.9316	0.1023
105	log - fdev[1]	0.7039	0.0382	155	log - fdev[2]	-1.3938	0.1020
106	log - fdev[1]	0.8744	0.0398	156	log - fdev[2]	-1.9139	0.1022
107	log - fdev[1]	0.6904	0.0405	157	log - fdev[2]	-1.1986	0.1024
108	log - fdev[1]	0.5603	0.0399	158	log - fdev[2]	-1.7623	0.1027
109	log - fdev[1]	-0.0753	0.0388	159	log - fdev[2]	-1.3781	0.1034
110	log - fdev[1]	-0.1510	0.0380	160	log - fdev[2]	-0.8520	0.1050
111	log - fdev[1]	0.0361	0.0379	161	log - fdev[2]	-0.4181	0.1072
112	log - fdev[1]	0.3656	0.0384	162	log - fdev[2]	-0.4827	0.1097
113	log - fdev[1]	0.4381	0.0407	163	log - fdev[2]	-0.3890	0.1126
114	log - fdev[1]	0.4372	0.0460	164	log - fdev[2]	-0.4206	0 1148
115	log - fdev[1]	0.3470	0.0544	165	log - fdev[2]	-1.4143	0.1154
116	log - fdev[1]	0 1558	0.0641	166	log - fdev[3]	-0 1164	0.0682
117	log - fdev[1]	0.0952	0.0011 0.0724	167	log - fdev[3]	0.6699	0.0682
118	log = fdev[1]	-0.3416	0.0721 0.0762	168	log = fdev[3]	1 2283	0.0002 0.0682
110	log = fdev[1]	-4 7973	0.0754	169	log = fdev[3]	1.0927	0.0002 0.0682
120	log = fdev[2]	0 1955	0.0104 0.1246	$100 \\ 170$	log = fdev[3]	1 3825	0.0002 0.0682
120	$\log - f dev[2]$	0.1900	0.1240 0.1164	170	log = fdev[3]	1.0020	0.0002 0.0682
121 199	$\log - f dev[2]$	0.0344	0.1104	$171 \\ 172$	log = fdev[3]	1.4243 0.0027	0.0002 0.0682
122	$\log - f dev[2]$	0.0130	0.1100	$172 \\ 173$	log = fdev[3]	0.3521	0.0002 0.0682
$120 \\ 194$	$\log - f dev[2]$	1 4063	0.1030 0.1117	173	log = fdev[3]	-0.9874	0.0002 0.0682
124 195	log - fdev[2]	1.4003 1.1750	0.1117	174	log - fdev[3]	-0.5014	0.0082 0.0682
$120 \\ 126$	log - fdev[2]	1.1759 2.4577	0.1300 0.1315	175	log - fdev[3]	-0.5787	0.0082 0.0682
$120 \\ 197$	log = fdev[2]	2.4311	0.1313	170	log = fdev[3]	-1.0994	0.0082
127	log = fdev[2]	2.1780	0.1190 0.1169	178	log = fdev[3]	-0.2303	0.0082
120	log = fdev[2]	5.5979 2.1020	0.1102 0.1112	170	log = fdev[3]	1 4189	0.0082
129	log = fdev[2]	2.1920	0.1110 0.1111	180	log = fdev[3]	2 2202	0.0062 0.0753
120	log = fdev[2]	1.1294 0.6750	0.1111 0.1087	180	log = fdev[3]	0.2092 1.2842	0.0755
131	log - fdev[2]	1 4523	0.1007	181	log - fdev[3]	1.2042	0.0952 0.1105
132	log - fdev[2]	1.4525 0.0217	0.1044 0.1035	182	log - fdev[3]	0.560	0.1190 0.0817
134	log - fdev[2]	0.0217	0.1035 0.1035	184	log - fdev[3]	-0.1309 2 1370	0.0017 0.0733
134	log - fdev[2]	0.4752	0.1035 0.1047	185	log - fdev[3]	-2.1370	0.0733
136	log - fdev[2]	0.0901	0.1047	186	log - fdev[3]	-2.9900	0.0331 0.1116
$130 \\ 137$	log - fdev[2]	0.7555 1.9117	0.1050 0.1077	187	log - fdev[3]	-2.4124 3 4042	0.1110 0.0753
138	log - fdev[2]	0.5556	0.1077	188	log - fdev[3]	-5.4542	0.0755
130	log = fdev[2]	-0.0000	0.1040 0.1022	180	log = fdev[3]	-0.8440 0.1102	0.0935 0.1111
139	log = fdev[2]	-0.0423	0.1035 0.1025	109	log = fdev[3]	-0.1192	0.1111
140	log = fdev[2]	-0.1144	0.1035 0.1034	101	log = fdev[3]	1.0039	0.1528
141	log = fdev[2]	-1.2399	0.1034	191	log - f dev[4]	0.0010	0.1029 0.1020
102	log = fdev[2]	0.0301	0.1038	<u>192</u> <u>943</u>	log = fdow[1]	-0.0995	0.1020
10/	$\log - f dev[4]$	0.5142	0.1020 0.1017	240 944	log = fdov[1]	0.2204	0.0786
105	$\log - f dev[4]$	_1 \$990	0.1017	244 9/5	log = fdov[1]	0.0007	0.0700
106	$\log - f dev[4]$	-1.0220	0.1012	240 946	log = fdov[1]	-0.2605	0.0002
107	$\log - f dev[4]$	_0 1949	0.1008	240 947	log = fdov[1]	0.0630	0.0000
108	$\log - f dev[4]$	-0.1242	0.1003	241 9/8	log = fdov[1]	_0 1064	0.0010
100	log = fdev[4]	-0.3373	0.1004	240	log = fdov[1]	-0.1004 -0.6969	0.0310
200	log = fdev[4]	-0.7031	0.1002	249 250	log = fdov[1]	9 0710	0.0350
200	. Jucu[4]	-0.0001	0.1001	200		2.3113	0.0000

2	201	log - fdev[4]	-0.5550	0.0998	251	log - fdov[3]	-0.0000	0.0962
2	202	log - fdev[4]	-0.0075	0.0998	252	log - fdov[3]	0.0001	0.0962
2	203	log - fdev[4]	-0.7066	0.1001	253	log - fdov[3]	0.0003	0.0963
2	204	log - fdev[4]	-1.7032	0.0999	254	log - fdov[3]	0.0002	0.0963
2	205	log - fdev[4]	-2.5377	0.0995	255	log - fdov[3]	0.0004	0.0963
2	206	log - fdev[4]	-1.0571	0.0992	256	log - fdov[3]	0.0001	0.0963
2	207	log - fdev[4]	-0.5014	0.0993	257	log - fdov[3]	-0.0001	0.0963
2	208	log - fdev[4]	0.6391	0.0992	258	log - fdov[3]	-0.0002	0.0962
2	209	log - fdev[4]	1.4910	0.0994	$\frac{-30}{259}$	log - fdov[3]	-0.0002	0.0962
2	210	log - fdev[4]	1.1751	0.0998	$\frac{-60}{260}$	log - fdov[3]	-0.0001	0.0962
2	211	log - fdev[4]	0.3451	0.1006	261	log - fdov[3]	-0.0001	0.0962
2	212	log = fdev[4]	1 9485	0.1000	262	log = fdov[3]	0.0001	0.0002
2	212	log = fdev[4]	2.2071	0.1021	263	log = fdov[3]	0.0001	0.0002
2	210 214	log = fdev[4]	1 0046	0.1054 0.1051	$\frac{200}{264}$	log = fdov[3]	0.0005	0.0502
2	015	log = fdev[4]	0 7948	0.1001 0.1071	204 265	$\log - f dov[3]$	1.5461	0.0505
2	016	$\log - f dev[4]$	0.7540 0.7711	0.1071	200 266	$\log - fdov[3]$	1.9401 1 80/11	0.1003 0.1204
2	510 017	log = faev[4]	0.7711 2.7810	0.1000	$200 \\ 267$	$log = \int dov[3]$	1.0041 0.5732	0.1204 0.1410
2	517)10	$log = \int O \int \int [1]$	-2.7810	0.0392	207	log = fdov[3]	0.0732 2 4207	0.1410
2	210 010	log = f dow[1]	-0.0947	0.4139 0.0924	200	log = fdov[3]	-3.4397	0.1000 0.1450
2 0	219	log - f dov[1]	1.9092	0.0004	209	$log = \int dov[3]$	-2.1342	0.1452 0.1960
2	220	log - f dov[1]	-0.7007	0.0820	270	log - f dov[5]	-0.7755	0.1200 0.1216
2	221	log - f dov[1]	1.9731	0.0839	271	log - f dov[3]	0.0427	0.1310 0.1094
2	222	log - fdov[1]	1.8095	0.0855	272	log - fdov[3]	0.3874	0.1024
2	223	log - fdov[1]	-0.4211	0.0843	273	log - fdov[3]	0.9426	0.1675
2	224	log - fdov[1]	-0.1909	0.0823	274	log - fdov[3]	0.1621	0.1524
2	225	log - fdov[1]	-3.6958	0.0813	275	log - fdov[3]	0.8893	0.1668
2	226	log - fdov[1]	-0.3284	0.0819	276	rec-dev-est	1.0659	0.2693
2	227	log - fdov[1]	1.4567	0.0821	277	rec-dev-est	0.6272	0.2946
2	228	log - fdov[1]	-2.7733	0.0813	278	rec-dev-est	1.0732	0.2404
2	229	log - fdov[1]	1.1551	0.0805	279	rec-dev-est	1.6579	0.2066
2	230	log - fdov[1]	0.8810	0.0805	280	rec-dev-est	1.9213	0.2160
2	231	log - fdov[1]	-1.8656	0.0799	281	rec-dev-est	1.1274	0.2568
2	232	log - fdov[1]	1.2178	0.0800	282	rec-dev-est	2.3960	0.1651
2	233	log - fdov[1]	0.4249	0.0800	283	rec-dev-est	1.4422	0.1793
2	234	log - fdov[1]	0.9582	0.0795	284	rec-dev-est	1.0719	0.1664
2	235	log - fdov[1]	-1.2260	0.0790	285	rec-dev-est	-0.7683	0.2501
2	236	log - fdov[1]	-0.1865	0.0790	286	rec-dev-est	0.3220	0.1627
2	237	log - fdov[1]	-0.4497	0.0793	287	rec-dev-est	-0.8427	0.2446
2	238	log - fdov[1]	-0.7143	0.0795	288	rec-dev-est	-1.2692	0.2766
2	239	log - fdov[1]	-0.2328	0.0793	289	rec-dev-est	-1.0076	0.2228
2	240	log - fdov[1]	-1.1290	0.0784	290	rec-dev-est	-0.0539	0.1637
2	241	log - fdov[1]	-1.8454	0.0780	291	rec-dev-est	-0.5177	0.1838
2	242	log - fdov[1]	0.1777	0.0780	292	rec-dev-est	-1.9847	0.3571
2	293	rec-dev-est	-0.8862	0.1972	339	logit-rec-prop-est	0.7513	0.7366
2	294	rec-dev-est	-2.0231	0.4237	340	logit-rec-prop-est	0.2314	0.2837
2	295	rec-dev-est	0.9938	0.1467	341	logit-rec-prop-est	-0.2221	0.6917
2	296	rec-dev-est	-0.9359	0.2604	342	logit-rec-prop-est	-0.2982	0.0868
2	297	rec-dev-est	-1.5991	0.3392	343	logit-rec-prop-est	1.3170	0.6596
2	298	rec-dev-est	-0.5730	0.1984	344	logit-rec-prop-est	0.4308	0.6458
2	299	rec-dev-est	0.4228	0.1553	345	logit-rec-prop-est	0.4978	0.3237
3	800	rec-dev-est	-0.5679	0.2245	346	logit-rec-prop-est	-0.0487	0.1405
3	801	rec-dev-est	-0.5344	0.2394	347	logit-rec-prop-est	0.1927	0.3629
3	802	rec-dev-est	0.8500	0.1540	348	logit-rec-prop-est	-0.5306	0.3733
3	303	rec-dev-est	-0.6268	0.2651	349	logit-rec-prop-est	-0.4892	0.1243
3	304	rec-dev-est	-0.6977	0.2646	350	logit-rec-prop-est	-0.4194	0.4259
9						0 · · · · · · · · · · · · · · · · · · ·		

