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Introduction 
The random effects (RE) model was developed by the North Pacific Fisheries Management Council 
(NPFMC) Groundfish Plan Team's (GPT) Survey Averaging working group and has been used at the 
Alaska Fisheries Science Center (AFSC) since 2013 to estimate biomass in data-limited groundfish and 
crab stock assessments and apportion estimates of Acceptable Biological Catch (ABC) by area (Oct 2013 
Joint GPT minutes). The RE model was developed and simulation tested as a way to partition observation 
errors from survey biomass estimates with plausible process errors related to the true (but unobserved) 
population biomass. In this model, the process errors are treated as random effects, where the underlying 
state dynamics are modeled as a random walk. The code was originally implemented in AD Model 
Builder (ADMB; Fournier et al. 2012, Skaug and Fournier 2013). Since its implementation, the model 
was modified independently by users, resulting in three primary variants (Monnahan et al. 2021): 

1. The Random Effects (RE) model, which uses a single trawl survey biomass time series.  
2. The Random Effects Multi-area (REM) model, which is a multivariate extension of the RE model 

that can fit multiple strata (e.g., area, depth) simultaneously.  
3. The REM with an Additional longline survey (REMA), which was developed to include 

additional catch-per-unit effort (CPUE) time series data (Hulson et al. 2021). 

Although the RE, REM, and REMA models share the same underlying state-space and random walk 
dynamics, Monnahan et al. (2021) found multiple versions of the code and several inconsistencies. Here 
we seek to unify these variants and improve transparency and reproducibility of applications within 
assessments. We present a model flexible enough to accommodate all Tier 4/5 assessments and ABC 
apportionment approaches. We recoded the model in Template Model Builder (TMB; Kristensen et al. 
2016) and developed an R package called rema that is version-controlled online and includes a set of 
utility functions for visualizing results and conducting model comparisons. The rema package provides a 
flexible and extensible framework for users to fit RE, REM, and REMA models, and bridge tactical 
assessments from existing ADMB RE models.  
 
In this document, we introduce rema and provide documentation for model development and methods. 
We demonstrate examples of comparing the ADMB and TMB versions of the model, starting with the 
base RE model and increasing in complexity. We demonstrate an analysis of the various zero biomass 
assumptions and introduce an experimental option to model the survey observations using the Tweedie 
distribution, a positive and continuous distribution that accepts zeros. In the section defining methods for 
the two-survey REMA model, we describe an error in how ADMB’s SEPARABLE_FUNCTION was 
applied. This error affected one Tier 3 apportionment model (Gulf of Alaska [GOA] 
rougheye/blackspotted rockfish, Sullivan et al. 2021) and two Tier 5 assessments (GOA thornyheads, 
Echave et al. 2020; and GOA shortraker rockfish, Echave et al. 2021). In the section titled A correction to 
the ADMB version of the two-survey REMA model, we provide a summary of these impacts. Since 
observation and process errors in these types of models can be confounded, we introduce a method to 
estimate additional observation error in the section titled Estimating additional observation error. Finally, 
we describe the need to develop protocols for model validation for REMA models and describe an 
experimental implementation of one-step ahead (OSA) residuals in rema. 
 

https://meetings.npfmc.org/CommentReview/DownloadFile?p=11009549-068b-40cf-903d-67f90686db60.pdf&fileName=C4%20c1%20Joint%20Plan%20Team%20Minutes.pdf
https://meetings.npfmc.org/CommentReview/DownloadFile?p=11009549-068b-40cf-903d-67f90686db60.pdf&fileName=C4%20c1%20Joint%20Plan%20Team%20Minutes.pdf
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Three appendices are included at the end of the main document, one for GOA thornyheads (Appendix A), 
one for Bering Sea and Aleutian Islands (BSAI) shortraker rockfish (Appendix B), and the other for BSAI 
other rockfish (Appendix C). These appendices propose alternative models for November 2022, and 
should therefore be reviewed independently by the BSAI and GOA GPTs. We present these documents as 
appendices to reduce redundancy of methods and review. In the case of GOA thornyheads, the proposed 
new models were motivated by a need to correct the ADMB version of the two-survey model. In the case 
of BSAI shortraker and other rockfish, the proposed new models incorporate previously unused 
information from the NMFS longline survey and were motivated by the cessation of the Eastern Bering 
Sea slope bottom trawl survey in 2016.  

Responses to SSC and Plan Team Comments 
The Teams supported the working group’s plan for moving forward, which is to:  

1. Create a consensus version of the RE model code for all Tier 4/5 assessments  
a. Based on REM which has several advantages and can handle the suite of cases 
b. Documented and version-controlled online 

2. Encourage consistent approach to zeroes  
a. Explore alternative statistical approaches, e.g., delta-models, off-the shelf packages (e.g., 

GLMMTMB)  
b. Recommend that assessments note filtering of zeroes 

3. Explorations of the preferred method for grouping multivariate models 
4. Explore complex workflows for input variances and M approaches 
5. Further tests of the lognormal issue 

The authors appreciate the Teams’ and SSC’s support and feedback. As the title suggests, Item 1, creating 
a consensus version of the RE model code, is the primary objective of this document. We developed an R 
package called rema, which is based on a TMB model that can handle all Tier 4/5 assessments and 
apportionment strategies based on the ADMB re.tpl code. As part of rema development, substantial 
progress was made on Item 2. The rema package allows the user to easily define and explore zero 
biomass assumptions through the R function that prepares model inputs. By default, rema defines zeros as 
NAs; however, the package returns a warning message stating this assumption unless it is explicitly 
defined. Items 2a, 3, 4, and 5 are not the focus of this document. The software listed in Item 2a will only 
work for the univariate RE model and any multivariate or multi-survey analogues would need to be 
developed from scratch in TMB. Efforts are underway to explore Items 3 and 4 using the GOA and BSAI 
other rockfish stock assessments as case studies in future assessment cycles. Item 5 is currently the topic 
of a manuscript in early prep. 
 
The issue of how this model is used for apportionment in Tier 3 and other assessments was raised (e.g., 
for BSAI Atka mackerel). The Teams noted that these improvements would also apply to the 
apportionment applications and noted that the working-group title should probably be broadened. 

We agree that the working group name should be broadened and request a name change to the random 
effects (or simply REMA) model working group. 
 

Summary of the rema R package 
The goal of the rema R package is to make working with the REMA model for apportionment or Tier 4/5 
biomass estimation as simple as possible. The structure, naming conventions, functions, and 
documentation in rema were inspired by and modeled after the Woods Hole Assessment Model 
(WHAM), an open-source, state-space age-structured assessment model and R package (Miller and Stock 
2020, Stock and Miller 2021).  
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The REMA model accepts two primary types of data: (1) a biomass survey time series (e.g. bottom trawl 
survey biomass), and (2) an auxiliary catch-per-unit effort (CPUE) time series. The CPUE data is 
generalized within rema and can include nominal CPUE (e.g. numbers-per-hook from a longline survey) 
or a summable, area-weighted index such as the NMFS longline survey relative population numbers or 
weights (RPNs and RPWs, respectively). 
 
Instructions for rema installation and a series of vignettes can be accessed at https://afsc-
assessments.github.io/rema/. There are a handful of key R functions that make up the core of rema and 
using the package can be distilled into the following five steps: 

1. Read biomass or CPUE index data into R. Data can be stored and read in from .csv files, or 
alternatively, data can be accessed from the ADMB rwout.rep report file using read_admb_re(). 

2. Specify model structure and assumptions using prepare_rema_input(). This function allows users 
to quickly transition from a single to two survey model, specify alternative process error 
structures, add likelihood penalties or priors on parameters, evaluate alternative assumptions 
about zero biomass observations, and estimate additional observation error variance. 

3. Fit the specified REMA model using fit_rema() and determine whether the model has met basic 
convergence criteria (e.g., Hessian is positive definite, a maximum gradient component 
approximately equal to zero). 

4. Extract REMA model output into clean, consistently formatted data frames using tidy_rema(). 
The user can visualize this model output using plot_rema(), or quickly format it into tables for a 
report. 

5. Compare alternative REMA models and conduct model selection using compare_rema_models(). 
Output from this function includes a table of Akaike Information Criteria (AIC) when 
appropriate, figures, and tidied data frames. This function also accepts model output from the 
ADMB version of the RE model for easy comparison to past models. 

Taken together, these functions allow R users to quickly fit and compare a suite of statistical models in 
TMB without needing software-specific training or expertise.  
 

Model development 

Base model for a single survey and stratum 
The basic REMA model can be represented as a state-space random walk model with added noise. The 
observation model is comprised of an index of log-transformed annual survey biomass data 𝑙𝑙𝑙𝑙(𝐵𝐵𝑡𝑡) with 
associated standard deviations 𝜎𝜎𝑙𝑙𝑙𝑙(𝐵𝐵𝑡𝑡), where 𝜎𝜎𝑙𝑙𝑙𝑙(𝐵𝐵𝑡𝑡) is approximated using the coefficient of variation of 
𝐵𝐵𝑡𝑡 (𝜎𝜎𝐵𝐵𝑡𝑡/𝐵𝐵𝑡𝑡) such that 
 

𝜎𝜎𝑙𝑙𝑙𝑙(𝐵𝐵𝑡𝑡) = �𝑙𝑙𝑙𝑙 �
𝜎𝜎𝐵𝐵𝑡𝑡
𝐵𝐵𝑡𝑡

2
+ 1�. (1) 

 
The measurement or observation equation, which describes the relationship between the observed survey 
biomass 𝑙𝑙𝑙𝑙(𝐵𝐵𝑡𝑡) and the latent state variable, population biomass 𝑙𝑙𝑙𝑙�𝐵𝐵�𝑡𝑡�, is expressed as 
 

𝑙𝑙𝑙𝑙(𝐵𝐵𝑡𝑡) = 𝑙𝑙𝑙𝑙�𝐵𝐵�𝑡𝑡�+ 𝜖𝜖𝑡𝑡 , where 𝜖𝜖𝑡𝑡 ∼ 𝑁𝑁�0,𝜎𝜎𝑙𝑙𝑙𝑙(𝐵𝐵𝑡𝑡)
2 �. (2) 

The state equation and associated process error variance 𝜎𝜎𝑃𝑃𝑃𝑃2  is defined as 

https://afsc-assessments.github.io/rema/
https://afsc-assessments.github.io/rema/
https://afsc-assessments.github.io/rema/reference/read_admb_re.html
https://afsc-assessments.github.io/rema/reference/prepare_rema_input.html
https://afsc-assessments.github.io/rema/reference/fit_rema.html
https://afsc-assessments.github.io/rema/reference/tidy_rema.html
https://afsc-assessments.github.io/rema/reference/plot_rema.html
https://afsc-assessments.github.io/rema/reference/compare_rema_models.html
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𝑙𝑙𝑙𝑙�𝐵𝐵�𝑡𝑡� = 𝑙𝑙𝑙𝑙�𝐵𝐵�𝑡𝑡−1� + 𝜂𝜂𝑡𝑡−1, where 𝜂𝜂𝑡𝑡 ∼ 𝑁𝑁(0,𝜎𝜎𝑃𝑃𝑃𝑃2 ), (3) 

where the initial condition 𝑙𝑙𝑙𝑙�𝐵𝐵�1� is constrained by the random walk process. In the base model, the 
process error variance 𝜎𝜎𝑃𝑃𝑃𝑃2  is the only fixed effect parameter estimated, and the unobserved population 
biomass 𝑙𝑙𝑙𝑙�𝐵𝐵�𝑡𝑡� is estimated as a vector of random effects. The model is fit using maximum marginal 
likelihood estimation, where the Laplace approximation is used to approximate the marginal negative log-
likelihood in both TMB and ADMB (Skaug and Fournier 2006).  
 