205		0 5061	0.1569	951	1	0.0000	0 4449
305 206	rec-dev-est	0.5861	0.1503	351	logit-rec-prop-est	0.0090	0.1205
306 207	rec-dev-est	-0.1504	0.1822	352	logit-rec-prop-est	-0.3928	0.1385
307	rec-dev-est	-0.5422	0.1890	353	logit-rec-prop-est	-0.0906	0.2371
308	rec-dev-est	-1.1242	0.2364	354	logit-rec-prop-est	0.3604	0.2802
309	rec-dev-est	-0.9923	0.2360	355	logit-rec-prop-est	-0.1851	0.3702
310	rec-dev-est	-0.0097	0.1777	356	logit-rec-prop-est	-0.4287	0.3590
311	rec-dev-est	-0.5566	0.2266	357	logit-rec-prop-est	-0.7863	0.1942
312	rec-dev-est	-1.1029	0.2326	358	logit-rec-prop-est	-0.4598	0.3166
313	rec-dev-est	-1.4205	0.2224	359	logit-rec-prop-est	-0.5222	0.3463
314	rec-dev-est	-1.8899	0.2675	360	logit-rec-prop-est	-0.2282	0.3318
315	rec-dev-est	-1.4276	0.2247	361	logit-rec-prop-est	-0.2873	0.4284
316	rec-dev-est	-0.7559	0.1743	362	logit-rec-prop-est	-0.3142	0.3272
317	rec-dev-est	-1.6191	0.2571	363	logit-rec-prop-est	0.3314	0.2184
318	rec-dev-est	-0.8157	0.1965	364	logit-rec-prop-est	0.5365	0.4742
319	rec-dev-est	-1.4246	0.2768	365	logit-rec-prop-est	0.8001	0.3077
320	rec-dev-est	-1.3345	0.2789	366	logit-rec-prop-est	0.1872	0.4672
321	rec-dev-est	-1.2031	0.2729	367	logit-rec-prop-est	0.6617	0.5233
322	rec-dev-est	-0.8933	0.3155	368	logit-rec-prop-est	0.1945	0.4444
323	logit-rec-prop-est	-0.0931	0.4330	369	logit-rec-prop-est	-0.7554	0.5133
324	logit-rec-prop-est	-0.8439	0.5129	370	m-dev-est[1]	1.5942	0.0295
325	logit-rec-prop-est	-0.2348	0.3572	371	survey-q[1]	0.9671	0.0251
326	logit-rec-prop-est	-0.4392	0.2662	372	log - add - cv[2]	-0.7751	0.2733
327	logit-rec-prop-est	0.0778	0.2548		-		
328	logit-rec-prop-est	0.2729	0.3358				
329	logit-rec-prop-est	0.3426	0.1403				
330	logit-rec-prop-est	0.3951	0.2307				
331	logit-rec-prop-est	-0.0948	0.1752				
332	logit-rec-prop-est	0.4617	0.4628				
333	logit-rec-prop-est	-0.4967	0.1653				
334	logit-rec-prop-est	0.2060	0.4188				
335	logit-rec-prop-est	-0.1060	0.4577				
336	logit-rec-prop-est	0.4334	0.3885				
337	logit-rec-prop-est	-0.0908	0.1666				
338	logit-rec-prop-est	0.1670	0.2418				
	<u> </u>						

=

Index	Name	Value	StdDev	index	name	value	stddev
1	theta[1]	0.2331	0.0065	47	Grwth[88]	0.0691	0.0035
2	theta[2]	0.1544	0.0185	48	log-slx-pars[1]	4.7802	0.0083
3	theta[4]	20.0280	0.0596	49	log-slx-pars[2]	2.2732	0.0423
4	theta 5	16.5630	0.1451	50	log-slx-pars[3]	4.5591	0.0191
5	theta[7]	0.7479	0.1240	51	log-slx-pars[4]	2.2112	0.0946
6	theta[9]	-0.5331	0.2146	52	log-slx-pars[5]	5.1257	0.0434
7	theta[13]	1.0859	0.4288	53	log-slx-pars[6]	2.7762	0.0405
8	theta[14]	0.7391	0.4898	54	log-slx-pars[7]	4.7167	0.2357
9	theta[15]	0.9577	0.3347	55	log-slx-pars[8]	2.1674	0.3045
10	theta[16]	0.7955	0.3038	56	log-slx-pars[9]	4.7354	0.0913
11	theta[17]	0.6109	0.2927	57	log-slx-pars[10]	0.9032	0.3027
12	theta[18]	0.5505	0.2737	58	log-slx-pars[11]	4.8117	0.0220
13	theta[19]	0.3709	0.2744	59	log-slx-pars[12]	2.3382	0.0765
14	theta[20]	0.3822	0.2619	60	log-slx-pars[13]	4.1733	0.1085
15	theta[21]	0.3964	0.2556	61	log-slx-pars[14]	2.2435	0.3168
16	theta[22]	0.1539	0.2775	62	log-slx-pars[15]	4.1083	0.2409
17	theta[23]	0.1163	0.2733	63	log-slx-pars[16]	3.6372	0.4140
18	theta[24]	-0.0083	0.2842	64	log-slx-pars[17]	4.4685	0.0277
19	theta[25]	0.0844	0.2641	65	log-slx-pars[18]	2.5731	0.0769
20	theta[26]	-0.0845	0.2038	66	log-slx-pars[19]	4.9234	0.0015
21	theta[27]	-0.3290	0.1967	67	log-slx-pars[20]	0.6752	0.0524
22	theta[28]	-0.4861	0.1988	68	\log -slx-pars $[21]$	4.9326	0.0020
23	theta[29]	-0.8382	0.2124	69	\log -slx-pars $[22]$	0.7324	0.0972
24	theta[30]	-1.3001	0.2331	70	log-fbar[1]	-1.6187	0.0441
25	theta[31]	-1.3442	0.2354	71	log-fbar[2]	-4.3429	0.0757
26	theta[52]	1.3448	0.8001	72	log-fbar[3]	-5.7198	0.3290
27	theta[53]	1.5540	0.4965	73	log-fbar[4]	-6.5428	0.0768
28	theta[54]	1.4512	0.3825	74	\log -fdev[1]	0.8007	0.1206
29	theta[55]	1.2009	0.3505	75	\log -fdev[1]	0.7665	0.0912
30	theta[56]	1.1192	0.3025	76	\log -fdev[1]	0.6884	0.0753
31	theta[57]	0.6424	0.3224	77	\log -fdev[1]	0.7813	0.0616
32	theta[58]	0.2368	0.3562	78	\log -fdev[1]	0.9948	0.0559
33	theta[59]	-0.0025	0.3595	79	\log -fdev[1]	1.8659	0.0589
34	theta[60]	-0.2019	0.3501	80	\log -fdev[1]	2.4172	0.1136
35	theta[61]	-0.5439	0.3686	81	\log -fdev[1]	0.8647	0.1534
36	theta[62]	-0.9395	0.3800	82	\log -fdev[1]	-8.8006	0.1030
37	theta[63]	-1.1990	0.3847	83	\log -fdev[1]	1.3204	0.1000
38	theta[64]	-1.4322	0.3834	84	\log -fdev[1]	1.3569	0.0918
39	theta[65]	-1.8200	0.3725	85	\log -fdev[1]	1.4454	0.0776
40	theta[66]	-1.9288	0.3689	86	\log -fdev[1]	0.9361	0.0669
41	theta[67]	-1.8713	0.3489	87	\log -fdev[1]	-0.0302	0.0545
42	$\operatorname{Grwth}[21]$	0.9767	0.1886	88	\log -fdev[1]	0.0792	0.0486
43	$\operatorname{Grwth}[42]$	1.4075	0.1236	89	log-fdev[1]	0.7237	0.0398
44	Grwth[85]	143.0300	1.7313	90	\log -fdev[1]	0.7267	0.0430
45	$\operatorname{Grwth}[86]$	0.0556	0.0096	91	log-fdev[1]	0.2086	0.0475
46	Grwth[87]	141.1000	0.6200	92	log-fdev[1]	0.8649	0.0517
93	\log -fdev[1]	-4.3008	0.0490	143	\log -fdev[2]	0.0445	0.1040
94	\log -fdev[1]	-4.6952	0.0424	144	\log -fdev[2]	-0.2468	0.1039
95	\log -fdev[1]	-0.2051	0.0409	145	\log -fdev[2]	-1.0096	0.1032
96	\log -fdev[1]	-0.1388	0.0412	146	\log -fdev[2]	-0.2314	0.1031

Table 8: Summary of estimated model parameter values and standard deviations for model 23.0a for Bristol Bay red king crab.

97	\log -fdev[1]	0.7782	0.0438	147	\log -fdev[2]	-0.5212	0.1027
98	log-fdev[1]	0.3973	0.0433	148	log-fdev[2]	-0.6170	0.1025
99	log-fdev[1]	-0.1915	0.0417	149	log-fdev[2]	-0.3855	0.1025
100	log-fdev[1]	-0.2561	0.0411	150	log-fdev[2]	-0.6625	0.1024
101	log-fdev[1]	-0.1359	0.0399	151	log-fdev[2]	-0.4949	0.1021
102	log-fdev[1]	0.3243	0.0386	152	log-fdev[2]	-0.4223	0.1022
103	log-fdev[1]	0.2820	0.0387	153	log-fdev[2]	-0 4535	0 1026
104	log-fdev[1]	0.2020 0.5749	0.0392	154	log-fdev[2]	-0.8170	0.1020 0.1027
101	log-fdev[1]	0.3201	0.0386	151	log-fdev[2]	-0.9725	0.1027 0.1027
106	log-fdev[1]	0.6846	0.0387	156	log-fdev[2]	-1 4306	0.1021
107	log-fdev[1]	0.8515	0.0408	157	log-fdev[2]	-1 9392	0.1021 0.1024
108	log-fdev[1]	0.6524	0.0418	158	log-fdev[2]	-1 2108	0.1021
100	log-fdev[1]	0.5088	0.0410 0.0415	150	$\log \left[\operatorname{dev}[2] \right]$	-1.7657	0.1020
110	log-fdev[1]	-0.1278	0.0410	160	$\log \left[\operatorname{dev}[2] \right]$	-1 3759	0.1020
110	log-fdev[1]	-0.1210	0.0400	161	$\log - fdev[2]$	-1.5755	0.1050
111	log-fdev[1]	-0.1909	0.0300	162	$\log - fdev[2]$	-0.8550	0.1050
112	log fdov[1]	0.3428	0.0380	162	$\log - \log \left[2 \right]$	-0.3882 0.4207	0.1070
110	log-fdev[1]	0.3428	0.0389	164	$\log - 1 dev[2]$	-0.4297	0.1094 0.1192
114	log fdov[1]	0.4140 0.4108	0.0409 0.0453	165	$\log - 10ev[2]$	-0.3145	0.1123
110	log-fdev[1]	0.4198	0.0400 0.0505	166	$\log - 1 dev[2]$	-0.3331	0.1144 0.1140
110	log-fdev[1]	0.3409	0.0525 0.0612	167	$\log - 1 dev[2]$	-1.5200	0.1149
117	log-Idev[1]	0.1623	0.0013	107	log-idev[3]	-0.1105	0.0082
110	log-Idev[1]	0.1437	0.0095 0.0721	108	log-Idev[5]	0.0099	0.0082
119	log-idev[1]	-0.2790	0.0731	109	$\log - 1 dev[5]$	1.2200	0.0082
120	log-idev[1]	-4.7203	0.0729	170	$\log - 1 \det[3]$	1.0920	0.0682
121	$\log - 1 \operatorname{Idev}[2]$	0.1908	0.1250	1/1	$\log - 1 \log (3)$	1.3824	0.0682
122	$\log - 1 \operatorname{Idev}[2]$	0.0370	0.1173	172	$\log - 1 \log (3)$	1.4242	0.0682
123	log-idev[2]	0.6215	0.1115	173	$\log - 1 \log (3)$	0.9927	0.0682
124	log-fdev[2]	0.7011	0.1103	174	\log -fdev[3]	0.4764	0.0682
125	log-fdev[2]	1.4266	0.1132	175	\log -fdev[3]	-0.9874	0.0682
126	log-fdev[2]	1.2059	0.1254	176	\log -fdev[3]	-0.5787	0.0682
127	log-fdev[2]	2.4987	0.1224	177	\log -fdev[3]	-1.0994	0.0682
128	log-fdev[2]	2.2450	0.1129	178	\log -fdev[3]	-0.2563	0.0682
129	log-fdev[2]	3.4905	0.1126	179	log-fdev[3]	0.9401	0.0682
130	log-fdev[2]	2.2673	0.1121	180	log-fdev[3]	1.4182	0.0682
131	log-fdev[2]	1.1623	0.1124	181	log-fdev[3]	3.2374	0.0757
132	log-fdev[2]	0.6743	0.1098	182	log-fdev[3]	1.2740	0.1066
133	log-fdev[2]	1.4344	0.1052	183	log-fdev[3]	0.5416	0.1255
134	log-fdev[2]	-0.0040	0.1040	184	log-fdev[3]	-0.7739	0.0858
135	log-fdev[2]	0.4376	0.1041	185	log-fdev[3]	-2.1191	0.0739
136	log-fdev[2]	0.8497	0.1056	186	log-fdev[3]	-2.9807	0.0999
137	log-fdev[2]	0.6888	0.1057	187	log-fdev[3]	-2.4166	0.1179
138	log-fdev[2]	1.1494	0.1083	188	log-fdev[3]	-3.5061	0.0753
139	log-fdev[2]	-0.6066	0.1051	189	log-fdev[3]	-0.8306	0.0965
140	log-fdev[2]	-0.8805	0.1036	190	log-fdev[3]	-0.1014	0.1205
141	log-fdev[2]	-0.8017	0.1037	191	log-fdev[3]	1.0888	0.1480
142	log-fdev[2]	-1.2516	0.1035	192	log-fdev[4]	0.5354	0.1033
193	log-fdev[4]	-0.1110	0.1023	243	log-fdov[1]	0.2110	0.0784
194	\log -fdev[4]	-0.3297	0.1028	244	log-fdov[1]	-0.1903	0.0785
195	\log -fdev[4]	0.5787	0.1021	245	log-fdov[1]	0.8783	0.0791
196	log-fdev[4]	-1.8490	0.1015	246	\log -fdov[1]	0.3366	0.0805
197	\log -fdev[4]	0.1143	0.1011	247	\log -fdov[1]	-0.3153	0.0829
198	\log -fdev[4]	-0.1395	0.1007	248	\log -fdov[1]	1.0008	0.0864
199	\log -fdev[4]	-0.9756	0.1006	249	\log -fdov[1]	-0.0793	0.0897
200	log-fdev[4]	-0.7992	0.1004	250	log-fdov[1]	-0.5981	0.0916