The univariate versions of ADMB and TMB were compared for 58 stocks, and results showed high level 
of agreement between the two models (within 0.01% relative error; Figure 1). The small differences in 
results are attributed to the different optimizers and implementations of the Laplace approximation. A 
reproducible example of fitting the univariate version of the TMB model and comparing those results to 
ADMB is available in the REMA basics vignette. 

Extending to multiple biomass survey strata 
The single survey, single stratum version of the model can be extended to include one or more additional 
strata 𝑗𝑗 from the same survey. The inclusion of multiple strata in the same model is advantageous in 
scenarios where the apportionment of biomass among areas is needed. This extension assumes no 
correlation in the observation errors among survey strata, though process error variance can be shared or 
estimated independently among strata.  
 
The ADMB and TMB versions of the REMA model utilize different methods for estimating the variance 
of the total predicted biomass. Therefore, while strata-specific estimates of predicted biomass and 
associated confidence intervals will be close to identical between the ADMB and TMB versions of the 
model, the confidence intervals of the total predicted biomass will differ slightly (Figure 2). In the 
original ADMB code, the Marlow (1967) method is applied, such that the total variance 𝜎𝜎𝐽𝐽2 is 
approximated as 
 

𝜎𝜎𝐽𝐽2 = 𝑙𝑙𝑙𝑙(
∑𝑒𝑒

2𝐵𝐵�𝑗𝑗+𝜎𝜎𝐵𝐵�𝑗𝑗
2

�𝑒𝑒
𝜎𝜎𝐵𝐵�𝑗𝑗
2 −1

�

�∑𝑒𝑒
𝐵𝐵�𝑗𝑗+𝜎𝜎𝐵𝐵�𝑗𝑗

2 /2
�
2 + 1). (4) 

In the rema package, the total variance is estimated using the standard delta method and can be replicated 
in ADMB using an sdreport_number and in TMB using the ADREPORT macro. As described in 
Monnahan et al. (2021), the exploration of methods for summing log-normal variables is a research topic 
that has potential impacts beyond the scope of this implementation of the REMA model.  
 
A reproducible example of fitting the multivariate version of the TMB model and a comparison of results 
to ADMB is available in the REMA basics vignette. In this example, we also show how Akaike 
Information Criterion (AIC) can be used for model selection to explore the inclusion of strata-specific 
versus a single, shared process error variance. 

Addition of an auxiliary catch per unit effort (CPUE) survey 
In situations where an auxiliary biomass or catch per unit effort (CPUE) survey 𝐼𝐼𝑡𝑡 and associated variance 
𝜎𝜎𝐼𝐼𝑡𝑡 are available, an additional scaling parameter 𝑞𝑞 can be estimated to facilitate the inclusion of the new 

https://afsc-assessments.github.io/rema/articles/ex1_basics.html#example-1-univariate-random-effects-re-model-with-a-single-survey-and-stratum
https://afsc-assessments.github.io/rema/articles/ex1_basics.html#example-2-multivariate-random-effects-model-rem-with-a-single-survey-and-multiple-strata
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information into biomass predictions (Hulson et al. 2021). The predicted annual CPUE survey index 𝐼𝐼𝑡𝑡 is 
calculated as 
 

𝐼𝐼𝑡𝑡 = 𝑞𝑞𝑒𝑒𝐵𝐵�𝑡𝑡, (5) 

and the CPUE survey observations have an additional measurement equation and likelihood component 
similar to the biomass survey: 
 

𝑙𝑙𝑙𝑙(𝐼𝐼𝑡𝑡) = 𝑙𝑙𝑙𝑙�𝐼𝐼𝑡𝑡� + 𝜖𝜖𝐼𝐼 , where 𝜖𝜖𝐼𝐼 ∼ 𝑁𝑁�0,𝜎𝜎𝑙𝑙𝑙𝑙(𝐼𝐼𝑡𝑡)
2 �. (6) 

By default, the rema library estimates a single 𝑞𝑞 for each stratum. It also allows for user-specification of 𝑞𝑞 
parameters by strata, including the option to estimate a single, shared 𝑞𝑞 across all strata. If the strata 
definitions are not the same for the biomass and CPUE surveys (e.g. biomass is estimated at a finer 
geographic resolution than the CPUE index), the user can define the relationship between the two 
surveys’ strata using the q_options argument to the prepare_rema_input() function (see q_options and 
pointer_biomass_cpue_strata in ?prepare_rema_input). However, since the auxiliary CPUE survey index 
is related to unobserved population biomass at the level of the biomass survey strata, the REMA model 
can only accommodate scenarios where the CPUE survey strata have a coarser resolution or are 
equivalent to the biomass survey strata. 
 
A reproducible example of fitting to the two-survey version of the REMA model is provided in the Fitting 
to an additional CPUE survey vignette. This example also describes an error in the previously used 
ADMB version of the REMA model, and presents several alternative models that estimate additional 
observation error. These topics are described in more detail in the following two sections. 

A correction to the ADMB version of the two-survey REMA model 
Separability, as implemented in the SEPARABLE_FUNCTION in ADMB and through automatic 
detection in TMB, increases the computational efficiency of the Laplace approximation by breaking 
complex, multivariate integrals into a product of simpler, univariate integrals (Fournier et al. 2012). In the 
random effects implementation of ADMB, parameters defined in the PARAMETER_SECTION of the 
template file cannot be used within the SEPARABLE_FUNCTION unless they are passed as arguments 
to the function (Skaug and Fournier 2013). In the ADMB version of REMA, the calculation of predicted 
CPUE (equation 5) occurred outside rather than inside the SEPARABLE_FUNCTION, and as a result, 
violated this rule and affected the accuracy of the Laplace approximation. 
 
We explored this error in a simplified example of REMA in both ADMB and TMB, which is available on 
Github. We were able to reproduce results from the TMB version of REMA in ADMB by passing 𝑙𝑙𝑙𝑙(𝑞𝑞) 
as an argument to the SEPARABLE_FUNCTION and performing the 𝑙𝑙𝑙𝑙�𝐼𝐼𝑡𝑡� calculation inside the 
function (Figure 3). When we used Markov Chain Monte Carlo (MCMC) methods for statistical inference 
instead of MLE, the results from both ADMB versions closely matched the correct version of REMA 
(Figure 4). A comparison of the individual negative log-likelihood (NLL) components, along with the 
joint and marginal NLLs, revealed that all were the same between the TMB model, correct “inside” 
ADMB version, and incorrect “outside” ADMB version, except the marginal NLL. Taken together, this 
analysis confirms there is a bug in the “outside” ADMB version, which affects the accuracy of the 
Laplace approximation and model results.  
 
Currently one Tier 3 apportionment model (GOA rougheye and blackspotted rockfish) and two Tier 5 
assessments (GOA thornyheads, and GOA shortraker rockfish) use the incorrect version of the ADMB 
REMA model. A revised GOA thornyheads model is presented in Appendix A of this report, along with 

https://afsc-assessments.github.io/rema/articles/ex2_cpue.html
https://afsc-assessments.github.io/rema/articles/ex2_cpue.html
https://github.com/JaneSullivan-NOAA/separable_function
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new alternate models for consideration by the GOA GPT in November 2022. Several of these alternate 
models estimate additional observation error, which is introduced in the next section. 

Estimation of additional observation error 
Based on experience gained using alternative observed index estimates (e.g., relative CPUE indices), 
there appears to be cases where the estimates of observation error variances for the biomass and/or CPUE 
survey are too low (e.g., Echave et al. 2020). That is, there is a mismatch between biologically reasonable 
inter-annual variability and the precision of index estimates. In these instances, the model estimates of 
(𝜎𝜎𝐵𝐵𝑡𝑡,𝑗𝑗

2 + 𝜎𝜎𝐼𝐼𝑡𝑡,𝑗𝑗
2 )/𝜎𝜎𝑃𝑃𝑃𝑃2   may be lower than what should be expected based on an individual species’ life 

history traits. For example, if the ratio of observation to process error variation is low, model predictions 
of population biomass may exhibit high inter-annual variability. This behavior would be unexpected in a 
slow-growing, long-lived species, which should exhibit low inter-annual variation in biomass (i.e., low 
process error variance), especially in situations when fishing exploitation is low. 
 
One approach to address this issue is to estimate additional observation error. This method is commonly 
implemented in Alaskan crab stock assessments (e.g., Zheng and Siddeek 2020) and has been explored in 
several groundfish assessment models as well. Using the biomass survey variance as an example, the 
extra estimated error (𝜎𝜎𝜏𝜏) is specified as: 
  

𝜎𝜎𝑙𝑙𝑙𝑙(𝐵𝐵𝑡𝑡) = �𝑙𝑙𝑙𝑙 �
𝜎𝜎𝐵𝐵𝑡𝑡
𝐵𝐵𝑡𝑡

2
+ 𝜎𝜎𝜏𝜏2 + 1�. (7) 

This approach is a new method for Tier 5 stock assessments and apportionment methods at the AFSC. A 
reproducible example using GOA shortraker rockfish is provided in the Fitting to an additional CPUE 
survey vignette. In this example, the estimation of additional observation error for the biomass and CPUE 
survey observations resulted in a better fit by AIC than status quo approaches and has a more biologically 
realistic trend in predicted population biomass. 

Exploration of the Tweedie distribution for zero biomass observations 
The Tweedie distributions are a family of probability distributions that can be generalized to include the 
Gaussian, inverse Gaussian, gamma, Poisson, and compound Poisson-gamma distributions1.  The 
Tweedie can be defined with three parameters, a mean (𝜇𝜇), power parameter (𝜌𝜌), and dispersion (𝜙𝜙), 
where the relationship between the variance and these parameters is defined by 𝜎𝜎2 = 𝜙𝜙𝜇𝜇𝜌𝜌. When 𝜌𝜌 is 
bounded between 1 and 2, the Tweedie is a positive, continuous distribution that can include zero values, 
thus allowing it to more naturally handle survey time series with one or more zero observations. Values of 
𝜌𝜌 on these bounds are special cases of the Tweedie, where 𝜌𝜌=1 is equivalent to a Poisson distribution and 
𝜌𝜌=2 is a gamma distribution. In REMA, the Tweedie is constrained between but not including 1 and 2 
using a logit-transformation on 𝜌𝜌.  
 
Similar to the normal distribution, observation error variances are treated as known for the Tweedie 
distribution in the REMA model. Using the biomass survey observation as an example, the dispersion of 
the biomass observation in strata 𝑗𝑗 in year 𝑡𝑡 is derived as 
 

𝜙𝜙𝐵𝐵𝑡𝑡,𝑗𝑗 =
𝜎𝜎𝐵𝐵𝑡𝑡,𝑗𝑗
2

�𝐵𝐵�𝑡𝑡,𝑗𝑗�
𝜌𝜌. (8) 

 
1 https://en.wikipedia.org/wiki/Tweedie_distribution 

https://afsc-assessments.github.io/rema/articles/ex2_cpue.html#model-2-estimating-additional-observation-error-in-the-two-surveys
https://afsc-assessments.github.io/rema/articles/ex2_cpue.html#model-2-estimating-additional-observation-error-in-the-two-surveys
https://en.wikipedia.org/wiki/Tweedie_distribution
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The result is that only one additional parameter (𝜌𝜌) is estimated when applying this alternative 
distribution. The measurement equation for the Tweedie becomes 
 

𝐵𝐵𝑡𝑡,𝑗𝑗 = 𝐵𝐵�𝑡𝑡,𝑗𝑗 + 𝜖𝜖𝐵𝐵, where 𝜖𝜖𝐵𝐵 ∼ 𝑇𝑇𝑤𝑤𝜌𝜌 �0,𝜙𝜙𝐵𝐵𝑡𝑡,𝑗𝑗�. (9) 

Because 𝜎𝜎𝐵𝐵𝑡𝑡,𝑗𝑗 is undefined when 𝐵𝐵𝑡𝑡,𝑗𝑗=0, the zeros are assumed to have a CV=1.5. This assumption can be 
explored by the user in rema, for example, if the user wanted to define a CV=2.0 for zeros, they would 
define zeros = list(assumption = ‘tweedie’, options_tweedie = list(zeros_cv = 2.0)) within the 
prepare_rema_input() function. 
 
A reproducible example using the Tweedie distribution for observation error can be found in the 
Strategies for handling zero biomass observations vignette. We use the non-shortspine thornyhead 
component of the BSAI other rockfish stock, which is unique in that 13 of 38 bottom trawl survey 
estimates are zeros. In a simplified case shown here, we compare model predictions from three alternative 
models that have different assumptions for zeros, including (1) treating zeros as NAs, (2) adding a small 
constant and CV, and (3) modeling the observed index using the Tweedie distribution (Figure 5). While 
the Tweedie performs well in this case, further exploration revealed that the Tweedie models can be very 
slow to run and often did not converge, especially in instances where the observation error variance 
estimates were low. It is possible that further development on estimating additional observation error 
variance (e.g. 𝜏𝜏2 in the previous section) could alleviate these convergence errors. However, in the 
interim, the Tweedie distribution in REMA should be considered experimental, and we do not 
recommend it as a viable alternative for tactical assessments at this time. 

Model validation and experimental One-Step Ahead (OSA) residuals 
The use of one-step ahead (OSA) residuals, also referred to as forecast residuals or prediction errors, is 
crucial for validation of state-space models like REMA (Thygesen et al. 2017). Instead of comparing the 
observed and expected values at the same time step, OSA residuals use forecasted values based on all 
previous observations (i.e. they exclude the observed value at the current time step from prediction). 
Traditional residuals (e.g. Pearson’s residuals) are inappropriate for state-space models, because process 
error variance may be over-estimated in cases where the model is mis-specified, thus leading to 
artificially small residuals (see Section 3 of Thygesen et al. 2017 for an example). 
 
Methods for calculating OSA residuals have been implemented in TMB through the 
TMB::oneStepPredict() function. While these methods are straightforward to implement in TMB, they are 
computationally demanding, and the validity (and accuracy) of the OSA residuals may vary by situation 
and method used. Methods to implement OSA residuals in REMA are under development and should be 
considered experimental. Currently REMA implements OSA residuals using the method = “cdf” option in 
TMB::oneStepPredict(), which has the benefit of speeding up residual calculations by saving copies of the 
one-step cumulative density function at each data point and thus reducing the number of calculations at 
each function evaluation. While OSA residuals appear to be calculated correctly for some REMA models, 
occasionally NaN values for residuals are returned, especially in cases with small measurement errors. 
One potential cause of this error may lie in the initialization of the state process within REMA and will be 
explored further in future versions of this package. Finally, the algorithms underpinning 
TMB::oneStepPredict() methods are an area of active research, and therefore this function remains in 
Beta mode within the TMB package and is subject to future change. 
 

https://afsc-assessments.github.io/rema/articles/ex3_zeros.html
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Conclusions 
In response to the SSC requests, and given the importance of how the RE model is used in many NPFMC 
assessment documents, we have developed a unified approach that adds consistency and robustness in its 
application. Furthermore, we have provided a version-controlled R package with documented methods 
that will improve consistency, transparency in methods, and reproducibility of apportionment and Tier 4/5 
assessments. We seek endorsement by the Plan Teams and SSC to adopt this updated code version for 
application to the NPFMC’s groundfish assessments for 2022 and beyond. We recommend future 
research topics for the REMA model working group include model validation methods, development of 
priors on process error variance based on life history information2, and continued exploration of the 
Tweedie distribution and other alternatives for handling zero biomass observations. 
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Figures 
 

 
Figure 1.  The relative error between predicted log-biomass in the ADMB-RE and TMB versions of the univariate random effects 
model for 58 example stocks, where each data point represents an annual model prediction for a given stock. The y-axis has been 
transformed to log-space for ease of visualization. These examples do not include zeroes. 
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Figure 2. A comparison of ADMB and TMB total predicted biomass (top panel) and model fits to the survey biomass estimates 
by stratum for the Bering Sea and Aleutian Islands shortspine thornyhead stock. The shaded regions represent the 95% 
confidence intervals for the model predictions. Although results are close to identical when compared by stratum, the confidence 
intervals for the total predicted biomass differ slightly because the ADMB model used the Marlow method for the variance of the 
total biomass. 
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Figure 3.  A comparison of model fits to biomass and CPUE survey data using the “ADMB inside”, “ADMB outside,” and TMB 
models. Predicted CPUE is correctly defined inside the SEPARABLE_FUNCTION in the “ADMB inside” model, and 
incorrectly defined outside of the SEPARABLE_FUNCTION in the status quo ADMB “outside model.”  
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Figure 4.  A comparison of “ADMB inside” and “ADMB outside” model predicted biomass using Markov Chain Monte Carlo 
(MCMC) methods and Maximum Likelihood Estimation (MLE). Predicted CPUE is correctly defined inside the 
SEPARABLE_FUNCTION in the “ADMB inside” model, and incorrectly defined outside of the SEPARABLE_FUNCTION in 
the status quo ADMB “outside model.” With MCMC the Laplace approximation is not used and so the separable distinction is 
irrelevant. 
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Figure 5.  A comparison of model fits to the non-shortspine thornyhead other rockfish trawl survey biomass in the eastern Bering 
Sea using three different assumptions about how to treat zero biomass observations: 1) zeros as NAs, (2) adding a small constant 
= 0.1 with a CV = 3.0, and (3) modeled using the Tweedie distribution. 
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Appendix A:  Alternative models for the GOA thornyheads stock 
complex in 2022 

Katy Echave, Jane Sullivan, Kevin Siwicke, and Pete Hulson 

September 2022 

Executive summary 
Gulf of Alaska (GOA) thornyheads (Sebastolobus species) are assessed on a biennial schedule in even 
years and managed as a Tier 5 stock. The assumed natural mortality for thornyheads (M=0.03) is used to 
inform harvest recommendations for Tier 5 stocks, where FOFL=M and FABC=0.75M. Biomass is estimated 
using a two-survey random effects (REMA) model fit to the GOA bottom trawl and NMFS longline 
survey data (Hulson et al. 2021). Here we present a correction to current assessment methodology and 
propose alternative models for consideration in November 2022. 

Changes in the input data 
For the full assessment in November 2022, we recommend the following changes to input data: 

1) The time series of NMFS longline survey (LLS) relative population weights (RPWs) will be 
updated for 2021 and 2022. The 2022 LLS RPWs are not ready for September 2022, so this 
document only includes data through 2021. New geographic area sizes and variance calculations 
were implemented in the longline database in 2021, which resulted in small changes to the 
longline survey time series, primarily in the eastern GOA (Table A-1).  

2) Addition of the 2021 GOA bottom trawl survey (BTS; Table A-2). 

Changes in the assessment methodology 
For the full assessment in November 2022, we recommend a correction to the assessment model based on 
an error in the implementation of the SEPARABLE_FUNCTION in AD Model Builder (ADMB; 
Fournier et al. 2012, Skaug and Fournier 2013) as described in the main document in the section titled A 
correction to the ADMB version of the two-survey REMA model. We present the corrected version of the 
two-survey random effects (REMA) model fit in Template Model Builder (TMB; Kristensen et al. 2016) 
and propose three alternative models that estimate additional observation error. Models not fit in ADMB 
were fit in TMB using the new rema R package and rely on methods introduced in the main document of 
this report (https://afsc-assessments.github.io/rema/).  

The models presented use the following naming conventions: 

1) Model 18: The accepted model in the last full assessment (Echave et al. 2020) as implemented in 
2020 using the multivariate, two-survey version of the random effects (REMA) model fit in 
ADMB. An error was found in this model code, which impacted biomass predictions. 

2) Model 22.1.a 2020 data: Corrected two-survey version of Model 18 fit using TMB with the same 
data and model assumptions as Model 18. 