201	log-fdev[4]	-0.5267	0.1002	251	log-fdov[1]	3.0015	0.0926
202	\log -fdev[4]	-0.5748	0.1000	252	log-fdov[3]	-0.0000	0.0962
203	log-fdev[4]	-0.0272	0.1000	253	log-fdov[3]	0.0001	0.0962
204	log-fdev[4]	-0.7285	0.1004	254	log-fdov[3]	0.0003	0.0962
205	log-fdev[4]	-1.7312	0.1002	255	log-fdov[3]	0.0003	0.0963
206	log-fdev[4]	-2.5709	0.0998	256	log-fdov[3]	0.0004	0.0963
207	log-fdev[4]	-1.0855	0.0995	257	log-fdov[3]	0.0001	0.0963
208	log-fdev[4]	-0.5186	0.0994	258	log-fdov[3]	-0.0001	0.0963
209	log-fdev[4]	0.6324	0.0994	259	log-fdov[3]	-0.0001	0.0962
$\frac{-00}{210}$	log-fdev[4]	1.4905	0.0995	$\frac{-00}{260}$	log-fdov[3]	-0.0001	0.0962
211	log-fdev[4]	1 1825	0.1000	261	log-fdov[3]	-0.0001	0.0962
212	log-fdev[4]	0.3654	0.1008	262	log-fdov[3]	-0.0001	0.0002
212	log-fdev[4]	1 9858	0.1000	262	log-fdov[3]	0.0001	0.0962
$\frac{210}{214}$	log-fdev[4]	2 2644	0.1021 0.1035	200	log-fdov[3]	0.0000	0.0902
$214 \\ 915$	$\log - \log \left[4 \right]$	1.0785	0.1050 0.1052	264	log fdov[3]	0.0002	0.0302
210 216	log fdov[4]	1.0783	0.1052 0.1072	200	log fdov[3]	1 4844	0.0505 0.1578
$210 \\ 217$	log fdev[4]	0.0702	0.1072 0.1097	200	log fdor[2]	1.4044 1.7767	0.1070
217	log-fuev[4]	0.0013	0.1007	207	log-Idov[5]	1.7707	0.1204 0.1479
210	$\log - 1011[1]$	-2.8020	0.0447	208	log-Idov[5]	0.0891	0.1472 0.1110
219	10g-1011[5]	-0.1343	0.4890	209	10g-100v[5]	-3.4400	0.1110
220	$\log - \log \log \left[1 \right]$	1.9330	0.0840	270	$\log - 100V[3]$	-2.1828	0.1702
221	$\log - 1 \operatorname{IOV}[1]$	-0.7196	0.0832	271	$\log - 1 \operatorname{Idov}[3]$	-0.8074	0.1321
222	log-fdov[1]	1.9554	0.0844	272	\log -fdov[3]	0.0363	0.1371
223	log-fdov[1]	1.7974	0.0858	273	log-fdov[3]	0.3962	0.1026
224	log-fdov[1]	-0.4165	0.0844	274	log-fdov[3]	0.9938	0.1743
225	log-fdov[1]	-0.2003	0.0823	275	log-fdov[3]	0.2125	0.1576
226	log-fdov[1]	-3.7003	0.0813	276	log-fdov[3]	0.9396	0.1838
227	log-fdov[1]	-0.3505	0.0822	277	rec-dev-est	1.0614	0.2674
228	log-fdov[1]	1.4152	0.0828	278	rec-dev-est	0.5557	0.2985
229	log-fdov[1]	-2.8001	0.0819	279	rec-dev-est	0.9867	0.2438
230	\log -fdov[1]	1.1373	0.0810	280	rec-dev-est	1.5740	0.2089
231	\log -fdov[1]	0.8529	0.0809	281	rec-dev-est	1.8722	0.2161
232	\log -fdov[1]	-1.9027	0.0804	282	rec-dev-est	1.0998	0.2580
233	\log -fdov[1]	1.1920	0.0803	283	rec-dev-est	2.3745	0.1642
234	\log -fdov[1]	0.3976	0.0806	284	rec-dev-est	1.4260	0.1783
235	\log -fdov[1]	0.9174	0.0801	285	rec-dev-est	1.0710	0.1651
236	\log -fdov[1]	-1.2534	0.0795	286	rec-dev-est	-0.7370	0.2447
237	\log -fdov[1]	-0.2085	0.0795	287	rec-dev-est	0.3412	0.1625
238	\log -fdov[1]	-0.4679	0.0799	288	rec-dev-est	-0.7774	0.2393
239	\log -fdov[1]	-0.7150	0.0801	289	rec-dev-est	-1.2152	0.2742
240	\log -fdov[1]	-0.2136	0.0798	290	rec-dev-est	-0.9874	0.2247
241	\log -fdov[1]	-1.0924	0.0790	291	rec-dev-est	-0.0392	0.1642
242	log-fdov[1]	-1.8063	0.0785	292	rec-dev-est	-0.4352	0.1813
293	rec-dev-est	-1.9047	0.3515	339	logit-rec-prop-est	0.1336	0.2310
 294	rec-dev-est	-0.8516	0.1969	340	logit-rec-prop-est	0.8058	0.7406
295	rec-dev-est	-2.0686	0.4486	341	logit-rec-prop-est	0.1945	0.2810
296	rec-dev-est	0.9987	0.1469	342	logit-rec-prop-est	-0.2878	0.7204
297	rec-dev-est	-0.7936	0.2499	343	logit-rec-prop-est	-0.3770	0.0892
298	rec-dev-est	-1.5654	0.3460	344	logit-rec-prop-est	1.1971	0.6083
299	rec-dev-est	-0.5638	0.2006	345	logit-rec-prop-est	0.4087	0.6577
300	rec-dev-est	0.4518	0.1553	346	logit-rec-prop-est	0.4572	0.3258
301	rec-dev-est	-0.5054	0.2204	347	logit-rec-prop-est	-0.1067	0.1394
302	rec-dev-est	-0.5739	0.2495	348	logit-rec-prop-est	0.1859	0.3512
303	rec-dev-est	0.8862	0.1539	349	logit-rec-prop-est	-0.5711	0.3957
304	rec-dev-est	-0.5713	0.2604	350	logit-rec-prop-est	-0.5526	0.1240
~~ -		0.0110					

305	rec-dev-est	-0.6714	0.2656	351	logit-rec-prop-est	-0.4288	0.4141
306	rec-dev-est	0.5733	0.1570	352	logit-rec-prop-est	-0.0896	0.4375
307	rec-dev-est	-0.0765	0.1781	353	logit-rec-prop-est	-0.4243	0.1421
308	rec-dev-est	-0.5149	0.1870	354	logit-rec-prop-est	-0.1585	0.2223
309	rec-dev-est	-1.0726	0.2306	355	logit-rec-prop-est	0.4157	0.2783
310	rec-dev-est	-0.9349	0.2320	356	logit-rec-prop-est	-0.1206	0.3577
311	rec-dev-est	-0.0369	0.1818	357	logit-rec-prop-est	-0.4791	0.3498
312	rec-dev-est	-0.5162	0.2217	358	logit-rec-prop-est	-0.7229	0.2042
313	rec-dev-est	-1.0957	0.2300	359	logit-rec-prop-est	-0.4535	0.3061
314	rec-dev-est	-1.4387	0.2230	360	logit-rec-prop-est	-0.5153	0.3406
315	rec-dev-est	-1.9312	0.2679	361	logit-rec-prop-est	-0.1922	0.3341
316	rec-dev-est	-1.4830	0.2181	362	logit-rec-prop-est	-0.3151	0.4280
317	rec-dev-est	-0.8374	0.1729	363	logit-rec-prop-est	-0.3393	0.3151
318	rec-dev-est	-1.6574	0.2516	364	logit-rec-prop-est	0.3087	0.2128
319	rec-dev-est	-0.8941	0.1920	365	logit-rec-prop-est	0.5791	0.4722
320	rec-dev-est	-1.5066	0.2762	366	logit-rec-prop-est	0.7686	0.3005
321	rec-dev-est	-1.3827	0.2781	367	logit-rec-prop-est	0.2050	0.4676
322	rec-dev-est	-1.2685	0.2720	368	logit-rec-prop-est	0.6016	0.5165
323	rec-dev-est	-0.9573	0.3110	369	logit-rec-prop-est	0.2677	0.4487
324	logit-rec-prop-est	-0.0921	0.4266	370	logit-rec-prop-est	-0.7427	0.5048
325	logit-rec-prop-est	-0.7795	0.5087	371	m-dev-est[1]	1.4479	0.0317
326	logit-rec-prop-est	-0.2170	0.3626	372	survey-q[1]	0.9371	0.0258
327	logit-rec-prop-est	-0.3918	0.2656	373	\log -add-cv[2]	-0.9828	0.2867
328	logit-rec-prop-est	0.1977	0.2573				
329	logit-rec-prop-est	0.3589	0.3375				
330	logit-rec-prop-est	0.4654	0.1425				
331	logit-rec-prop-est	0.5576	0.2376				
332	logit-rec-prop-est	0.0126	0.1736				
333	logit-rec-prop-est	0.4452	0.4454				
334	logit-rec-prop-est	-0.5017	0.1645				
335	logit-rec-prop-est	0.1551	0.3997				
336	logit-rec-prop-est	-0.1417	0.4496				
337	logit-rec-prop-est	0.3817	0.3865				
338	logit-rec-prop-est	-0.1024	0.1688				

Ξ

Index	Name	Value	StdDev	index	name	value	stddev
1	theta[1]	0.2158	0.0052	47	Grwth[88]	0.0683	0.0035
2	theta[2]	0.1978	0.0179	48	log-slx-pars[1]	4.7777	0.0084
3	theta[4]	19.9350	0.0567	49	log-slx-pars[2]	2.2784	0.0430
4	theta[5]	16.4160	0.1436	50	log-slx-pars[3]	4.5459	0.0185
5	theta[7]	0.7281	0.1233	51	log-slx-pars[4]	2.1714	0.0988
6	theta[9]	-0.5093	0.2173	52^{-1}	log-slx-pars[5]	5.1384	0.0477
7	theta[13]	1.0895	0.4146	53	log-slx-pars[6]	2.7955	0.0411
8	theta[14]	0.7285	0.4794	54	log-slx-pars[7]	4.7175	0.2329
9	theta[15]	0.9436	0.3311	55	log-slx-pars[8]	2.1670	0.3048
10	theta[16]	0.7852	0.3015	56	log-slx-pars[9]	4.7389	0.0842
11	theta[17]	0.6064	0.2911	57	log-slx-pars[10]	0.9017	0.3031
12	theta[18]	0.5513	0.2728	58	log-slx-pars[11]	4.8108	0.0231
13	theta[19]	0.3728	0.2744	59	log-slx-pars[12]	2.3508	0.0793
14	theta[20]	0.3896	0.2619	60	log-slx-pars[13]	4.1588	0.1200
15	theta[21]	0.4087	0.2556	61	log-slx-pars[14]	2.2521	0.3353
16	theta[22]	0.1666	0.2782	62	log-slx-pars[15]	4.0531	0.2797
17	theta $[23]$	0.1303	0.2743	63	log-slx-pars[16]	3.5758	0.4157
18	theta[24]	0.0086	0.2852	64	log-slx-pars[17]	4.4543	0.0280
19	theta[25]	0.1056	0.2643	65	log-slx-pars[18]	2.5437	0.0781
$\frac{1}{20}$	theta[26]	-0.0667	0.2037	66	log-slx-pars[19]	4.9233	0.0015
21^{-3}	theta[27]	-0.3054	0.1961	67	log-slx-pars[20]	0.6743	0.0526
22	theta[28]	-0.4604	0.1982	68	log-slx-pars[21]	4.9325	0.0020
23	theta[29]	-0.8121	0.2120	69	log-slx-pars[22]	0.7286	0.0975
24	theta[30]	-1.2741	0.2331	70	log-fbar[1]	-1.5448	0.0514
25	theta[31]	-1.3177	0.2353	71	log-fbar[2]	-4.2568	0.0832
26	theta 52	1.3359	0.7447	72	log-fbar[3]	-5.6214	0.3250
27	theta 53	1.5100	0.4862	73	log-fbar[4]	-6.4608	0.0846
28	theta[54]	1.4162	0.3799	74	log-fdev[1]	0.7918	0.1197
29	theta[55]	1.1734	0.3492	75	log-fdev[1]	0.7498	0.0908
30	theta[56]	1.0948	0.3030	76	log-fdev[1]	0.6634	0.0757
31	theta[57]	0.6230	0.3232	77	log-fdev[1]	0.7499	0.0627
32	theta[58]	0.2213	0.3577	78	log-fdev[1]	0.9564	0.0576
33	theta[59]	-0.0156	0.3617	79	log-fdev[1]	1.8248	0.0605
34	theta[60]	-0.2130	0.3533	80	log-fdev[1]	2.4082	0.1161
35	theta[61]	-0.5528	0.3718	81	\log -fdev[1]	0.8696	0.1603
36	theta[62]	-0.9449	0.3828	82	\log -fdev[1]	-8.8318	0.1082
37	theta[63]	-1.2037	0.3872	83	\log -fdev[1]	1.2655	0.1019
38	theta[64]	-1.4357	0.3856	84	\log -fdev[1]	1.3177	0.0906
39	theta[65]	-1.8165	0.3740	85	\log -fdev[1]	1.4303	0.0763
40	theta[66]	-1.9249	0.3702	86	\log -fdev[1]	0.9359	0.0663
41	theta[67]	-1.8685	0.3504	87	\log -fdev[1]	-0.0290	0.0542
42	$\operatorname{Grwth}[21]$	1.0032	0.1892	88	\log -fdev[1]	0.0761	0.0483
43	$\operatorname{Grwth}[42]$	1.4191	0.1234	89	\log -fdev[1]	0.7221	0.0393
44	Grwth[85]	143.4000	1.7721	90	\log -fdev[1]	0.7363	0.0421
45	Grwth[86]	0.0544	0.0095	91	\log -fdev[1]	0.2281	0.0471
46	Grwth[87]	141.3300	0.6755	92	\log -fdev[1]	0.8979	0.0526
93	\log -fdev[1]	-4.2676	0.0498	143	\log -fdev[2]	0.0567	0.1042
94	\log -fdev[1]	-4.6804	0.0422	144	\log -fdev[2]	-0.2314	0.1040
95	\log -fdev[1]	-0.1994	0.0406	145	\log -fdev[2]	-1.0012	0.1032
96	\log -fdev[1]	-0.1361	0.0410	146	\log -fdev[2]	-0.2301	0.1031

Table 9: Summary of estimated model parameter values and standard deviations for model 23.3 for Bristol Bay red king crab.