3) Model 22.1.b 2021 data:  Same as Model 22.1.a but with updated data through 2021 (includes 
the 2021 BTS biomass estimate and updated time series of LLS RPWs; Tables A-1 and A-2). 

4) Model 22.2.a:  Same as Model 22.1.b and estimates additional observation error for the BTS 
biomass data using equation 7 of the main document. 

5) Model 22.2.b:  Same as Model 22.1.b and estimates additional observation error for the LLS 
RPWs using equation 7 of the main document. 

https://afsc-assessments.github.io/rema/
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6) Model 22.2.c:  Same as Model 22.1.b and estimates additional observation error for both the BTS 
and LLS data using equation 7 of the main document. 

7) Model 22.3:  Same as Model 22.1.b but drops the LLS RPWs and only fits to the BTS biomass. 

These models were evaluated based on biological realism and a visual examination of fits to the data. 
When applicable, we use Akaike Information Criteria (AIC) to inform model selection. 

Summary of results 
The model correction resulted in a 14.4% decrease in estimates of 2020 biomass, OFL, and maximum 
permissible ABC (max ABC): 

Model Year Biomass (t) OFL (t) max 
ABC (t) 

Model 18 2020 86,802 2,604 1,953 
Model 22.1.a 2020 74,296 2,229 1,672 

 
When data were updated through 2021 (where Model 22.1.b is the same as Model 22.1.a but with updated 
data), alternative models resulted in the following estimates of 2022 biomass, OFL, and maximum 
permissible ABC (max ABC), with the author-preferred model highlighted in bold: 
 

Model Year Biomass (t) OFL (t) max 
ABC (t) 

Model 22.1.b 2022 65,631 1,969 1,477 
Model 22.2.a 2022 63,241 1,897 1,423 
Model 22.2.b 2022 74,108 2,223 1,667 
Model 22.2.c 2022 71,584 2,148 1,611 
Model 22.3 2022 81,061 2,432 1,824 

 
The corrected Model 22.1.b with updated data resulted in further declines in biomass as a result of recent 
declines in the GOA BTS and LLS abundance indices. Trawl survey biomass declined 5.9, 13.8, and 
21.8% in the eastern GOA (EGOA), central GOA (CGOA), and western GOA (WGOA), respectively 
between 2019 and 2021 (Table A-2). Similarly, LLS RPWs declined 16.7, 12.5, and 16.7% in the EGOA, 
CGOA, and WGOA, respectively, between 2020 and 2021 (Table A-1). These declines were moderated 
or reversed by estimating additional observation error in the BTS and/or LLS indices (Model 22.2 series) 
or by removing the LLS index entirely (Model 22.3). The author-preferred model is Model 22.2.c, 
which uses the corrected two-survey REMA model and estimates additional observation error for 
the GOA BTS and LLS indices. Model 22.2.c resulted in the most biologically realistic biomass 
trajectory and was the best-fitting model by AIC (Table A-3). 
 
The alternative models resulted in the following biomass apportionment by management area: 
 

Model Year EGOA CGOA WGOA 
Model 18 2020 35.4% 46.6% 18.0% 

Model 22.1.a 2020 30.6% 45.6% 23.8% 
Model 22.1.b 2022 32.0% 46.4% 21.6% 
Model 22.2.a 2022 30.9% 47.1% 22.1% 
Model 22.2.b 2022 34.2% 44.8% 21.0% 
Model 22.2.c 2022 32.6% 46.1% 21.2% 
Model 22.3 2022 34.7% 45.3% 19.9% 
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When comparing the effect of updated data on the corrected model (Model 22.1.a uses data through 2020 
and Model 22.1.b uses data through 2021), there was a small shift in biomass and apportionment ratios 
towards the EGOA. These changes are attributed to recent declines in the BTS and LLS abundance 
indices, especially in the WGOA. The author-preferred Model 22.2.c resulted in negligible changes to 
apportionment ratios when compared to the corrected model with updated data, Model 22.1.b. 
 

Analytic approach 

Model structure 
The GOA thornyheads assessment model uses the two-survey version of the random effects model 
(REMA; Hulson et al. 2021) fit to the GOA BTS biomass and LLS RPWs (Echave et al. 2020). The GOA 
BTS did not sample in all depth strata in all years; the 1996 and 2001 surveys did not survey the depths 
>500 m, and the 2003, 2011, 2013, 2017, and 2019 surveys did not survey depths >700 m (Echave et al. 
2020). Additionally, the GOA BTS did not sample the EGOA in 2001. In order to appropriately model 
data gaps, BTS biomass estimates are stratified by management area (EGOA, CGOA, and WGOA) and 
depth strata (0-500 m, 501-700 m, and 701-1000 m), resulting in nine total biomass survey strata (Table 
A-2). The LLS RPWs are stratified by management area (EGOA, CGOA, WGOA; Table A-1). All 
versions of the REMA model presented here estimate three process error parameters, one for each 
management area (Echave et al. 2020; equations 1-4 in the main document). In the two-survey versions of 
the model, an additional parameter (q) is estimated, which scales the LLS RPWs to population biomass 
(Echave et al. 2020; equations 5-6 in the main document).  
 
During the development of the REMA model in TMB, an error in the implementation of the 
SEPARABLE_FUNCTION in ADMB was discovered. This error is discussed in the main document in 
the section titled A correction to the ADMB version of the two-survey REMA model. In short, the 
specification of predicted RPWs outside the SEPARABLE_FUNCTION violated guidelines in the 
ADMB manual that state parameters must be passed as arguments into the SEPARABLE_FUNCTION 
when using the parameters directly or indirectly through derived quantities (Fournier et al. 2012, Skaug 
and Fournier 2013). Although this version of the model produces results that suggest model convergence 
(i.e., a maximum gradient component approximately equal to the zero, a positive definite Hessian), the 
SEPARABLE_FUNCTION propagates to the Laplace approximation of the marginal negative log-
likelihood and thus model results are invalid. 
 
We present the corrected version of the two survey random effects (REMA) model (Models 22.1.a and 
22.1.b) and propose alternative models that estimate additional observation error (Models 22.2.a, 22.2.b, 
and 22.2.c; equation 7 in the main document) or omit the LLS RPWs entirely (Model 22.3). All new 
models were fit in TMB using the new rema R package and rely on methods described in the main 
document of this report (https://afsc-assessments.github.io/rema/). Model selection was conducted using a 
visual examination of model fits and evaluation of model suitability based on the biological realism of 
resulting biomass trajectories. When applicable (i.e., when models were fit to the same data), we used 
AIC to inform model selection, where a reduction in AIC by ≥ 2 lends statistical support to the inclusion 
of new parameters.  
 

https://afsc-assessments.github.io/rema/
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Results 
Comparison of Model 18 to the corrected Model 22.1.a 

Model 18, the status quo version of the two-survey model with the error in the ADMB code, resulted in a 
much smoother biomass trajectory (i.e., lower process error variation) when compared to the correctly-
specified version of the model (Model 22.1.a; Figure A-1). For Model 22.1.a, this result was attributed to 
the high precision (i.e., low observation error) of BTS biomass and LLS RPW estimates (Tables A-1 and 
A-2), which in turn produced large estimates of process error variance and allowed the model predictions 
to closely track inter-annual variability in the survey data (Table A-4, Figure A-1). The REMA model’s 
over-emphasis on noisy survey data is undesirable for long-lived species like thornyheads. First, we show 
the impact of data updates, then we present alternative models in later sections. 
 
Impact of data updates: Model 22.1.a and Model 22.1.b 

As described in the Changes in the input data section, the LLS RPW estimates were updated in the 
longline survey database in 2021, and new 2021 GOA BTS biomass and 2021 LLS RPW data points were 
added to the model (Tables A-1 and A-2). Although the model structures are identical, for clarity we 
identified this as a minor model change, where Model 22.1.a uses the same data as the 2020 assessment 
and Model 22.1.b uses the updated data.  
 
The updated LLS RPW time series had negligible impacts on the predicted biomass trajectories between 
1984 and 2020 (Figure A-2, Table A-5). The small increase in the total predicted biomass over time was 
attributed to a slight increase in the geographic area size assumed in the EGOA in the LLS RPW 
calculations (C. Rodgveller, AFSC, personal communication, September 2021). However, between 2020 
and 2022 model predictions diverge significantly due to recent declines in abundance index data (Figure 
A-2). Between 2019 and 2021, the BTS biomass estimates declined 5.9, 13.8, and 21.8% in EGOA, 
CGOA, and WGOA, respectively (Table A-2). Between 2020 and 2021, the LLS RPWs declined 16.7, 
12.5, and 16.7% in the EGOA, CGOA, and WGOA, respectively (Table A-1). The consistent declines in 
both survey indices in all management areas resulted in an overall 11.7% decrease in the 2022 model 
estimate of total biomass between Model 22.1.a and Model 22.1.b (Figure A-2). 
 
Comparison of Model 22.1.b to new alternative models 

The biomass trajectories in Model 22.1.b are highly variable and closely track the noise in the BTS and 
LLS observations (Figure A-3). This result is attributed to the relatively high precision of the BTS 
biomass and LLS RPW estimates, which leads to an over-emphasis on the data and high estimates of 
process error variance (Table A-4). These results are biologically unrealistic for Sebastolobus species, 
which are notably long-lived fish that should exhibit low variability in population biomass. In response to 
these findings, we developed several alternative models that estimate additional observation error for the 
BTS biomass index (Model 22.2.a), LLS RPW index (Model 22.2.b), and both the biomass and RPW 
indices (Model 22.2.c). For comparison, we also present a final model that removes the LLS RPW 
entirely and only fits to the BTS biomass (Model 22.3).  
 
The inclusion of additional observation error parameters for the BTS biomass and LLS RPW indices 
resulted in a substantial decrease in the marginal negative log-likelihood (i.e., the objective function) and 
smoother biomass trajectories that fit the data well without over-fitting to the noisy survey observations 
(Table A-3, Figure A-3). The best-fitting model by AIC was Model 22.2.c, which also produced the 
smoothest, and thus most biologically realistic, biomass trajectory (Table A-3, Figure A-3). Model 22.2.c 
parameter estimates show that the REMA model effectively balances the tradeoff between observation 
and process error when allowed to estimate additional observation error for the survey abundance indices 
(Table A-4).  
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As expected, Model 22.3 closely tracks the BTS biomass survey observations (Figure A-4). A comparison 
of process error variance parameter estimates between Model 22.3 and Model 22.2.c suggest that process 
error may be over-estimated in Model 22.3, especially in the CGOA and WGOA (Table A-4). 
Additionally, Model 22.3 does not adequately capture recent reductions in both survey abundance indices, 
which suggests the LLS RPWs provide important information on thornyheads that should not be excluded 
from the model (Figure A-4).  