97	\log -fdev[1]	0.7873	0.0440	147	\log -fdev[2]	-0.5250	0.1027
98	log-fdev[1]	0.4131	0.0435	148	\log -fdev[2]	-0.6204	0.1025
99	\log -fdev[1]	-0.1793	0.0416	149	\log -fdev[2]	-0.3901	0.1025
100	log-fdev[1]	-0.2505	0.0411	150	log-fdev[2]	-0.6639	0.1024
101	log-fdev[1]	-0.1361	0.0399	151	log-fdev[2]	-0.4978	0.1021
102	log-fdev[1]	0.3207	0.0386	152	log-fdev[2]	-0.4211	0.1022
103	log-fdev[1]	0.2773	0.0387	153	log-fdev[2]	-0.4436	0.1025
104	log-fdev[1]	0.5712	0.0392	154	log-fdev[2]	-0.8028	0.1027
105	log-fdev[1]	0.3166	0.0386	155	log-fdev[2]	-0.9566	0.1026
106	log-fdev[1]	0.6822	0.0386	156	log-fdev[2]	-1.4214	0.1023
107	log-fdev[1]	0.8589	0.0405	157	log-fdev[2]	-1.9370	0.1024
108	log-fdev[1]	0.6686	0.0416	158	log-fdev[2]	-1 2125	0.1021 0.1025
109	log-fdev[1]	0.5291	0.0412	159	log-fdev[2]	-1 7671	0.1020 0.1027
110	log-fdev[1]	-0 1104	0.0396	160	log-fdev[2]	-1 3757	0.1021 0.1034
111	log_fdev[1]	-0.1803	0.0384	161	$\log \left[\operatorname{dev}[2] \right]$	-0.8379	0.1001
111	log-fdev[1]	0.1009	0.0304	162	$\log \operatorname{Idev}[2]$	-0.3854	0.1040
112	log-fdev[1]	0.0100	0.0384	162	log-fdev[2]	-0.3034 -0.4277	0.1070
110	log fdov[1]	0.5482	0.0304	164	$\log - \log \left[2 \right]$	0.3130	0.1037
114	log fdov[1]	0.4224 0.4317	0.0402	165	$\log - \log \left[2 \right]$	-0.3133	0.1129 0.1159
115	log fdov[1]	0.4517	0.0440	166	$\log - \log \left[2 \right]$	-0.3304 1 3383	0.1152 0.1155
110	log fdov[1]	0.3034 0.2017	0.0529 0.0623	167	log fdov[2]	-1.5565	0.1100
117	log-fdev[1]	0.2017	0.0033 0.0725	168	log fdov[3]	-0.1103	0.0082
110	log-fdev[1]	0.1040	0.0720	160	log-fdev[3]	0.0098	0.0002
119	log-Idev[1]	-0.2070	0.0705	109	log-Idev[3]	1.2202	0.0062
120	log-Idev[1]	-4.7204	0.0750	170	log-Idev[3]	1.0920	0.0002
121	$\log - 1 \det [2]$	0.1741	0.1204 0.1176	171	$\log - 1 \log - 1 \log \log \left[3 \right]$	1.3023	0.0082
122	log-idev[2]	0.0128	0.1170 0.1190	172	log-idev[3]	1.4242	0.0682
120	$\log - 1 \det [2]$	0.3898	0.1120 0.1110	175	$\log - 1 \log - 1 \log \log \left[3 \right]$	0.9927	0.0082
124	\log -idev[2]	0.0047	0.1110 0.1120	174	$\log - 1 \log - 1 \log \left[3 \right]$	0.4700	0.0082
120	\log -idev[2]	1.4002	0.1130	170	$\log - 100 ev[3]$	-0.9874	0.0082
120	\log -idev[2]	1.2140	0.1201	170	$\log - 100 ev[3]$	-0.5787	0.0082
127	\log -idev[2]	2.5023	0.1242	170	$\log - 100 ev[3]$	-1.0994	0.0082
128	log-idev[2]	2.2269	0.1139	178	log-idev[3]	-0.2563	0.0682
129	log-idev[2]	3.4702	0.1128	1/9	log-idev[3]	0.9401	0.0682
130	log-fdev[2]	2.2508	0.1110	180	log-fdev[3]	1.4182	0.0682
131	log-fdev[2]	1.1627	0.1122	181	log-fdev[3]	3.2412	0.0755
132	log-idev[2]	0.0827	0.1098	182	log-idev[3]	1.2834	0.1035
133	log-fdev[2]	1.4360	0.1051	183	log-fdev[3]	0.5710	0.1279
134	log-fdev[2]	-0.0071	0.1040	184	log-fdev[3]	-0.7633	0.0852
135	log-fdev[2]	0.4431	0.1040	185	log-fdev[3]	-2.1371	0.0744
136	log-fdev[2]	0.8679	0.1053	186	log-fdev[3]	-2.9919	0.0978
137	log-fdev[2]	0.7095	0.1056	187	log-fdev[3]	-2.4176	0.1178
138	log-fdev[2]	1.1912	0.1091	188	log-fdev[3]	-3.5029	0.0759
139	log-fdev[2]	-0.5823	0.1052	189	log-fdev[3]	-0.8409	0.0960
140	log-fdev[2]	-0.8739	0.1035	190	log-fdev[3]	-0.1107	0.1189
141	log-fdev[2]	-0.8000	0.1037	191	log-fdev[3]	1.0824	0.1459
142	log-fdev[2]	-1.2529	0.1035	192	log-fdev[4]	0.5393	0.1032
193	log-fdev[4]	-0.1095	0.1021	243	log-fdov[1]	0.2081	0.0785
194	log-fdev[4]	-0.3188	0.1028	244	log-fdov[1]	-0.1939	0.0786
195	log-fdev[4]	0.5911	0.1021	245	log-fdov[1]	0.8709	0.0791
196	\log -fdev[4]	-1.8417	0.1014	246	log-fdov[1]	0.3231	0.0804
197	\log -fdev[4]	0.1164	0.1010	247	log-fdov[1]	-0.3371	0.0830
198	\log -fdev[4]	-0.1416	0.1006	248	\log -fdov[1]	0.9731	0.0873
199	\log -fdev[4]	-0.9782	0.1006	249	\log -fdov[1]	-0.1096	0.0915
200	\log -fdev[4]	-0.8027	0.1004	250	log-fdov[1]	-0.6240	0.0933

201	\log -fdev[4]	-0.5280	0.1003	251	log-fdov[1]	2.9872	0.0936
202	\log -fdev[4]	-0.5777	0.1000	252	log-fdov[3]	-0.0000	0.0962
203	log-fdev[4]	-0.0268	0.1000	253	log-fdov[3]	0.0001	0.0962
204	log-fdev[4]	-0.7221	0.1004	254	log-fdov[3]	0.0004	0.0962
205	log-fdev[4]	-1.7223	0.1002	255	log-fdov[3]	0.0003	0.0963
206	log-fdev[4]	-2.5609	0.0997	256	log-fdov[3]	0.0005	0.0963
207	log-fdev[4]	-1.0805	0.0994	257	log-fdov[3]	0.0002	0.0963
208	log-fdev[4]	-0.5189	0.0995	258	log-fdov[3]	-0.0001	0.0963
209	log-fdev[4]	0.6290	0.0994	259	log-fdov[3]	-0.0002	0.0962
210	log-fdev[4]	1.4870	0.0995	260	log-fdov[3]	-0.0002	0.0962
211	log-fdev[4]	1.1794	0.0999	261	log-fdov[3]	-0.0001	0.0962
212	log-fdev[4]	0.3626	0.1007	262	log-fdov[3]	-0.0001	0.0962
212	log-fdev[4]	1 9830	0.1001	262	log-fdov[3]	0.0001	0.0962
210	log-fdev[4]	2 2602	0.1021	$\frac{260}{264}$	log-fdov[3]	0.0003	0.0962
211	$\log \operatorname{fdev}[4]$	1.0723	0.1055	265	log-fdov[3]	0.0007	0.0963
210 216	log-fdev[4]	0.8678	0.1055 0.1076	$\frac{200}{266}$	log-fdov[3]	1 /0007	0.0505
$210 \\ 217$	$\log - \operatorname{fdev}[4]$	0.8018	0.1070	$200 \\ 267$	log fdov[3]	1.4350 1.7806	0.1052
217	log foff[1]	2 8080	0.1009	201	log fdov[3]	1.7000 0.5715	0.1250
210 210	log foff[2]	-2.0009	0.0439 0.4638	208	log fdov[3]	2 4405	0.1460
219	log fdor [1]	-0.1303	0.4038	209	log fdor[2]	-3.4403 9.1595	0.1100
220	log-fdov[1]	1.9001	0.0042	270	log-fdov[5]	-2.1000	0.1030
221	$\log - 1 dov[1]$	-0.7118	0.0831	271	10g-100v[5]	-0.7950	0.1300
222	$\log - 1 \operatorname{IOV}[1]$	1.9073	0.0844	272	$\log - 100V[3]$	0.0305	0.1370
223	$\log - 1 \operatorname{IOV}[1]$	1.7880	0.0862	273	log-idov[3]	0.3905	0.1029
224	$\log - 1 dov[1]$	-0.4258	0.0848	274	\log -fdov[3]	0.9842	0.1711
225	log-fdov[1]	-0.1926	0.0825	275	log-fdov[3]	0.2025	0.1567
226	log-fdov[1]	-3.6903	0.0815	276	log-fdov[3]	0.9260	0.1798
227	log-fdov[1]	-0.3394	0.0823	277	rec-dev-est	1.0962	0.2630
228	log-fdov[1]	1.4229	0.0828	278	rec-dev-est	0.5919	0.2963
229	log-fdov[1]	-2.7967	0.0820	279	rec-dev-est	1.0083	0.2442
230	log-fdov[1]	1.1424	0.0810	280	rec-dev-est	1.5894	0.2089
231	log-fdov[1]	0.8628	0.0809	281	rec-dev-est	1.8708	0.2166
232	log-fdov[1]	-1.8877	0.0804	282	rec-dev-est	1.0959	0.2574
233	log-fdov[1]	1.2083	0.0804	283	rec-dev-est	2.3756	0.1643
234	\log -fdov[1]	0.4149	0.0807	284	rec-dev-est	1.4260	0.1785
235	\log -fdov[1]	0.9362	0.0801	285	rec-dev-est	1.0766	0.1652
236	\log -fdov[1]	-1.2356	0.0796	286	rec-dev-est	-0.7352	0.2449
237	\log -fdov[1]	-0.1928	0.0795	287	rec-dev-est	0.3420	0.1624
238	\log -fdov[1]	-0.4619	0.0798	288	rec-dev-est	-0.7874	0.2399
239	\log -fdov[1]	-0.7183	0.0801	289	rec-dev-est	-1.2292	0.2751
240	\log -fdov[1]	-0.2221	0.0799	290	rec-dev-est	-0.9875	0.2234
241	\log -fdov[1]	-1.1015	0.0790	291	rec-dev-est	-0.0533	0.1641
242	\log -fdov[1]	-1.8118	0.0785	292	rec-dev-est	-0.4636	0.1819
293	$\operatorname{rec-dev-est}$	-1.9192	0.3499	339	logit-rec-prop-est	0.1348	0.2336
294	rec-dev-est	-0.8604	0.1962	340	logit-rec-prop-est	0.7863	0.7307
295	$\operatorname{rec-dev-est}$	-2.0612	0.4402	341	logit-rec-prop-est	0.2132	0.2806
296	rec-dev-est	0.9950	0.1468	342	logit-rec-prop-est	-0.2904	0.7084
297	$\operatorname{rec-dev-est}$	-0.8269	0.2518	343	logit-rec-prop-est	-0.3627	0.0885
298	rec-dev-est	-1.5590	0.3408	344	logit-rec-prop-est	1.2090	0.6143
299	rec-dev-est	-0.5630	0.1997	345	logit-rec-prop-est	0.4301	0.6495
300	rec-dev-est	0.4490	0.1552	346	logit-rec-prop-est	0.4701	0.3248
301	rec-dev-est	-0.5108	0.2205	347	logit-rec-prop-est	-0.0863	0.1395
302	rec-dev-est	-0.5590	0.2469	348	logit-rec-prop-est	0.1947	0.3524
303	rec-dev-est	0.8833	0.1539	349	logit-rec-prop-est	-0.5475	0.3896
304	rec-dev-est	-0.5790	0.2614	350	logit-rec-prop-est	-0.5299	0.1241