Recommendations for November 2022 
For November 2022, we recommend omitting Model 18 due to the error in the ADMB code and replacing 
it with a suite of corrected models coded in TMB using the rema R library. We plan to present Model 
22.1 (dropping the ‘b’ with the formal inclusion of all new data in 2022), Models 22.2.a, 22.2.b, 22.2.c, 
and Model 22.3, because they represent a logical model progression and transition from the previous 
model (Figure A-5, Table A-5). Our preferred model for November 2022 is Model 22.2.c, because it 
resulted in the most biologically realistic predicted biomass trajectory and was the best-fitting 
model by AIC (Table A-3). We caution against reverting back to the single-survey model (Model 22.3), 
because the LLS appears to contribute meaningful abundance trend information to the model that the BTS 
may be missing (Figures A-3, A-4, and A-5). Additionally, the use of two fishery-independent time series 
provides a buffer in the event of future changes to survey effort. 
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Tables 
Table A-1.  A summary of changes in the NMFS longline survey relative population weights (RPWs) and associated coefficient 
of variations (CVs) between the 2020 assessment (old) and present (new) by management area (EGOA = eastern Gulf of Alaska, 
CGOA = central Gulf of Alaska, WGOA = western Gulf of Alaska). 

Management 
area Year New 

RPWs Old RPWs Percent 
change 

New RPW 
CV 

Old RPW 
CV 

Percent 
change 

EGOA 1992 11,508 11,343 1.5 0.092 0.093 -1.2 
EGOA 1993 16,280 15,854 2.7 0.087 0.089 -2.4 
EGOA 1994 11,420 11,230 1.7 0.097 0.099 -1.5 
EGOA 1995 15,391 15,093 2.0 0.095 0.096 -1.6 
EGOA 1996 17,773 17,489 1.6 0.091 0.092 -1.4 
EGOA 1997 20,537 20,182 1.8 0.082 0.083 -1.7 
EGOA 1998 17,280 17,150 0.8 0.058 0.058 -0.7 
EGOA 1999 18,512 18,358 0.8 0.102 0.102 -0.8 
EGOA 2000 18,619 18,403 1.2 0.100 0.101 -1.1 
EGOA 2001 23,071 22,734 1.5 0.075 0.076 -1.3 
EGOA 2002 16,872 16,572 1.8 0.083 0.084 -1.8 
EGOA 2003 16,468 16,232 1.5 0.087 0.088 -1.4 
EGOA 2004 12,631 12,434 1.6 0.107 0.109 -1.4 
EGOA 2005 17,418 17,091 1.9 0.098 0.099 -1.5 
EGOA 2006 19,307 19,105 1.1 0.090 0.091 -1.0 
EGOA 2007 19,878 19,614 1.3 0.065 0.066 -1.2 
EGOA 2008 25,211 24,940 1.1 0.104 0.105 -1.1 
EGOA 2009 18,339 17,956 2.1 0.080 0.081 -2.1 
EGOA 2010 26,361 26,107 1.0 0.090 0.091 -0.8 
EGOA 2011 21,823 21,548 1.3 0.074 0.075 -0.9 
EGOA 2012 22,553 22,202 1.6 0.092 0.093 -1.5 
EGOA 2013 26,493 26,037 1.8 0.058 0.059 -1.3 
EGOA 2014 21,839 21,471 1.7 0.093 0.095 -1.5 
EGOA 2015 19,669 19,354 1.6 0.076 0.076 -1.0 
EGOA 2016 22,031 21,765 1.2 0.093 0.094 -1.2 
EGOA 2017 21,605 21,255 1.6 0.115 0.117 -1.6 
EGOA 2018 22,453 22,285 0.8 0.085 0.086 -0.6 
EGOA 2019 18,684 18,488 1.1 0.050 0.051 -1.2 
EGOA 2020 13,300 12,930 2.9 0.062 0.064 -2.7 
EGOA 2021 11,081 NA NA 0.059 NA NA 
CGOA 1992 20,697 20,697 0.0 0.123 0.123 0.0 
CGOA 1993 16,337 16,337 0.0 0.206 0.206 0.0 
CGOA 1994 16,017 16,017 0.0 0.162 0.162 0.0 
CGOA 1995 13,043 13,043 0.0 0.164 0.164 0.0 
CGOA 1996 17,215 17,215 0.0 0.156 0.156 0.0 
CGOA 1997 15,449 15,449 0.0 0.173 0.173 0.0 
CGOA 1998 18,083 18,083 0.0 0.104 0.104 0.0 
CGOA 1999 23,834 23,834 0.0 0.114 0.114 0.0 
CGOA 2000 16,954 16,954 0.0 0.162 0.162 0.0 
CGOA 2001 31,076 31,076 0.0 0.137 0.137 0.0 
CGOA 2002 23,109 23,109 0.0 0.115 0.115 0.0 
CGOA 2003 22,861 22,861 0.0 0.103 0.103 0.0 
CGOA 2004 14,944 14,944 0.0 0.087 0.087 0.0 
CGOA 2005 19,580 19,580 0.0 0.151 0.151 0.0 
CGOA 2006 19,550 19,550 0.0 0.113 0.113 0.0 
CGOA 2007 18,925 18,925 0.0 0.144 0.144 0.0 
CGOA 2008 27,239 27,239 0.0 0.130 0.130 0.0 
CGOA 2009 19,802 19,802 0.0 0.195 0.195 0.0 
CGOA 2010 24,000 24,000 0.0 0.132 0.132 0.0 
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Management 
area Year New 

RPWs Old RPWs Percent 
change 

New RPW 
CV 

Old RPW 
CV 

Percent 
change 

CGOA 2011 23,041 23,041 0.0 0.122 0.122 0.0 
CGOA 2012 26,388 26,388 0.0 0.099 0.099 0.0 
CGOA 2013 31,873 31,873 0.0 0.134 0.134 0.0 
CGOA 2014 27,897 27,897 0.0 0.213 0.213 0.0 
CGOA 2015 27,130 27,130 0.0 0.107 0.107 0.0 
CGOA 2016 19,793 19,793 0.0 0.076 0.076 0.0 
CGOA 2017 25,866 25,866 0.0 0.077 0.077 0.0 
CGOA 2018 19,637 19,637 0.0 0.097 0.097 0.0 
CGOA 2019 19,329 19,329 0.0 0.117 0.117 0.0 
CGOA 2020 18,657 18,657 0.0 0.203 0.203 0.0 
CGOA 2021 16,328 NA NA 0.104 NA NA 
WGOA 1992 11,390 11,390 0.0 0.122 0.122 0.0 
WGOA 1993 8,308 8,308 0.0 0.146 0.146 0.0 
WGOA 1994 8,849 8,849 0.0 0.198 0.198 0.0 
WGOA 1995 8,585 8,585 0.0 0.143 0.143 0.0 
WGOA 1996 10,650 10,650 0.0 0.122 0.122 0.0 
WGOA 1997 5,721 5,721 0.0 0.113 0.113 0.0 
WGOA 1998 7,712 7,712 0.0 0.101 0.101 0.0 
WGOA 1999 6,309 6,309 0.0 0.148 0.148 0.0 
WGOA 2000 6,043 6,043 0.0 0.158 0.158 0.0 
WGOA 2001 7,352 7,352 0.0 0.176 0.176 0.0 
WGOA 2002 13,157 13,157 0.0 0.282 0.282 0.0 
WGOA 2003 8,807 8,807 0.0 0.178 0.178 0.0 
WGOA 2004 7,566 7,566 0.0 0.164 0.164 0.0 
WGOA 2005 9,922 9,922 0.0 0.306 0.306 0.0 
WGOA 2006 7,514 7,514 0.0 0.170 0.170 0.0 
WGOA 2007 7,676 7,677 0.0 0.204 0.204 0.0 
WGOA 2008 9,943 9,943 0.0 0.233 0.233 0.0 
WGOA 2009 11,290 11,290 0.0 0.155 0.155 0.0 
WGOA 2010 14,504 14,504 0.0 0.254 0.254 0.0 
WGOA 2011 9,208 9,208 0.0 0.210 0.210 0.0 
WGOA 2012 6,860 6,860 0.0 0.168 0.168 0.0 
WGOA 2013 12,085 12,085 0.0 0.116 0.116 0.0 
WGOA 2014 12,420 12,420 0.0 0.155 0.155 0.0 
WGOA 2015 12,389 12,389 0.0 0.159 0.159 0.0 
WGOA 2016 13,473 13,473 0.0 0.170 0.170 0.0 
WGOA 2017 13,429 13,429 0.0 0.177 0.177 0.0 
WGOA 2018 13,652 13,652 0.0 0.223 0.223 0.0 
WGOA 2019 18,104 18,104 0.0 0.285 0.285 0.0 
WGOA 2020 9,469 9,469 0.0 0.158 0.158 0.0 
WGOA 2021 7,885 NA NA 0.093 NA NA 

 
 



Table A-2.  Time series of Gulf of Alaska bottom trawl survey biomass estimates (with coefficients of variation; CVs in parentheses) for all management area (EGOA = eastern 
Gulf of Alaska, CGOA = central Gulf of Alaska, WGOA = western Gulf of Alaska) and depth strata combinations. 

Year EGOA 
(0-500 m) 

EGOA 
(501-700 m) 

EGOA 
(701-1000 m) 

CGOA 
(0-500 m) 

CGOA 
(501-700 m) 

CGOA 
(701-1000 m) 

WGOA 
(0-500 m) 

WGOA 
(501-700 m) 

WGOA 
(701-1000 m) 

1984 7,332 (0.131) 3,639 (0.103) 814 (0.100) 20,174 (0.120) 4,002 (0.160) 6,996 (0.199) 9,511 (0.147) 3,053 (0.233) 2,024 (0.460) 
1985 NA NA NA NA NA NA NA NA NA 
1986 NA NA NA NA NA NA NA NA NA 
1987 15,395 (0.122) 5,218 (0.361) NA 12,544 (0.164) 4,588 (0.202) 3,422 (0.389) 9,296 (0.407) 2,317 (0.517) 577 (0.090) 
1988 NA NA NA NA NA NA NA NA NA 
1989 NA NA NA NA NA NA NA NA NA 
1990 11,996 (0.105) NA NA 5,941 (0.250) NA NA 1,679 (0.401) NA NA 
1991 NA NA NA NA NA NA NA NA NA 
1992 NA NA NA NA NA NA NA NA NA 
1993 16,800 (0.096) NA NA 12,509 (0.164) NA NA 3,706 (0.222) NA NA 
1994 NA NA NA NA NA NA NA NA NA 
1995 NA NA NA NA NA NA NA NA NA 
1996 24,910 (0.108) NA NA 19,030 (0.102) NA NA 8,043 (0.150) NA NA 
1997 NA NA NA NA NA NA NA NA NA 
1998 NA NA NA NA NA NA NA NA NA 
1999 25,890 (0.102) 2,838 (0.214) 1,922 (0.344) 22,935 (0.085) 6,725 (0.141) 2,930 (0.153) 7,029 (0.232) 5,389 (0.153) 1,679 (0.100) 
2000 NA NA NA NA NA NA NA NA NA 
2001 NA NA NA 19,908 (0.082) NA NA 8,753 (0.171) NA NA 
2002 NA NA NA NA NA NA NA NA NA 
2003 22,393 (0.079) 5,011 (0.235) NA 42,787 (0.141) 10,462 (0.413) NA 15,035 (0.176) 5,887 (0.290) NA 
2004 NA NA NA NA NA NA NA NA NA 
2005 22,729 (0.065) 5,108 (0.176) 2,408 (0.256) 27,429 (0.068) 6,728 (0.124) 8,262 (0.197) 12,351 (0.163) 6,377 (0.080) 3,277 (0.239) 
2006 NA NA NA NA NA NA NA NA NA 
2007 25,818 (0.110) 4,858 (0.203) 4,241 (0.191) 20,910 (0.091) 8,962 (0.176) 7,736 (0.145) 7,619 (0.140) 2,590 (0.145) 1,943 (0.096) 
2008 NA NA NA NA NA NA NA NA NA 
2009 19,809 (0.067) 6,820 (0.139) 4,821 (0.092) 19,722 (0.088) 5,365 (0.225) 3,469 (0.361) 12,464 (0.207) 5,605 (0.222) 719 (0.549) 
2010 NA NA NA NA NA NA NA NA NA 
2011 24,971 (0.099) 4,334 (0.184) NA 21,172 (0.109) 6,884 (0.134) NA 3,546 (0.163) 2,272 (0.664) NA 
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Year EGOA 
(0-500 m) 

EGOA 
(501-700 m) 

EGOA 
(701-1000 m) 

CGOA 
(0-500 m) 

CGOA 
(501-700 m) 

CGOA 
(701-1000 m) 

WGOA 
(0-500 m) 

WGOA 
(501-700 m) 

WGOA 
(701-1000 m) 

2012 NA NA NA NA NA NA NA NA NA 
2013 25,031 (0.113) 3,569 (0.121) NA 23,868 (0.123) 8,196 (0.262) NA 6,476 (0.203) 2,739 (0.085) NA 
2014 NA NA NA NA NA NA NA NA NA 
2015 22,743 (0.114) 4,374 (0.302) 3,686 (0.091) 33,026 (0.125) 4,666 (0.126) 7,214 (0.091) 9,653 (0.163) 2,733 (0.195) 1,147 (0.986) 
2016 NA NA NA NA NA NA NA NA NA 
2017 27,820 (0.132) 4,301 (0.150) NA 28,591 (0.110) 4,844 (0.172) NA 12,196 (0.201) 2,740 (0.387) NA 
2018 NA NA NA NA NA NA NA NA NA 
2019 22,253 (0.138) 3,827 (0.176) NA 27,598 (0.107) 6,015 (0.177) NA 10,785 (0.135) 7,992 (0.480) NA 
2020 NA NA NA NA NA NA NA NA NA 
2021 19,104 (0.103) 5,443 (0.230) NA 21,385 (0.139) 7,600 (0.191) NA 10,424 (0.369) 4,269 (0.201) NA 



Table A-3.  Model selection results for candidate models that use the two-survey random effects model (REMA) fit to new data 
through 2021. Model 22.1.b is the corrected version of the status quo Model 18 with updated data through 2021, and Models 
22.2.a, 22.2.b, and 22.2.c are Model 22.1.a but estimate additional observation error for the bottom trawl survey, longline survey, 
or both surveys, respectively. Model 22.2.c is the author-preferred model. 

Model Objective function Number of parameters AIC Δ AIC 
Model 22.2.c 52.3 6 116.7 0 
Model 22.2.b 57.1 5 124.3 7.6 
Model 22.2.a 60.1 5 130.2 13.5 
Model 22.1.b 68.6 4 145.2 28.5 
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Table A-4. Parameter estimates and their associated standard errors (SEs) and 95% confidence intervals for the candidate random 
effects models. All values have been transformed to an arithmetic scale for ease of interpretation. Note that Model 18 has an error 
in the AD Model Builder code that was corrected in Model 22.1.a using the same data as presented in the 2020 stock assessment. 
Model 22.1.b is Model 22.1.a with updated data through 2021, Models 22.2.a, 22.2.b, and 22.2.c are Model 22.1.a but estimate 
additional observation error for the bottom trawl survey, longline survey, or both surveys, respectively, and Model 22.3 omits the 
longline survey and only fits to the bottom trawl survey. Model 22.2.c is the author-preferred model. 

Model Parameter Estimate SE LCI UCI 

Model 18 

CGOA process error 0.070 0.015 0.046 0.107 
EGOA process error 0.176 0.031 0.125 0.248 
WGOA process error 0.106 0.021 0.072 0.156 
Scaling parameter (q) 0.615 0.007 0.601 0.629 

Model 22.1.a 

CGOA process error 0.214 0.045 0.142 0.323 
EGOA process error 0.188 0.029 0.139 0.253 
WGOA process error 0.359 0.056 0.264 0.487 
Scaling parameter (q) 0.603 0.015 0.575 0.632 

Model 22.1.b 

CGOA process error 0.214 0.043 0.144 0.318 
EGOA process error 0.192 0.029 0.143 0.258 
WGOA process error 0.358 0.054 0.266 0.481 
Scaling parameter (q) 0.595 0.014 0.568 0.624 

Model 22.2.a 

CGOA process error 0.145 0.041 0.083 0.253 
EGOA process error 0.180 0.029 0.132 0.246 
WGOA process error 0.269 0.057 0.178 0.408 
Scaling parameter (q) 0.605 0.021 0.564 0.648 

Extra BTS biomass observation error 0.224 0.039 0.157 0.313 

Model 22.2.b 

CGOA process error 0.150 0.032 0.099 0.228 
EGOA process error 0.147 0.025 0.105 0.204 
WGOA process error 0.318 0.055 0.227 0.445 
Scaling parameter (q) 0.602 0.018 0.568 0.637 

Extra LLS RPW observation error 0.151 0.025 0.107 0.208 

Model 22.2.c 

CGOA process error 0.082 0.031 0.039 0.173 
EGOA process error 0.130 0.028 0.086 0.198 
WGOA process error 0.193 0.098 0.071 0.522 
Scaling parameter (q) 0.616 0.026 0.568 0.669 

Extra BTS biomass observation error 0.229 0.059 0.136 0.370 
Extra LLS RPW observation error 0.136 0.026 0.093 0.195 

Model 22.3 
CGOA process error 0.171 0.034 0.117 0.252 
EGOA process error 0.145 0.026 0.102 0.205 
WGOA process error 0.302 0.055 0.211 0.431 
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Table A-5.  Total predicted biomass for the candidate random effects models. Note that Model 18 has an error in the AD Model 
Builder code that was corrected in Model 22.1.a using the same data as presented in the 2020 stock assessment. Model 22.1.b is 
Model 22.1.a with updated data through 2021, Models 22.2.a, 22.2.b, and 22.2.c are Model 22.1.a but estimate additional 
observation error for the bottom trawl survey, longline survey, or both surveys, respectively, and Model 22.3 omits the longline 
survey and only fits to the bottom trawl survey. Model 22.2.c is the author-preferred model. 

Year Model 18 Model 
22.1.a 

Model 
22.1.b 

Model 
22.2.a 

Model 
22.2.b 

Model 
22.2.c Model 22.3 

1984 52,206 56,198 56,230 54,260 55,668 53,732 55,647 
1985 52,483 54,179 54,289 53,693 53,993 53,752 53,350 
1986 53,175 53,039 53,238 53,428 52,990 53,907 51,789 
1987 54,339 52,777 53,079 53,467 52,659 54,198 50,952 
1988 53,112 50,764 51,147 53,169 50,841 54,233 47,939 
1989 51,975 49,772 50,251 53,324 49,751 54,446 45,490 
1990 50,926 49,752 50,344 53,936 49,338 54,834 43,497 
1991 53,010 56,750 57,546 58,884 54,477 57,596 46,394 
1992 55,269 65,266 66,309 64,538 60,438 60,573 49,589 
1993 57,718 63,577 64,760 65,044 61,108 61,991 53,113 
1994 61,758 61,428 62,463 62,334 62,899 63,105 58,202 
1995 66,213 64,948 66,130 65,912 66,717 66,076 64,029 
1996 71,129 73,697 74,777 72,159 72,981 69,896 70,711 
1997 73,302 70,994 72,358 71,980 71,833 70,783 72,883 
1998 75,580 71,881 72,906 72,250 73,725 72,188 75,183 
1999 77,967 76,767 77,398 76,633 76,746 74,438 77,619 
2000 79,038 75,191 76,258 77,778 76,394 75,978 78,355 
2001 80,234 83,901 85,318 86,642 80,064 79,331 79,317 
2002 83,711 84,356 85,606 82,381 85,428 79,655 87,943 
2003 87,585 87,739 88,598 80,111 91,061 79,916 98,710 
2004 87,818 69,974 70,757 69,720 82,888 77,229 95,649 
2005 88,116 87,603 88,101 78,243 89,604 80,203 93,155 
2006 85,879 80,462 81,458 78,928 83,671 80,393 87,164 
2007 84,171 82,010 82,781 81,699 82,589 81,937 82,673 
2008 81,561 90,274 91,519 89,953 85,019 85,198 80,526 
2009 79,254 83,219 83,784 86,471 82,832 85,559 79,044 
2010 79,332 91,981 93,288 93,652 85,428 87,686 76,884 
2011 79,883 85,616 86,607 88,548 82,837 86,168 76,245 
2012 80,769 92,149 93,654 93,621 87,000 88,371 78,173 
2013 81,819 100,122 101,625 102,365 90,681 91,121 80,490 
2014 83,297 98,683 100,157 98,674 93,543 91,450 83,685 
2015 85,005 94,830 95,786 93,986 93,063 90,281 87,622 
2016 87,164 91,877 93,081 92,591 93,573 90,373 88,906 
2017 89,442 97,322 97,719 95,103 94,622 89,575 90,384 
2018 88,069 92,100 92,705 90,651 91,091 86,532 88,622 
2019 86,802 88,005 87,212 83,231 87,131 81,798 87,170 
2020 86,802 74,296 72,121 70,206 78,137 75,266 83,950 
2021 86,802 74,296 65,631 63,241 74,108 71,584 81,061 
2022 86,802 74,296 65,631 63,241 74,108 71,584 81,061 



Figures 

 
Figure A-1.  Two-survey random effects (REMA) model fits to the GOA bottom trawl survey biomass and longline survey relative population weights (RPWs), where the points 
are observations and the lines with shaded regions are the model predictions and 95% confidence intervals. Results are shown for Models 18 (the status quo ADMB model with the 
error in the SEPARABLE function) and 22.1.b (the corrected two-survey REMA fit in TMB with 2020 assessment data).