305	rec-dev-est	-0.6694	0.2645	351	logit-rec-prop-est	-0.4122	0.4170
306	rec-dev-est	0.5752	0.1569	352	logit-rec-prop-est	-0.0530	0.4383
307	rec-dev-est	-0.0932	0.1790	353	logit-rec-prop-est	-0.4141	0.1416
308	rec-dev-est	-0.5174	0.1870	354	logit-rec-prop-est	-0.1423	0.2256
309	rec-dev-est	-1.0817	0.2313	355	logit-rec-prop-est	0.4216	0.2793
310	rec-dev-est	-0.9454	0.2326	356	logit-rec-prop-est	-0.1194	0.3596
311	rec-dev-est	-0.0322	0.1812	357	logit-rec-prop-est	-0.4592	0.3512
312	rec-dev-est	-0.5230	0.2220	358	logit-rec-prop-est	-0.7208	0.2027
313	rec-dev-est	-1.0959	0.2300	359	logit-rec-prop-est	-0.4468	0.3074
314	rec-dev-est	-1.4400	0.2230	360	logit-rec-prop-est	-0.5083	0.3407
315	rec-dev-est	-1.9303	0.2684	361	logit-rec-prop-est	-0.2009	0.3338
316	rec-dev-est	-1.4764	0.2189	362	logit-rec-prop-est	-0.3227	0.4288
317	rec-dev-est	-0.8319	0.1732	363	logit-rec-prop-est	-0.3393	0.3161
318	rec-dev-est	-1.6569	0.2526	364	logit-rec-prop-est	0.3012	0.2133
319	rec-dev-est	-0.8824	0.1925	365	logit-rec-prop-est	0.5557	0.4698
320	rec-dev-est	-1.4927	0.2757	366	logit-rec-prop-est	0.7719	0.3009
321	rec-dev-est	-1.3729	0.2774	367	logit-rec-prop-est	0.1962	0.4656
322	rec-dev-est	-1.2555	0.2718	368	logit-rec-prop-est	0.6085	0.5138
323	rec-dev-est	-0.9442	0.3113	369	logit-rec-prop-est	0.2475	0.4469
324	logit-rec-prop-est	-0.0524	0.4217	370	logit-rec-prop-est	-0.7546	0.5068
325	logit-rec-prop-est	-0.7810	0.5062	371	m-dev-est[1]	1.4884	0.0311
326	logit-rec-prop-est	-0.2439	0.3639	372	survey-q[1]	1.0075	0.0396
327	logit-rec-prop-est	-0.4270	0.2688	373	\log -add- $cv[2]$	-0.8133	0.2808
328	logit-rec-prop-est	0.1499	0.2584				
329	logit-rec-prop-est	0.3302	0.3365				
330	logit-rec-prop-est	0.4156	0.1410				
331	logit-rec-prop-est	0.4924	0.2343				
332	logit-rec-prop-est	-0.0242	0.1734				
333	logit-rec-prop-est	0.4598	0.4486				
334	logit-rec-prop-est	-0.4857	0.1642				
335	logit-rec-prop-est	0.1786	0.4042				
336	logit-rec-prop-est	-0.1247	0.4530				
337	logit-rec-prop-est	0.3943	0.3851				
338	logit-rec-prop-est	-0.1126	0.1688				

Ξ

Index	Name	Value	StdDev	index	name	value	stddev
1	theta[2]	0.2533	0.0157	47	log-slx-pars[3]	4.5009	0.0163
2	theta[4]	17.8510	0.0407	48	log-slx-pars[4]	1.9927	0.1158
3	theta[5]	15.8170	0.1562	49	log-slx-pars[5]	5.2082	0.0927
4	theta 7	0.6484	0.1226	50	log-slx-pars[6]	2.9321	0.0539
5	theta[9]	-0.4560	0.2505	51	log-slx-pars[7]	4.7312	0.2230
6	theta[13]	0.7587	0.4965	52	log-slx-pars[8]	2.1651	0.3058
7	theta[14]	0.7777	0.4753	53	log-slx-pars[9]	4.7178	0.0907
8	theta[15]	1.1311	0.3504	54	log-slx-pars[10]	0.9033	0.3023
9	theta[16]	1.3200	0.2848	55	log-slx-pars[11]	4.7870	0.0226
10	theta[17]	1.2547	0.2650	56	log-slx-pars[12]	2.3391	0.0876
11	theta[18]	0.9886	0.2722	57	log-slx-pars[13]	3.9460	0.3795
12	theta[19]	0.9454	0.2593	58	log-slx-pars[14]	2.9559	0.3842
13	theta[20]	1.2024	0.2217	59	log-slx-pars[15]	4.4345	0.0330
14	theta[21]	1.1938	0.2159	60	log-slx-pars[16]	2.4245	0.0904
15	theta[22]	1.0114	0.2226	61	log-slx-pars[17]	4.9239	0.0017
16	theta[23]	0.9577	0.2150	62	log-slx-pars[18]	0.6719	0.0705
17	theta[24]	0.8155	0.2182	63	log-slx-pars[19]	4.9324	0.0021
18	theta[25]	0.4861	0.2233	64	log-slx-pars[20]	0.7341	0.0987
19	theta[26]	0.0439	0.1945	65	log-fbar[1]	-1.6448	0.0476
20	theta[27]	-0.4270	0.1967	66	log-fbar[2]	-4.6935	0.0818
21	theta[28]	-1.0824	0.2201	67	log-fbar[3]	-5.9731	0.3070
22	theta[29]	-1.6618	0.2526	68	log-fbar[4]	-6.5478	0.0728
23	theta[30]	-2.3396	0.2764	69	log-fdev[1]	1.0302	0.1191
24	theta[31]	-2.0036	0.3613	70	log-fdev[1]	1.2495	0.0789
25	theta[52]	-0.0991	0.5990	71	log-fdev[1]	0.8568	0.0628
26	theta[53]	0.3955	0.6556	72	log-fdev[1]	0.0051	0.0522
27	theta[54]	0.8694	0.5457	73	log-fdev[1]	0.1532	0.0465
28	theta[55]	1.0765	0.4280	74	log-fdev[1]	0.8094	0.0371
29	theta[56]	1.2241	0.3361	75	log-fdev[1]	0.8206	0.0388
30	theta[57]	1.0492	0.3136	76	\log -fdev[1]	0.3046	0.0427
31	theta[58]	0.8305	0.3107	77	\log -fdev[1]	0.9692	0.0467
32	theta[59]	0.3681	0.3475	78	\log -fdev[1]	-4.1815	0.0448
33	theta[60]	-0.3715	0.3929	79	\log -fdev[1]	-4.5906	0.0392
34	theta[61]	-0.8220	0.3861	80	\log -fdev[1]	-0.1205	0.0381
35	theta[62]	-1.5225	0.3759	81	\log -fdev[1]	-0.0739	0.0382
36	theta[63]	-1.6162	0.3730	82	\log -fdev[1]	0.8418	0.0402
37	theta[64]	-1.5463	0.3728	83	\log -fdev[1]	0.4818	0.0395
38	theta[65]	-1.7687	0.3635	84	\log -fdev[1]	-0.1064	0.0382
39	theta[66]	-1.9073	0.3530	85	\log -fdev[1]	-0.1845	0.0379
40	theta[67]	-1.8742	0.3436	86	\log -fdev[1]	-0.0706	0.0372
41	Grwth[21]	0.8966	0.1924	87	\log -fdev[1]	0.3938	0.0364
42	$\operatorname{Grwth}[42]$	1.4881	0.1342	88	\log -fdev[1]	0.3508	0.0366
43	$\operatorname{Grwth}[64]$	139.7000	0.6121	89	\log -fdev[1]	0.6405	0.0367
44	$\operatorname{Grwth}[65]$	0.0707	0.0033	90	\log -fdev[1]	0.3949	0.0364
45	\log -slx-pars[1]	4.7588	0.0083	91	\log -fdev[1]	0.7591	0.0362
46	\log -slx-pars[2]	2.2663	0.0461	92	\log -fdev[1]	0.9284	0.0369
93	\log -fdev[1]	0.7429	0.0372	143	log-fdev[3]	-0.7271	0.0661
94	\log -fdev[1]	0.6118	0.0365	144	\log -fdev[3]	0.1160	0.0661
95	\log -fdev[1]	-0.0242	0.0357	145	\log -fdev[3]	1.3122	0.0661
96	\log -fdev[1]	-0.1000	0.0351	146	\log -fdev[3]	1.7903	0.0661

Table 10: Summary of estimated model parameter values and standard deviations for model 22.0 for Bristol Bay red king crab.

97	log-fdev[1]	0.0875	0.0350	147	log-fdev[3]	3.6163	0.0764
98	log-fdev[1]	0.4157	0.0355	148	log-fdev[3]	1.6652	0.0948
99	\log -fdev[1]	0.4857	0.0379	149	\log -fdev[3]	0.9601	0.1268
100	\log -fdev[1]	0.4816	0.0431	150	\log -fdev[3]	-0.3831	0.0805
101	\log -fdev[1]	0.3872	0.0514	151	\log -fdev[3]	-1.7635	0.0740
102	\log -fdev[1]	0.1919	0.0610	152	\log -fdev[3]	-2.6141	0.0915
103	\log -fdev[1]	0.1290	0.0692	153	\log -fdev[3]	-2.0363	0.1162
104	\log -fdev[1]	-0.3088	0.0732	154	\log -fdev[3]	-3.1225	0.0771
105	\log -fdev[1]	-4.7616	0.0732	155	\log -fdev[3]	-0.4789	0.0960
106	\log -fdev[2]	2.3657	0.1140	156	\log -fdev[3]	0.2433	0.1138
107	\log -fdev[2]	1.3385	0.1123	157	\log -fdev[3]	1.4222	0.1372
108	\log -fdev[2]	0.9435	0.1088	158	\log -fdev[4]	0.5783	0.1029
109	\log -fdev[2]	1.7781	0.1042	159	\log -fdev[4]	-0.0855	0.1020
110	\log -fdev[2]	0.3807	0.1031	160	\log -fdev[4]	-0.3054	0.1025
111	\log -fdev[2]	0.8468	0.1028	161	\log -fdev[4]	0.6135	0.1017
112	\log -fdev[2]	1.2712	0.1036	162	\log -fdev[4]	-1.8136	0.1012
113	\log -fdev[2]	1.1077	0.1038	163	\log -fdev[4]	0.1422	0.1009
114	\log -fdev[2]	1.5786	0.1063	164	\log -fdev[4]	-0.1149	0.1005
115	\log -fdev[2]	-0.1828	0.1036	165	\log -fdev[4]	-0.9488	0.1004
116	\log -fdev[2]	-0.4677	0.1023	166	\log -fdev[4]	-0.7746	0.1002
117	\log -fdev[2]	-0.4034	0.1025	167	\log -fdev[4]	-0.5009	0.1001
118	\log -fdev[2]	-0.8739	0.1024	168	\log -fdev[4]	-0.5466	0.0998
119	\log -fdev[2]	0.4168	0.1027	169	\log -fdev[4]	-0.0007	0.0998
120	\log -fdev[2]	0.1376	0.1025	170	\log -fdev[4]	-0.7021	0.1001
121	\log -fdev[2]	-0.6195	0.1019	171	\log -fdev[4]	-1.6997	0.0998
122	\log -fdev[2]	0.1503	0.1019	172	\log -fdev[4]	-2.5355	0.0995
123	\log -fdev[2]	-0.1488	0.1017	173	\log -fdev[4]	-1.0549	0.0992
124	\log -fdev[2]	-0.2428	0.1015	174	\log -fdev[4]	-0.4999	0.0992
125	\log -fdev[2]	-0.0107	0.1016	175	\log -fdev[4]	0.6387	0.0992
126	\log -fdev[2]	-0.2888	0.1014	176	log-fdev[4]	1.4877	0.0994
127	log-fdev[2]	-0.1178	0.1012	177	log-fdev[4]	1.1680	0.0999
128	log-fdev[2]	-0.0432	0.1012	178	log-fdev[4]	0.3336	0.1007
129	log-fdev[2]	-0.0743	0.1014	179	log-fdev[4]	1.9323	0.1021
130	log-fdev[2]	-0.4308	0.1015	180	log-fdev[4]	2.1866	0.1035
131	log-fdev[2]	-0.5773	0.1014	181	log-fdev[4]	0.9808	0.1051
132	log-fdev[2]	-1.0370	0.1011	182	log-fdev[4]	0.7707	0.1071
133	log-fdev[2]	-1.5569	0.1013	183	log-fdev[4]	0.7506	0.1086
134	log-fdev[2]	-0.8432	0.1015	184	log-toff[1]	-2.7874	0.0390
135	log-fdev[2]	-1.4097	0.1017	185	log-foff[3]	-0.2079	0.4247
136	log-fdev[2]	-1.0287	0.1024	186	log-fdov[1]	2.0001	0.0837
137	log-fdev[2]	-0.5069	0.1039	187	log-fdov[1]	-0.6740	0.0828
138	log-fdev[2]	-0.0783	0.1060	188	log-fdov[1]	1.9946	0.0840
139	log-fdev[2]	-0.1483	0.1084	189	log-fdov[1]	1.8298	0.0856
140	log-fdev[2]	-0.0586	0.1111	190	log-fdov[1]	-0.4078	0.0843
141	log-fdev[2]	-0.0894	0.1134	191	log-fdov[1]	-0.1829	0.0822
142	\log -fdev[2]	-1.0767	0.1141	192	log-fdov[1]	-3.6921	0.0812
193	log-tdov[1]	-0.3231	0.0818	243	rec-dev-est	-0.5559	0.2646
194	log-fdov[1]	1.4619	0.0821	244	rec-dev-est	-1.1831	0.3341
195	log-Idov[1]	-2.7074	0.0813	245	rec-dev-est	-0.1718	0.2083
190	$\log - 100V[1]$	1.1008	0.0805	240	rec-dev-est	0.8065	0.1/11
197	log fdor [1]	U.8835 1.9660	0.0804	241	rec-dev-est	-0.1788	0.2343
190	log fdov[1]	-1.0000 1.9199	0.0799	240 940	rec-dov.est	-0.1237 1 9175	0.2404
200	log_fdov[1]	1.2100	0.0799	249 250	rec-dev ost	1.2170 _0.9948	0.1700
200		0.4410	0.0000	400	100-001-000	-0.2240	0.2100

$\begin{array}{cccccccccccccccccccccccccccccccccccc$	201	log-fdov[1]	0.9630	0.0795	251	rec-dev-est	-0.2996	0.2678
	202	log-fdov[1]	-1.2233	0.0790	252	rec-dev-est	0.9674	0.1722
	203	log-fdov[1]	-0.1832	0.0790	253	rec-dev-est	0.2312	0.1954
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	204	log-fdov[1]	-0.4467	0.0793	254	rec-dev-est	-0.1312	0.2012
$ \begin{array}{c c c c c c c c c c c c c c c c c c c $	205	log-fdov[1]	-0.7126	0.0795	255	rec-dev-est	-0.7393	0.2492
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	206	log-fdov[1]	-0.2333	0.0793	256	rec-dev-est	-0.5739	0.2437
$ \begin{array}{c c c c c c c c c c c c c c c c c c c $	207	log-fdov[1]	-1.1323	0.0784	257	rec-dev-est	0.3635	0.1938
$ \begin{array}{cccccccccccccccccccccccccccccccccccc$	208	log-fdov[1]	-1.8517	0.0780	258	rec-dev-est	-0.1306	0.2364
$ \begin{array}{c c c c c c c c c c c c c c c c c c c $	209	log-fdov[1]	0.1681	0.0780	259	rec-dev-est	-0.7305	0.2478
$ \begin{array}{c c c c c c c c c c c c c c c c c c c $	210	log-fdov[1]	-0.2377	0.0781	260	rec-dev-est	-1.0071	0.2329
$ \begin{array}{c c c c c c c c c c c c c c c c c c c $	211	log-fdov[1]	0.8214	0.0787	261	rec-dev-est	-1.4580	0.2722
$ \begin{array}{cccccccccccccccccccccccccccccccccccc$	212	log-fdov[1]	0.2723	0.0804	262	rec-dev-est	-1.0201	0.2313
$ \begin{array}{c c c c c c c c c c c c c c c c c c c $	213	log-fdov[1]	-0.3795	0.0833	263	rec-dev-est	-0.3282	0.1867
$ \begin{array}{cccccccccccccccccccccccccccccccccccc$	214	log-fdov[1]	0.9477	0.0876	264	rec-dev-est	-1.1821	0.2615
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	215	log-fdov[1]	-0.1258	0.0913	265	rec-dev-est	-0.3977	0.2091
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	216	log-fdov[1]	-0.6502	0.0929	266	rec-dev-est	-0.9859	0.2823
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	217	log-fdov[1]	2.9387	0.0933	267	rec-dev-est	-0.9166	0.2853
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	218	log-fdov[3]	-0.0001	0.0933	268	rec-dev-est	-0.7783	0.2863
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	219	log-fdov[3]	0.0001	0.0933	269	rec-dev-est	-0.4415	0.3303
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	220	log-fdov[3]	0.0004	0.0933	270	logit-rec-prop-est	-0.4515	0.1502
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	221	log-fdov[3]	0.0009	0.0933	271	logit-rec-prop-est	0.2476	0.4204
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	222	log-fdov[3]	1.5463	0.1424	272	logit-rec-prop-est	-0.0702	0.4590
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	223	log-fdov[3]	1.8286	0.1185	273	logit-rec-prop-est	0.4630	0.3714
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	224	log-fdov[3]	0.5980	0.1447	274	logit-rec-prop-est	-0.0615	0.1634
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	225	log-fdov[3]	-3.4250	0.1078	275	logit-rec-prop-est	0.2344	0.2435
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	226	log-fdov[3]	-2.1810	0.1438	276	logit-rec-prop-est	0.5805	0.6653
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	227	log-fdov[3]	-0.8009	0.1174	277	logit-rec-prop-est	0.3133	0.2866
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	228	log-fdov[3]	0.0262	0.1356	278	logit-rec-prop-est	-0.4631	0.6527
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	229	log-fdov[3]	0.3760	0.1036	279	logit-rec-prop-est	-0.2388	0.0882
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	230	\log -fdov[3]	0.9614	0.1506	280	logit-rec-prop-est	1.3038	0.6044
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	231	log-fdov[3]	0.1684	0.1454	281	logit-rec-prop-est	0.4161	0.6018
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	232	log-fdov[3]	0.9005	0.1738	282	logit-rec-prop-est	0.5416	0.3197
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	233	rec-dev-est	0.7420	0.1749	283	logit-rec-prop-est	-0.0177	0.1417
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	234	rec-dev-est	-0.4784	0.2527	284	logit-rec-prop-est	0.2188	0.3638
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	235	rec-dev-est	-0.9007	0.2848	285	logit-rec-prop-est	-0.5031	0.3687
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	236	rec-dev-est	-0.5834	0.2268	286	logit-rec-prop-est	-0.4440	0.1276
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	237	rec-dev-est	0.3273	0.1776	287	logit-rec-prop-est	-0.4166	0.4219
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	238	rec-dev-est	-0.1320	0.1965	288	logit-rec-prop-est	0.0461	0.4339
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	239	rec-dev-est	-1.5812	0.3630	289	logit-rec-prop-est	-0.3504	0.1387
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	240	rec-dev-est	-0.4811	0.2093	290	logit-rec-prop-est	-0.0688	0.2387
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	241	rec-dev-est	-1.5434	0.4100	291	logit-rec-prop-est	0.3814	0.2788
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	242	rec-dev-est	1.3768	0.1636	292	logit-rec-prop-est	-0.1839	0.3775
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	$\overline{293}$	logit-rec-prop-est	-0.4512	$0.3\overline{556}$	301	logit-rec-prop-est	$0.5\overline{162}$	$0.45\overline{59}$
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	294	logit-rec-prop-est	-0.7235	0.2005	302	logit-rec-prop-est	0.8106	0.3073
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	295	logit-rec-prop-est	-0.5107	0.3129	303	logit-rec-prop-est	0.1217	0.4535
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	296	logit-rec-prop-est	-0.4608	0.3582	304	logit-rec-prop-est	0.5871	0.4879
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	297	logit-rec-prop-est	-0.2370	0.3315	305	logit-rec-prop-est	0.0964	0.4478
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	298	logit-rec-prop-est	-0.3057	0.4215	306	logit-rec-prop-est	-0.9692	0.5669
300 logit-rec-prop-est 0.3273 0.2116 308 log-add-cv[2] -0.8165 0.2758	299	logit-rec-prop-est	-0.2780	0.3207	307	survey-q[1]	0.9407	0.0273
	300	logit-rec-prop-est	0.3273	0.2116	308	log-add-cv[2]	-0.8165	0.2758

Table 11: Annual abundance estimates (mature >119mm, legal >134mm, mature females in million crab), mature male biomass (MMB, 1000 t), and total survey biomass (1000 t) both estimated by the model and area swept calculated for red king crab in Bristol Bay estimated by length-based model 21.1b during 1975-2022. MMB for year t is on Feb. 15, year t+1.

Year	Mature	Legal	MMB	SD	Mature	Total	Total-Model	Total
	males	males		MMB	Female	Recruits	Est-Survey	Area-swept
1975	55.54	28.23	83.210	8.27	54.79		235.86	199.64
1976	65.22	35.52	99.070	7.98	83.13	63.88	275.71	327.61
1977	72.44	41.30	113.030	6.92	110.37	41.20	297.01	371.22
1978	77.71	46.49	119.800	5.50	114.47	64.35	300.17	343.19
1979	68.28	47.42	99.940	3.87	109.51	115.47	288.72	165.45
1980	50.10	37.75	30.330	1.60	111.47	150.26	273.37	247.23
1981	14.47	8.03	6.550	1.05	48.86	67.94	109.14	131.14
1982	6.78	2.16	6.560	0.93	21.39	241.56	65.17	141.90
1983	6.18	2.17	7.410	0.68	14.20	93.07	57.65	48.48
1984	6.15	2.29	5.230	0.43	13.98	64.27	50.62	152.61
1985	7.56	1.88	9.680	0.65	9.73	10.20	34.84	34.14
1986	12.17	4.65	15.060	0.99	13.64	30.36	45.54	47.43
1987	14.36	6.69	20.400	1.19	17.03	9.47	51.33	69.24
1988	14.45	8.46	25.120	1.25	21.45	6.18	54.70	54.60
1989	15.55	9.75	27.980	1.19	20.23	8.03	57.35	55.14
1990	15.01	10.44	24.140	1.12	18.06	20.85	57.42	59.45
1991	11.55	8.65	18.450	1.06	17.43	13.11	52.33	83.89
1992	9.28	6.46	17.240	1.03	18.58	3.02	47.66	37.33
1993	10.50	6.16	15.850	1.11	17.27	9.07	47.20	52.91
1994	10.35	6.02	21.700	1.22	14.68	2.91	42.63	32.10
1995	10.86	7.89	24.840	1.22	13.57	59.44	48.70	38.07
1996	11.15	8.55	23.320	1.16	19.69	8.63	58.05	43.96
1997	10.59	7.79	22.060	1.14	28.74	4.45	64.18	84.03
1998	15.90	7.75	24.940	1.35	25.23	12.41	68.06	84.10
1999	16.97	9.73	28.680	1.49	21.32	33.58	66.66	64.75
2000	14.65	10.65	28.900	1.49	22.73	12.47	68.28	67.38
2001	14.47	10.22	29.280	1.45	25.76	12.89	71.90	52.46
2002	17.32	10.41	33.340	1.46	25.01	51.48	76.96	69.09
2003	18.14	12.05	32.900	1.43	30.66	11.76	83.11	115.76
2004	16.36	11.63	30.410	1.35	37.82	10.95	84.59	130.56
2005	18.23	10.84	30.940	1.31	35.03	39.54	85.55	105.73
2006	17.34	11.42	31.320	1.27	35.33	18.93	85.40	94.48
2007	15.64	11.18	26.310	1.20	39.20	12.79	86.95	103.33
2008	16.02	9.51	24.990	1.22	36.75	7.15	83.34	113.08
2009	15.87	9.46	25.860	1.26	32.18	8.16	77.33	90.55
2010	14.75	9.69	25.140	1.22	28.17	21.79	72.26	80.50
2011	12.49	9.15	24.850	1.14	27.73	12.61	67.80	66.41
2012	11.13	8.61	23.280	1.06	29.49	7.30	66.17	60.70
2013	11.04	7.87	22.210	0.99	27.88	5.32	63.45	62.22
2014	10.76	7.57	20.210	0.93	24.65	3.32	58.71	113.14
2015	9.24	6.89	17.220	0.89	21.09	5.28	51.91	64.17
2016	7.48	5.80	14.190	0.87	17.96	10.33	45.24	60.96
2017	5.94	4.70	11.590	0.85	16.33	4.36	40.30	52.93
2018	5.17	3.80	10.340	0.86	14.91	9.73	37.30	28.80
2019	5.92	3.52	11.240	0.98	13.12	5.29	36.02	28.54
2020	6.49	4.03	12.860	1.14	12.07	5.79		
2021	7.67	4.65	16.640	1.36	10.98	6.61	36.14	28.48
2022	8.66	5.96	16.760	1.16	10.20	9.01	38.02	36.20

Table 12: Annual abundance estimates (mature >119mm, legal >134mm, mature females in million crab), mature male biomass (MMB, 1000 t), and total survey biomass (1000 t) both estimated by the model and area swept calculated for red king crab in Bristol Bay estimated by length-based model 23.0a during 1975-2022. MMB for year t is on Feb. 15, year t+1.

Year	Mature	Legal	MMB	SD	Mature	Total	Total-Model	Total
	males	males		MMB	Female	Recruits	Est-Survey	Area-swept
1975	60.886	30.519	90.444	9.074	65.941		247.771	199.643
1976	71.147	38.129	107.000	8.695	97.946	90.202	288.150	327.615
1977	78.998	44.067	121.502	7.556	128.875	54.404	309.117	371.223
1978	84.202	49.442	128.203	6.084	132.243	83.711	310.136	343.189
1979	73.285	50.125	106.519	4.299	124.635	150.612	295.815	165.449
1980	53.586	39.705	32.436	1.756	125.807	202.942	279.396	247.226
1981	15.330	8.316	6.959	0.995	57.981	93.740	113.420	131.145
1982	7.219	2.249	6.656	0.772	26.608	335.347	63.724	141.898
1983	6.332	2.155	7.163	0.563	18.432	129.886	56.039	48.476
1984	6.439	2.173	5.067	0.419	18.488	91.073	49.082	152.607
1985	7.968	1.845	9.823	0.704	13.101	14.935	33.652	34.138
1986	13.031	4.775	15.808	1.113	17.981	43.901	45.105	47.434
1987	15.831	7.081	22.140	1.406	22.424	14.343	51.952	69.245
1988	16.107	9.186	27.388	1.499	28.166	9.258	56.253	54.597
1989	17.395	10.583	30.643	1.465	26.164	11.626	59.319	55.136
1990	16.666	11.351	26.640	1.384	22.973	30.009	59.349	59.451
1991	12.802	9.452	20.504	1.282	22.227	20.196	54.306	83.892
1992	10.473	7.096	19.169	1.235	23.966	4.646	49.907	37.334
1993	12.058	6.804	18.242	1.344	22.215	13.317	49.722	52.906
1994	12.163	6.908	24.605	1.483	18.692	3.944	45.498	32.104
1995	12.425	8.892	27.477	1.448	17.038	84.726	51.243	38.068
1996	12.399	9.345	25,391	1 343	25 772	14 113	59 786	43 959
1997	11.720	8 362	23.739	1.010 1 292	38 029	6 523	65 855	84 030
1998	17.874	8.321	27.543	1.613	32.657	17.759	70.096	84.101
1999	19 132	10.768	31 820	1 804	27108	49.035	69 244	64 754
2000	16.351	11.759	31 618	1.001 1.752	29.176	18.827	70.873	67 381
2000	16.001 16.107	11.046	31.764	1.687	33 386	17580	74 373	52 455
2002	19 440	11.010 11.220	36 307	1 741	31 948	75 710	79 462	69.086
2002	20 184	13 092	35 825	1 701	39 844	17 626	85 408	115760
2000	18.063	12.589	32 911	1.587	49779	15.947	87 138	130.556
2001	20.384	11 680	33 948	1.501	45 327	55 368	88 239	105.000 105.727
2006	19 292	12.000	34 199	1.501 1.545	$45 \ 402$	28 911	87 996	94 477
2000 2007	17.202	12.105 12.105	28 735	1.010 1 432	50 201	18 650	89.387	103 327
2008	17.895	10.302	27.725	1 495	46.593	10.600	85 983	113 082
2000	17.030	10.002 10.450	29.011	1.100 1.579	39 908	12.253	80.267	90 547
2000	16 795	10.100	29.011 28 455	1.570 1.540	$34\ 372$	30.079	75 131	80.501
2010	14.201	10.011 10.257	27.816	1.010 1 418	33 708	18.624	70 190	66 408
2011	12.512	9 500	27.010 25.676	1.110 1 274	35 691	10.021 10.434	67 860	60.697
2012	12.012	9.500 8.560	20.010	1.274 1 177	33.479	7 404	64 543	62.217
2010	12.031 12.037	8.237	24.000 22 184	1.111	29 097	4 525	59 269	113 135
2014	12.007 10.237	7.512	18 807	1.000	25.051 24 361	7.083	51 961	64 175
2016	8 183	6 264	15 200	0.030	20.372	13 508	44 726	60.958
2010	6 368	4 997	10.233 19.997	0.333	18 316	5 940	39 165	52 935
2017	5 489	3 049	10 661	0.860	16 520	0.343 19 762	35 602	22.305 28.805
2010	6 242	3.542 3.507	11 449	0.000	1/ 260	6.018	34 044	20.000
2019	6 701	1 006	12 0/0	1 114	13 191	7 831	01.011	20.000
2020	7 061	4.690	16 574	1.114 1.317	11 850	8 777	33 650	28 476
2021	8 765	5 910	15 / 31	1.013	11 003	11 089	35 193	26.410
4044	0.100	0.010	10.401	T.010	TT:000	11.004	00.140	00.100