 
Figure A-2.  Two-survey random effects (REMA) model predictions of total biomass with 95% confidence intervals. Results are 
shown for Models 22.1.a (the corrected two-survey REMA with 2020 assessment data) and 22.1.b (Model 22.1.a with updated 
data through 2021).



 
Figure A-3.  Two-survey random effects (REMA) model fits to the GOA bottom trawl survey (BTS) biomass and longline survey (LLS) relative population weights (RPWs), 
where the points are observations and the lines with shaded regions are the model predictions and 95% confidence intervals. Results are shown for Model 22.1.b (the corrected 
two-survey REMA fit in TMB with 2020 assessment data), Model 22.2.a (extra BTS observation error estimated), Model 22.2.b (extra LLS observation error estimated), and 
Model 22.2.c (extra BTS and LLS observation error estimated). Model 22.2.c is the author-preferred model.



 
Figure A-4.  One and two-survey random effects (REMA) model fits to the GOA bottom trawl survey (BTS) biomass estimates, where the points are observations and the lines 
with shaded regions are the model predictions and 95% confidence intervals. Results are shown for Model 22.1.b (the corrected two-survey REMA fit in TMB with 2020 
assessment data), Model 22.2.c (extra BTS and longline survey observation error estimated), and Model 22.3 (only fits to the BTS data). Model 22.2.c is the author-preferred 
model.



 

Figure A-5.  One and two-survey random effects (REMA) model predictions of total biomass with 95% confidence intervals. 
Results are shown for Models 18 (the status quo ADMB model with the error in the SEPARABLE function), Model 22.1.b (the 
corrected two-survey REMA fit in TMB with 2020 assessment data), Model 22.2.c (extra bottom trawl and longline survey 
observation error estimated), and Model 22.3 (only fits to the bottom trawl survey data). Model 22.2.c is the author-preferred 
model. 
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Appendix B:  Alternative models for BSAI shortraker rockfish in 2022 
Kalei Shotwell and Jane Sullivan 

September 2022 

Executive summary 
Bering Sea and Aleutian Islands (BSAI) shortraker rockfish (Sebastes borealis) are managed as a Tier 5 
stock and assessed in even years to coincide with the Aleutian Islands (AI) groundfish trawl survey 
(Shotwell et al. 2020). The assumed natural mortality for shortraker rockfish (M=0.03) is used to inform 
harvest recommendations for Tier 5 stocks, where FOFL=M and FABC=0.75M. Biomass is estimated using a 
random effects (RE) model fit to the bottom trawl survey (BTS) data.  
 
In recent years, concerns have been raised about the lack of abundance information for shortraker rockfish 
and other species in the eastern Bering Sea (EBS) slope region following the cessation of the EBS slope 
BTS in 2016 (Shotwell et al. 2020, Sullivan et al. 2020). In response, we developed a suite of alternative 
models that address these concerns through the inclusion of the NMFS longline survey (LLS) relative 
population weights (RPWs) in the eastern Bering Sea (EBS) slope region.  

Changes in the input data 
For the full assessment in November 2022, we propose the following changes to input data: 

1) A new time series of LLS RPWs in the EBS slope region for 1997-2021 (available in odd years; 
Table B-1). Although a 2019 and 2021 RPW are available, we only fit to data through 2018 for 
ease of comparison with the last full assessment (Shotwell et al. 2020). 

2) The 2022 AI BTS biomass estimate is not ready for September 2022, so this document only 
includes BTS through 2018. The 2020 AI BTS was cancelled due to the COVID-19 pandemic. 

Changes in the assessment methodology 
We present the base model plus three alternative models that bridge the current model to a multivariate 
version of the RE model in Template Model Builder (TMB; Kristensen et al. 2016) using the new rema R 
package (https://afsc-assessments.github.io/rema/). For November 2022, we recommend a new model that 
uses the multi-survey version of the random effects (REMA) model and fits to AI BTS biomass (in both 
the AI and southern Bering Sea regions), EBS slope BTS biomass, and LLS RPWs in the EBS slope 
region.  
 
The models presented use the following naming conventions: 

1) Model 18: The accepted model in the last full assessment (Shotwell et al. 2020) as implemented 
in 2018 and 2020 using the univariate version of the RE model fit separately to the AI, southern 
Bering Sea (SBS, sampled by the AI BTS), and EBS slope.  

2) Model 18.a:  Bridged Model 18 to TMB using the rema R package. 

3) Model 18.b:  Model 18 fit in TMB but using the multivariate version of the random effects 
(REM) model, where the three regions are fit simultaneously with a separate process error 
parameter in each region.  

4) Model 22:  Multi-survey (AI BTS, EBS slope BTS, and LLS) version of the REMA model, 
which has the same configuration as Model 18.b but also fits to the LLS RPWs in the EBS slope 
region. 

https://afsc-assessments.github.io/rema/
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Summary of results 
The alternative models result in the following estimates of biomass, OFL, and maximum permissible 
ABC (max ABC), with the author-preferred model highlighted in bold: 
 

Model Year Biomass (t) OFL (t) max ABC (t) Percent change from Model 18 
Model 18 2018 24,055 722 541 -- 

Model 18.a 2018 24,055 722 541 0% 
Model 18.b 2018 24,055 722 541 0% 
Model 22 2018 23,968 719 539 -0.4% 

 
Model 22 produced a negligible (<1%) decrease in total predicted biomass and estimated OFLs and ABCs 
when compared to Model 18 and it’s TMB and multivariate equivalents, Model 18.a and Model 18.b. The 
author-preferred model is Model 22, because it is informed by recent abundance trends in the EBS 
slope region using LLS RPWs. The BSAI shortraker rockfish stock assessment does not apportion 
biomass and ABC by management area (Shotwell et al. 2020). 
 

Analytic approach 

Model structure 
Biomass in the shortraker rockfish assessment is estimated using the univariate version of the random 
effects (RE) model, where a single model is run for each survey and stratum combination (Model 18; 
Shotwell et al. 2020). There are two surveys, the AI BTS and EBS slope BTS. The AI BTS is stratified by 
region, the AI (eastern, central, and western AI combined) and southern Bering Sea (SBS). The EBS 
slope BTS is treated as a single stratum. Process error is estimated independently for the three strata, AI, 
SBS, and EBS slope. 
 
Transition to TMB and to the multivariate random effects (REM) model  

An alternative to fitting multiple univariate RE models is to fit all strata simultaneously using the 
multivariate version of the RE model (REM). In order to transition to the REM model, we first bridged 
the status quo ADMB Model 18 to TMB using the new rema R library (Model 18.a). We then fit the same 
data using the REM model (Model 18.b) and compared the resulting fits to the data and parameter 
estimates (Table B-2, Figure B-1). In the multivariate approach, one can assume strata-specific process 
error, or alternatively, share process error across multiple strata. We maintained the current structure of 
the model by estimating strata-specific parameters in Model 18.b. A more detailed description of these 
methods are provided in the Extending to multiple biomass survey strata section of the main document. 
 
Addition of the NMFS longline survey (LLS) Relative Population Weights (RPWs) 

The inclusion of LLS RPWs for shortraker rockfish in the EBS slope region was prompted by concerns 
over the cessation of the EBS slope BTS in 2016 (e.g., Shotwell et al. 2020, Monnahan et al. 2021). We 
recommend including the EBS slope LLS RPWs to inform abundance trend information in recent years, 
thus reducing reliance on the 2016 estimate of biomass in that region (Table B-1). The LLS is conducted 
biennially along the EBS slope, and shortraker rockfish are considered to be well-sampled by the gear 
(Echave et al. 2019, Hulson et al. 2021). The potential use of LLS RPWs in the AI was explored; 
however, we do not recommend using the AI RPWs at this time due to a mismatch in the spatial extent 
and resolution of the AI BTS and LLS. 
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Methods for including the additional LLS RPW index into the model are described in the Model 
development section of the main document and in Hulson et al. (2021). Alternative models that estimate 
additional observation error for the BTS biomass or LLS RPW data (i.e., using equation 7 in the main 
document) were explored during model development. These models either exhibited convergence issues 
(e.g., hitting parameter bounds) or were not statistically supported using Akaike Information Criteria for 
model selection. We therefore do not present results for these more complex models. 
 

Results 
Bridging from ADMB to TMB and to the multivariate version of the random effects model (REM) 

Models 18, 18.a, and 18.b resulted in nearly identical fits to the BTS biomass data and parameter 
estimates (Table B-2, Figure B-1). The REM model is preferred over the univariate RE model approach, 
because the total number of models fit is reduced from three to one. This approach also lends itself to easy 
estimation of variance for total predicted log-biomass using the delta method in TMB. 
 
Impact of adding the longline survey relative population weights 

The addition of the shortraker rockfish LLS RPWs in the EBS slope region had minimal impact on model 
results in 2018, the last time the assessment model was updated (Shotwell et al. 2020). Estimates of 
process error slightly increased in the EBS slope region, resulting in a slightly more variable biomass 
trajectory (Table B-2, Figure B-3). As shown in the ABC summary table in the Executive summary, 
Model 22 resulted in an approximately 0.4% decrease in biomass relative to Models 18, 18.a, and 18.b.  

Recommendations for November 2022 
For November 2022, we recommend transitioning to the TMB version of the model using the rema R 
library. Model 22, which includes the LLS RPW index in the EBS slope region, is the author-preferred 
model, because it uses the most current data on shortraker available and reduces our reliance on the 2016 
EBS slope BTS biomass estimate. Although adding this new data source does not change our current 
understanding of shortraker abundance on the EBS slope, it is an improved model and enhances the 
ability to inform future trends in the EBS slope region. 
 