Table 13: Annual abundance estimates (mature >119mm, legal >134mm, mature females in million crab), mature male biomass (MMB, 1000 t), and total survey biomass (1000 t) both estimated by the model and area swept calculated for red king crab in Bristol Bay estimated by length-based model 23.3 during 1975-2022. MMB for year t is on Feb. 15, year t+1.

Year	Mature	Legal	MMB	SD	Mature	Total	Total-Model	Total
	males	males		MMB	Female	Recruits	Est-Survey	Area-swept
1975	57.198	28.754	84.369	8.511	59.954		251.703	199.643
1976	67.155	36.122	100.403	8.288	89.179	80.651	293.772	327.615
1977	74.887	41.960	114.793	7.305	117.607	48.708	316.207	371.223
1978	80.384	47.355	122.009	5.922	121.251	73.866	318.430	343.189
1979	70.506	48.357	101.973	4.172	114.861	132.072	304.232	165.449
1980	51.590	38.479	30.796	1.666	116.200	175.004	285.914	247.226
1981	14.580	8.049	6.312	0.948	52.558	80.627	114.139	131.145
1982	6.681	2.096	6.163	0.773	23.656	289.907	64.012	141.898
1983	5.939	2.044	6.838	0.569	16.214	112.169	56.489	48.476
1984	6.078	2.114	4.806	0.413	16.238	79.089	49.829	152.607
1985	7.507	1.779	9.238	0.683	11.470	12.920	34.309	34.138
1986	12.189	4.541	14.610	1.090	15.865	37.938	45.740	47.434
1987	14.632	6.621	20.265	1.388	19.788	12.262	52.298	69.245
1988	14.842	8.511	25.217	1.484	24.852	7.884	56.388	54.597
1989	16.090	9.851	28.328	1.447	23.170	10.039	59.534	55.136
1990	15.481	10.601	24.438	1.361	20.428	25.552	59.619	59.451
1991	11.815	8.763	18.539	1.263	19.723	16.952	54.180	83.892
1992	9.533	6.488	17.286	1.222	21.148	3.954	49.304	37.334
1993	10.895	6.204	16.071	1.334	19.596	11.400	48.975	52.906
1994	10.839	6.173	22.104	1.482	16.513	3.431	44.425	32.104
1995	11.234	8.079	25.102	1.458	15.115	72.892	50.546	38.068
1996	11.373	8.614	23.295	1.365	22.681	11.788	59.561	43.959
1997	10.771	7.737	21.840	1.317	33.413	5.669	65.698	84.030
1998	16.395	7.716	24.993	1.635	28.883	15.347	69.974	84.101
1999	17.483	9.893	28.856	1.837	24.078	42.225	68.848	64.754
2000	14.946	10.789	28.859	1.793	25.871	16.170	70.515	67.381
2001	14.783	10.188	29.169	1.731	29.546	15.409	74.248	52.455
2002	17.919	10.404	33.516	1.776	28.394	65.188	79.590	69.086
2003	18.723	12.209	33.104	1.731	35.280	15.105	85.851	115.760
2004	16.782	11.753	30.458	1.615	43.940	13.799	87.563	130.556
2005	18.913	10.917	31.307	1.607	40.186	47.902	88.672	105.727
2006	17.926	11.658	31.653	1.555	40.294	24.551	88.354	94.477
2007	16.040	11.328	26.445	1.440	44.558	16.064	89.782	103.327
2008	16.523	9.585	25.228	1.501	41.450	9.137	86.106	113.082
2009	16.454	9.631	26.265	1.585	35.687	10.471	80.097	90.547
2010	15.345	9.917	25.675	1.548	30.858	26.096	74.870	80.501
2011	12.953	9.374	25.278	1.431	30.262	15.973	69.937	66.408
2012	11.463	8.732	23.481	1.293	32.038	9.007	67.854	60.697
2013	11.398	7.909	22.358	1.194	30.119	6.385	64.745	62.217
2014	11.104	7.636	20.324	1.108	26.291	3.911	59.588	113.135
2015	9.444	6.956	17.177	1.021	22.131	6.157	52.271	64.175
2016	7.528	5.783	13.911	0.954	18.582	11.729	44.984	60.958
2017	5.836	4 592	11 066	0.901	16 742	5 140	39 404	52 935
2018	5.003	3.607	9.638	0.884	15.146	11.151	35.921	28.805
2019	5.694	3.291	10.373	0.997	13.202	6.057	34.305	28.539
2020	6.213	3.762	11 837	1.141	12.073	6.828	01.000	20.000
2020	7336	4 333	15 424	1.141 1.342	10 934	7.679	34 105	28.476
2022	8.191	5.564	14 971	1.064	10.154	10.483	35.853	36.198
-0	0.101	0.001	1 1.011	1.001	10.101	10.100	30.000	30.100

Table 14: Annual abundance estimates (mature >119mm, legal >134mm, mature females in million crab), mature male biomass (MMB, 1000 t), and total survey biomass (1000 t) both estimated by the model and area swept calculated for red king crab in Bristol Bay estimated by length-based model 22.0 during 1975-2022. MMB for year t is on Feb. 15, year t+1.

Year	Mature	Legal	MMB	SD	Mature	Total	Total-Model	Total
	males	males		MMB	Female	Recruits	Est-Survey	Area-swept
1985	8.557	2.35	11.651	0.965	8.44		34.983	34.138
1986	12.986	5.351	17.143	1.183	11.908	31.07	44.854	47.434
1987	14.402	7.309	21.340	1.315	15.698	9.169	50.338	69.245
1988	14.418	8.689	25.552	1.322	20.545	6.011	53.589	54.597
1989	15.533	9.777	28.169	1.255	19.574	8.255	56.086	55.136
1990	15.089	10.459	24.356	1.176	17.604	20.523	56.08	59.451
1991	11.608	8.711	18.620	1.108	17.115	12.964	51.198	83.892
1992	9.366	6.515	17.426	1.079	18.263	3.043	46.836	37.334
1993	10.616	6.219	16.093	1.156	17.056	9.144	46.525	52.906
1994	10.513	6.101	22.010	1.27	14.609	3.161	42.186	32.104
1995	10.986	8.007	25.120	1.268	13.638	58.618	47.973	38.068
1996	11.305	8.643	23.651	1.213	19.628	8.485	57.278	43.959
1997	10.662	7.906	22.290	1.187	28.458	4.532	63.631	84.03
1998	16.156	7.799	25.401	1.414	25.175	12.459	67.618	84.101
1999	17.27	9.916	29.280	1.57	21.402	33.141	66.212	64.754
2000	14.88	10.863	29.431	1.555	22.783	12.372	67.855	67.381
2001	14.67	10.391	29.770	1.511	25.786	13.073	71.515	52.455
2002	17.558	10.556	33.871	1.526	25.156	49.985	76.328	69.086
2003	18.387	12.227	33.442	1.488	30.609	11.816	82.352	115.76
2004	16.544	11.81	30.880	1.406	37.556	10.964	83.936	130.556
2005	18.45	10.978	31.431	1.375	35.019	38.925	84.824	105.727
2006	17.553	11.59	31.797	1.336	35.322	18.643	84.702	94.477
2007	15.802	11.33	26.723	1.256	39.147	12.975	86.364	103.327
2008	16.242	9.63	25.461	1.288	36.866	7.063	83.001	113.082
2009	16.095	9.624	26.353	1.335	32.483	8.334	77.219	90.547
2010	14.996	9.858	25.679	1.294	28.616	21.279	72.204	80.501
2011	12.713	9.34	25.376	1.211	28.161	12.983	67.831	66.408
2012	11.31	8.78	23.735	1.119	29.908	7.126	66.312	60.697
2013	11.238	8.006	22.677	1.05	28.489	5.404	63.718	62.217
2014	10.954	7.718	20.672	0.997	25.26	3.443	59.092	113.135
2015	9.414	7.039	17.660	0.956	21.759	5.334	52.412	64.175
2016	7.648	5.935	14.603	0.933	18.643	10.655	45.84	60.958
2017	6.089	4.83	11.990	0.915	17.006	4.536	41.04	52.935
2018	5.319	3.918	10.721	0.919	15.634	9.94	38.162	28.805
2019	6.122	3.635	11.695	1.046	13.838	5.52	36.977	28.539
2020	6.713	4.187	13.370	1.208	12.782	5.916		
2021	7.939	4.82	17.230	1.434	11.737	6.793	37.146	28.476
2022	8.922	6.167	16.974	1.182	10.992	9.513	38.94	36.198

Table 15: Annual abundance estimates (mature >119mm, legal >134mm, mature females in million crab), mature male biomass (MMB, 1000 t), and total survey biomass (1000 t) both estimated by the model and area swept calculated for red king crab in Bristol Bay estimated by length-based model 23.2 (no retow) during 1975-2022. MMB for year t is on Feb. 15, year t+1.

Year	Mature	Legal	MMB	SD	Mature	Total	Total-Model	Total
	males	males		MMB	Female	Recruits	Est-Survey	Area-swept
1975	56.746	28.77	85.508	8.471	54.857		240.228	199.643
1976	66.303	36.269	101.443	8.052	81.733	61.826	278.948	327.615
1977	72.925	41.948	114.567	6.932	107.72	39.427	298.086	371.223
1978	77.799	46.725	120.393	5.462	111.224	61.52	298.694	343.189
1979	67.991	47.317	99.526	3.831	105.811	109.644	285.198	165.449
1980	49.476	37.361	29.852	1.567	106.983	139.107	267.853	247.226
1981	14.308	7.991	6.501	1.006	46.95	62.535	107.141	131.145
1982	6.737	2.178	6.596	0.865	20.578	227.188	63.656	141.898
1983	6.103	2.203	7.423	0.624	13.812	90.504	56.898	48.476
1984	6.033	2.312	5.211	0.426	13.697	63.284	50.315	152.607
1985	7.455	1.894	9.577	0.653	9.702	9.852	34.887	34.138
1986	12.062	4.623	14.911	0.989	13.494	30.01	45.36	47.434
1987	14.251	6.657	20.241	1.189	16.792	9.4	50.975	69.245
1988	14.319	8.421	24.921	1.242	21.024	6.138	54.111	54.597
1989	15.39	9.69	27.734	1.187	19.764	7.896	56.488	55.136
1990	14.868	10.359	23.877	1.113	17.601	20.282	56.412	59.451
1991	11.413	8.568	18.183	1.049	16.943	12.747	51.331	83.892
1992	9.137	6.377	16.949	1.021	17.9	2.896	46.567	37.334
1993	10.325	6.067	15 508	1 091	16.52	8 548	45 859	52 906
1994	10 156	5 908	21,300	1 197	13 914	2 531	41 126	32104
1995	10.100 10.653	7.765	24.000	1 196	12.645	53456	46 783	38.068
1996	10.000	8 406	22.887	1.100 1 143	17.568	9 341	55.68	43 959
1997	10.381	7.645	21 610	1 121	24 911	5 183	61.227	84.03
1998	15.601	7.612	21.010 24.383	1.121 1.327	22.311	12756	64 805	84 101
1999	16 695	9 564	28.106	1.021 1.476	19357	33 311	63.62	58 692
2000	14.415	10.478	20.100 28.364	1.170 1 47	21 315	11 139	65 549	52 072
2000	14 266	10.110	28.805	1 432	21.010	11 899	69.067	52.012
2001	17.200	10.000 10.275	20.000	1.402 1 1.47	24.102	17.095	73 731	69.086
2002	17.008	11 022	32.000	1.411	20.001	11.000	70 //0	115 76
2000	16.064	11.022 11.476	20 825	1.411	27.010	10.485	80 372	130 556
2004	17.004 17.877	10.470	20.020	$1.00 \\ 1.004$	31 136	32 847	80.62	105.000 105.727
2005	17.011	10.004 11.204	30.249	1.254 1.255	30.445	$\frac{52.041}{22537}$	80.02	81 835
2000	15 381	10.07	25.723	1.200 1 176	33 668	12.001 12.745	81 681	88 573
2001	15.001 15.776	0 330	20.120	1.110	33 316	6 894	78 /	07 713
2000	15.635	0 300	24.440	1.202 1.246	20/18	8 825	70.4	74 094
2005	10.000 14.513	9.505	20.001	1.240 1.205	25.40	20.974	68 12	50 250
2010	19.010 19.97	9.042 8.003	24.010 24.352	1.200 1 1 2 5	20.045	20.574 19.49	64 151	47 647
2011 2012	12.21 10.041	8.456	24.002 22.821	1.120	20.033	6 603	62 701	58 999
2012	10.941	7798	22.021 21.761	0.065	21.000	5 205	60 108	62 217
2013 2014	10.601 10.540	7 422	$\frac{21.701}{10.732}$	0.905	20.243 92.091	3.305	55 502	02.217 112 125
2014 2015	10.049 0.025	6 744	19.752 16 759	0.904	20.021	5.002	40.001	64 175
2015	9.000 7 202	5 659	10.752 12.749	0.830	19.000	0.247	49.001	60.058
2010 2017	7.303 5.762	0.002 4.565	10.740	0.829	10.729	9.347	42.004 97 790	00.958
2017	0.100	4.000 2.660	0.061	0.01	10.00 19 E49	4.112	01.100 91.705	40.414 20 005
2010	4.900 5.667	0.002 0.065	9.001 10.672	0.013 0.027	10.040	9.002 5.040	04.700 22 557	20.000 20 520
2019	0.007 6.169	0.000 0.044	10.073	0.937	11.910 11.007	0.049 6.049	əə.əə <i>t</i>	20.009
2020	0.105 7.916	3.844 4 415	12.154	1.088	11.027	0.243 E 000	22 024	07 969
2021	1.310	4.415	15.841	1.5	10.395	0.828	33.834 25.605	21.308
2022	8.271	5.702	16.097	1.116	9.893	8.383	35.685	36.198
Figures

Figure 2: Comparisons of area-swept estimates of total MALE NMFS survey biomass and model prediction for model estimates in 2022 under models 21.1b, 23.0, 23.0a, 23.0b, and 23.1a. The error bars are plus and minus 2 standard deviations of model 21.1b.

Figure 3: Comparisons of area-swept estimates of total FEMALE NMFS survey biomass and model prediction for model estimates in 2022 under models 21.1b, 23.0, 23.0a, 23.0b, and 23.1a. The error bars are plus and minus 2 standard deviations of model 21.1b.

Figure 4: Comparisons of area-swept estimates of total MALE NMFS survey biomass and model prediction for model estimates in 2022 under models 21.1b, 22.0, 23.1a, and 23.3. The error bars are plus and minus 2 standard deviations of model 21.1b.

Figure 5: Comparisons of area-swept estimates of total FEMALE NMFS survey biomass and model prediction for model estimates in 2022 under models 21.1b, 22.0, 23.1a, and 23.3. The error bars are plus and minus 2 standard deviations of model 21.1b.

Figure 6: Comparisons of survey biomass estimates for MALES from the BSFRF survey and model prediction for model estimates in 2022 (models 21.1b, 23.0, 23.0a, 23.0b, and 23.1a). The error bars are plus and minus 2 standard deviations of model 21.1b. The BSFRF survey catchability is assumed to be 1.0 for all models.

Figure 7: Comparisons of survey biomass estimates for FEMALES from the BSFRF survey and model prediction for model estimates in 2022 (models 21.1b, 23.0, 23.0a, 23.0b, and 23.1a). The error bars are plus and minus 2 standard deviations of model 21.1b. The BSFRF survey catchability is assumed to be 1.0 for all models.

Figure 8: Comparisons of survey biomass estimates for MALES from the BSFRF survey and model prediction for model estimates in 2022 (models 21.1b, 22.0, 23.1a, and 23.3). The error bars are plus and minus 2 standard deviations of model 21.1b. The BSFRF survey catchability is assumed to be 1.0 for all models.

Figure 9: Comparisons of survey biomass estimates for FEMALES from the BSFRF survey and model prediction for model estimates in 2022 (models 21.1b, 22.0, 23.1a, and 23.3). The error bars are plus and minus 2 standard deviations of model 21.1b. The BSFRF survey catchability is assumed to be 1.0 for all models.

Figure 10: Standardized residuals of NMFS survey biomass under models 21.1b, 23.0, and 23.0b, those models that increase CV on survey Q.

Figure 11: Standardized residuals of NMFS survey biomass under models 21.1b, 23.0, and 23.0b, those models that have a higher base value for M for males.

Figure 12: Estimated recruitment time series during 1976-2021 with models 21.1b, 22.0, 23.0, 23.0a, 23.0b, and 23.1a. Mean male recruits during 1984-2021 was used to estimate B35. Recruitment estimates in the terminal year (2022) are unreliable.

Figure 13: Estimated recruitment time series during 1976-2021 with models 21.1b, 22.0, 23.1a, and 23.3 (those models that capture changes in the CV for q for the NMFS survey). Mean male recruits during 1984-2021 was used to estimate B35. Recruitment estimates in the terminal year (2022) are unreliable.

Figure 14: Estimated recruitment time series during 1976-2021 with models 21.1b, 22.0, and 23.0b (base compared to high base M for males). Mean male recruits during 1984-2021 was used to estimate B35. Recruitment estimates in the terminal year (2022) are unreliable.

Figure 15: Estimated NMFS trawl survey selectivities under models 21.1b, 23.0, 23.0a, 23.0b, and 23.1a.

Figure 16: Estimated NMFS trawl survey selectivities under models 21.1b, 23.1a, and 23.3.

Figure 17: Estimated NMFS trawl survey selectivities under models 21.1b and 22.0.

Figure 18: Comparison of estimated probabilities of molting of female and male red king crab in Bristol Bay for two periods - 1975-1979 and 1980-2022 - for models 21.1b, 23.0, 23.0a, 23.0b, and 23.1.

Figure 19: Comparison of estimated probabilities of molting of female and male red king crab in Bristol Bay for two periods - 1975-1979 and 1980-2022 - for models 21.1b, 23.1a, and 23.3 which compare the base model with those that have a larger CV for q estimation for the NMFS trawl survey.

Figure 20: Comparison of estimated probabilities of molting of female and male red king crab in Bristol Bay for two periods - 1975-1979 and 1980-2022 - for models 21.1b and 23.0b which reflect changes due to a larger M value for males.

Figure 21: Comparison of natural mortality - either estimated or fixed depending on the model - for models 21.1b, 23.0, 23.0a, 23.0b, and 23.1.

Figure 22: Comparison of natural mortality - either estimated or fixed depending on the model - for models 21.1b, 23.1. and 23.3.

Figure 23: Comparison of natural mortality - either estimated or fixed depending on the model - for models 21.1b, 23.0, 23.0a, and 23.0b.

Figure 24: Comparison of estimated fishing mortality for models 21.1b, 23.0, 23.0a, 23.0b, and 23.1.

Figure 25: Estimated absolute mature male biomasses during 1975-2022 for models 21.1b, 23.0, 23.0a, 23.0b, and 23.1. Mature male biomass is estimated on Feb. 15, year+1.

Figure 26: Estimated absolute mature male biomasses during 1975-2022 for models 21.1b, 22.0, 23.1, and 23.3. Mature male biomass is estimated on Feb. 15, year+1.

Figure 27: Estimated absolute mature male biomasses during 1985-2022 for models 21.1b, 22.0, 23.0, 23.0a, 23.0b, and 23.1. Mature male biomass is estimated on Feb. 15, year+1.

Figure 28: Observed and model estimated retained legnth-frequencies of male BBRKC by year retained in the directed pot fishery for the model scenarios.

Figure 29: Comparison of area-swept and model estimated NMFS survey length frequencies of Bristol Bay male red king crab by year for most model scenarios.

Figure 30: Comparison of area-swept and model estimated NMFS survey length frequencies of Bristol Bay male red king crab by year for model scenarios that include changes in the prior on Q.

Figure 31: Comparison of area-swept and model estimated NMFS survey length frequencies of Bristol Bay FEMALE red king crab by year for most model scenarios.

Figure 32: Comparison of area-swept and model estimated NMFS survey length frequencies of Bristol Bay female red king crab by year for model scenarios that include changes in the prior on Q.

Figure 33: Comparisons of length compositions by the BSFRF survey and the model estimates during 2007-2008 and 2013-2016 for most model scenarios.

Figure 34: Comparisons of length compositions by the BSFRF survey and the model estimates during 2007-2008 and 2013-2016 for most model scenarios.

Figure 35: Bubble plots of residuals for MALES by size and year for the NMFS trawl survey size composition data sets for BBRKC in the 'base' model (21.1b) 2022 update.

Model 23.0b, Survey Males

Figure 36: Bubble plots of residuals for MALES by size and year for the NMFS trawl survey size composition data sets for BBRKC in the 'high M' model 23.0b.

Model 23.3, Survey Males

Figure 37: Bubble plots of residuals for MALES by size and year for the NMFS trawl survey size composition data sets for BBRKC in the 'estimate M and inc CV on q' model 23.3.

Figure 38: Comparisons of area-swept estimates of total FEMALE NMFS survey biomass and model prediction for model estimates in 2022 under models 21.1b and 23.2 (no retow data). In years with retow data (99,00,06 to 12,17,21) there are two data point for the area-swept estimates. The lower of these data points reflects the leg 1 survey data or the data WITHOUT retows. The error bars are plus and minus 2 standard deviations of model 21.1b.

Figure 39: Comparisons of area-swept estimates of total MALE NMFS survey biomass and model prediction for model estimates in 2022 under models 21.1b and 23.2 (no retow data). The error bars are plus and minus 2 standard deviations of model 21.1b.

Figure 40: Comparison of area-swept and model estimated NMFS survey length frequencies of Bristol Bay female red king crab by year for the base model(21.1b) vs base model with NO retow data (23.2). Difference exist is years with retow data (99,00,06 to 12,17,21).

Figure 41: Estimated absolute mature male biomasses during 1975-2022 for models 21.1b and 23.2, difference reflect the influence of retow data for females on the population dynamics model. Mature male biomass is estimated on Feb. 15, year+1.

Figure 42: Estimated recruitment time series during 1976-2021 with models 21.1b and 23.2 (no retow data). Mean male recruits during 1984-2021 was used to estimate B35. Recruitment estimates in the terminal year (2022) are unreliable.

Female Abundance with and without retow data

Figure 43: Estimated mature female abundance (million crab) time series during 1975-2022 with models 21.1b and 23.2 (no retow data).

Figure 44: Comparison of hindcast estimates of mature male biomass on Feb. 15 of Bristol Bay red king crab with terminal years 2012-2022 using model 21.1b. These are results of the 2022 model. Legend shows the terminal year

Figure 45: Comparison of hindcast estimates of mature male biomass on Feb. 15 of Bristol Bay red king crab with terminal years 2012-2022 using model 22.0. These are results of the 2022 model. Legend shows the terminal year

Figure 46: Comparison of hindcast estimates of mature male biomass on Feb. 15 of Bristol Bay red king crab with terminal years 2012-2022 using model 23.0a. These are results of the 2022 model. Legend shows the terminal year

Figure 47: Comparison of hindcast estimates of mature male biomass on Feb. 15 of Bristol Bay red king crab with terminal years 2012-2022 using model 23.3. These are results of the 2022 model. Legend shows the terminal year

Appendix A. Simpler model working group REMA exploration

At the March 2023 simpler model working group meeting a "fallback" option for model output was discussed to be used as an alternative option if the current assessment model is not usable. This option is detailed in the working group report under - "Proposed"Fallback" model options".

This is a Tier 4 approach where:

- B or current year's biomass is equal to survey-estimated (ideally using the REMA R package) vulnerable male biomass. Vulnerable male biomass is male crabs likely to be susceptible to both the directed and incidental catch fisheries
- OFL = M (adjusted by the stock status as defined in the Crab FMP) * B
- ABC = buffer * OFL

REMA model for BBRKC

For BBRKC the male biomass that is determined to be vulnerable to the directed and incidental catch fisheries is the mature male biomass, crab >119mm. Crab at this size are approximately one molt increment away from legal size and therefore are likely to be found with legal size male crab and be vulnerable to discard mortality. This modeling exercise applies a similar buffer as the Tier 3 model (20%), although the actual buffer used if this model approach was adopted would likely be different.

As defined by the Crab FMP stock status is determined by the current years biomass (B) compared to the average biomass over a period of time. For consistencies with the current modeling approaches for BBRKC the time period used is 1984 to 2021.

Calculation of Reference Points

The Tier 4 OFL is calculated using the F_{OFL} control rule:

$$F_{OFL} = \begin{cases} 0 & \frac{MMB}{B_{MSY}} \ge 0.25\\ \frac{M(\frac{MMB}{B_{MSY}} - \alpha)}{1 - \alpha} & 0.25 < \frac{MMB}{B_{MSY}} < 1\\ M & MMB > B_{MSY} \end{cases}$$
(1)

where MMB is quantified at the mean time of mating date (15 February), B_{MSY} is defined as the average MMB for a specified period, $M = 0.18 \text{ yr}^{-1}$, and $\alpha = 0.1$. The Tier 4 OFL (Table 16) was calculated by applying a fishing mortality determined by the harvest control rule (above) to the mature male biomass at the time of mating (B_{proj} or Current B).

Table 16: Specifications using the REMA output on mature male NFMS trawl survey area-swept biomass.

avgB	Current B	MMB/B_{MSY}	Μ	$F_{\rm OFL}$	OFL	ABC
28443.11	20328.15	0.71	0.18	0.12	2499.12	1999.30

Figures

Figure 48: Comparisons of area-swept estimates of mature MALE NMFS survey biomass (males $>119~{\rm mm}$) and REMA model predicted fit.