References 
 
Echave, K. B. and P. J. F. Hulson. 2019. Assessment of the Shortraker Rockfish in the Gulf of Alaska. In: 
Stock assessment and fishery evaluation report for the groundfish resources of the Gulf of Alaska as 
projected for 2020. North Pacific Fishery Management Council, 605 W. 4th. Avenue, Suite 306,  

Hulson, P.J.F., Echave, K.B., Spencer, P.D., and Ianelli, J.N. 2021. Using multiple indices for biomass 
and apportionment estimation of Alaska groundfish stocks. U.S. Dep. Commer. NOAA Tech. Memo. 
NMFS-AFSC-414, 28 p. 

Kristensen K., A. Nielsen, C. W. Berg, H. Skaug, B. M. Bell. 2016. TMB: automatic differentiation and 
Laplace approximation. J Stat Softw 70(5):1–21. doi:10.18637/jss.v070.i05 
Skaug H. and D. Fournier. 2013. Random effects in AD Model Builder: ADMB-RE User Guide. 
http://ftp.admb-project.org/admb-11.2pre/admbre-11.2pre.pdf 
 
Monnahan, C., J. Sullivan, C. A. Tribuzio, G. Thompson, and P. J. F. Hulson. 2021. Improving the 
consistency and transparency of Tier 4/5 assessments. September Plan Team Report, Joint Groundfish 

http://ftp.admb-project.org/admb-11.2pre/admbre-11.2pre.pdf


35 

 

Plan Teams, North Pacific Fishery Management Council. 605 W 4th Ave, Suite 306 Anchorage, AK 
99501. https://meetings.npfmc.org/CommentReview/DownloadFile?p=86098951-a0ed-4021-a4e1-
95abe5a357fe.pdf&fileName=Tiers%204%20and%205%20assessment%20considerations.pdf 

Shotwell, S. K., I. B. Spies, K. Echave, I. Ortiz, J. Sullivan, P. D. Spencer, and W. Palsson. 2020. 
Assessment of the shortraker rockfish stock in the Bering Sea and Aleutian Islands. In: Stock assessment 
and fishery evaluation report for the groundfish fisheries of the Bering Sea and Aleutian Islands as 
projected for 2021. North Pacific Fishery Management Council, 605 W. 4th. Avenue, Suite 306, 
Anchorage, AK 9950-2252.  

Sullivan, J., I. Spies, P. Spencer, A. Kingham, T. TenBrink, and W. Palsson. 2020. Assessment of the 
other rockfish stock complex in the Bering Sea/Aleutian Islands. In: Stock assessment and fishery 
evaluation report for the groundfish resources of the Bering Sea and Aleutian Islands as projected for 
2021. North Pacific Fishery Management Council, 605 W 4th Ave, Suite 306 Anchorage, AK 99501. 

Zheng, J., and M. S. M. Siddeek. 2020. Bristol Bay red king crab stock assessment in fall 2020. In: Stock 
assessment and fishery evaluation report the king and tanner crab fisheries of the Bering Sea and Aleutian 
Islands regions. North Pacific Fishery Management Council, 605 W 4th Ave, Suite 306 Anchorage, AK 
99501. 

  

https://meetings.npfmc.org/CommentReview/DownloadFile?p=86098951-a0ed-4021-a4e1-95abe5a357fe.pdf&fileName=Tiers%204%20and%205%20assessment%20considerations.pdf
https://meetings.npfmc.org/CommentReview/DownloadFile?p=86098951-a0ed-4021-a4e1-95abe5a357fe.pdf&fileName=Tiers%204%20and%205%20assessment%20considerations.pdf


36 

 

Tables 
Table B-1.  NMFS longline survey (LLS) relative population weights (RPWs) with estimated coefficients of variation (CV) for 
the shortraker rockfish in the eastern Bering Sea (EBS) slope region.  

 
Year EBS slope 
1997 12,478 (0.341) 
1998 NA 
1999 29,202 (0.414) 
2000 NA 
2001 21,571 (0.363) 
2002 NA 
2003 74,645 (0.465) 
2004 NA 
2005 14,453 (0.394) 
2006 NA 
2007 20,088 (0.403) 
2008 NA 
2009 7,513 (0.285) 
2010 NA 
2011 27,065 (0.584) 
2012 NA 
2013 12,588 (0.243) 
2014 NA 
2015 19,316 (0.190) 
2016 NA 
2017 23,006 (0.480) 
2018 NA 
2019 34,046 (0.472) 
2020 NA 
2021 18,660 (0.345) 
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Table B-2.  Parameter estimates and their associated standard errors (SEs) and 95% confidence intervals for the new random 
effects models. All values have been transformed to an arithmetic scale for ease of interpretation. Model 18.a is the status quo 
univariate random effects (RE) model fit in Template Model Builder (TMB), Model 18.b is the same model but fit 
simultaneously using the multivariate random effects (REM) model, and Model 22 is Model 18.b which also fits to the longline 
survey in the eastern Bering Sea slope.  

 
Model Parameter Estimate SE LCI UCI 

Model 18.a AI process error 0.148 0.104 0.037 0.587 
Model 18.a EBS Slope process error 0.195 0.137 0.049 0.775 
Model 18.a SBS process error 1.135 0.297 0.679 1.897 
Model 18.b AI process error 0.148 0.104 0.037 0.587 
Model 18.b EBS Slope process error 0.195 0.137 0.049 0.775 
Model 18.b SBS process error 1.135 0.297 0.679 1.897 
Model 22 AI process error 0.148 0.104 0.037 0.587 
Model 22 EBS Slope process error 0.331 0.240 0.080 1.372 
Model 22 SBS process error 1.135 0.297 0.679 1.897 
Model 22 Scaling parameter (q) 3.624 0.732 2.438 5.385 
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Figures 
Figure B-1.  Random effects (RE) model fits to biomass estimates from the Aleutian Islands combined (eastern, central, western) 
bottom trawl survey (AI), the eastern Bering Sea (EBS) Slope bottom trawl survey, and the southern Bering Sea portion of the AI 
bottom trawl survey (SBS). Biomass data with assumed 95% confidence intervals are shown with black points and error bars, and 
model predictions with 95% confidence intervals are shown using solid lines and shaded areas. Results are shown for Model 18 
(the status quo univariate ADMB model), Model 18.a (same as Model 18 but fit in TMB), and Model 18.b (same as Model 18 but 
fit in TMB using the multivariate version of the random effects model; REM). 
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Figure B-2.  Random effects (RE) model fits to biomass estimates form the Aleutian Islands combined (eastern, central, western) 
bottom trawl survey (AI), the eastern Bering Sea (EBS) Slope bottom trawl survey, and the southern Bering Sea portion of the AI 
bottom trawl survey (SBS) (top three figures), and the longline survey (LLS) relative population weights (RPWs; bottom figure). 
Biomass and RPW data with assumed 95% confidence intervals are shown with black points and error bars, and model 
predictions with 95% confidence intervals are shown using solid lines and shaded areas. Results are shown for Model 18.b (status 
quo Model 18 but fit in TMB using the multivariate version of the random effects model; REM) and Model 22 (Model 18.b with 
additional fit to LLS RPWs in the EBS slope). 
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Appendix C:  Alternative models for the BSAI other rockfish stock 
complex in 2022 

Jane Sullivan 

September 2022 

Executive summary 
The Bering Sea/Aleutian Islands (BSAI) other rockfish complex is currently managed in Tier 5 and is 
assessed on even years to coincide with the Aleutian Islands (AI) groundfish trawl survey. The other 
rockfish complex is assessed in two parts: (1) shortspine thornyhead (SST, Sebastolobus alascanus), 
which comprise approximately 95% of the estimated total other rockfish exploitable biomass; and (2) the 
remaining “non-SST” species, which are dominated by dusky rockfish (Sebastes variabilis) but include at 
least eleven other Sebastes and Sebastolobus species.  
 
In recent years, concerns have been raised about the lack of abundance information for SST and other 
species in the Eastern Bering Sea (EBS) slope region following the cessation of the EBS slope bottom 
trawl survey in 2016 (Shotwell et al. 2020, Sullivan et al. 2020). In response, we developed a suite of 
alternative models that address these concerns by including the NMFS longline survey (LLS) relative 
population weights (RPWs) in the eastern Bering Sea (EBS) slope region.  

Changes in the input data 
For the full assessment in November 2022, we propose the following changes to input data: 

1) The addition of the NMFS longline survey relative population weights (RPWs) for SST on the 
EBS slope, 1997-2021 (Table 1). Although a 2021 RPW is available, here we only fit to data 
through 2020 for ease of comparison with the last full assessment (Sullivan et al. 2020). 

2) The new 2021 EBS shelf BTS biomass estimate for non-SST. For September 2022, we only fit to 
data through 2020 for ease of comparison with the last full assessment. 

3) The 2022 Aleutian Islands (AI) BTS biomass estimate will be available in November 2022. The 
2020 AI BTS was cancelled due to the COVID-19 pandemic, so this document only includes AI 
BTS for SST and non-SST through 2018. 

Changes in the assessment methodology 
For the full assessment in November 2022, we propose one new model for consideration in addition a 
bridged version of the status quo model fit in Template Model Builder (TMB; Kristensen et al. 2016). 
Models were implemented using the new rema R package and rely on methods introduced in the main 
document of this report. The new models only affect SST on the EBS slope, where we fit to both the EBS 
slope BTS and the NMFS longline survey RPWs.  

The models presented are as follows: 

1) Model 20: The accepted model in the last full assessment as implemented in 2020 using BTS 
biomass estimates multivariate version of the random effects (REM) model in AD Model Builder 
(ADMB; Fournier et al. 2012). Two separate models are fit, one for SST and one for non-SST. 
The SST model has three strata (AI, EBS slope, southern Bering Sea; SBS), and the non-SST 
model has four strata (AI, EBS shelf, EBS slope, SBS). Both models share process error across 
strata (Sullivan et al. 2020). 

2) Model 20.a:  Bridged Model 20 to TMB using the rema R package. 
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3) Model 22:  Same as Model 20.a and also fits to the EBS slope LLS RPWs for SST. The non-SST 
model is the same as Model 20.a. 

Summary of results 
For Tier 5 stocks, FOFL and FABC are defined as M and 0.75M, respectively. The acceptable biological 
catch (ABC) is obtained by multiplying FABC by the estimated biomass, and the overfishing level (OFL) is 
obtained by multiplying FOFL by the estimated biomass. The estimated natural mortality differs between 
SST (0.03) and the remaining non-SST species in the other rockfish complex (0.09); therefore, ABC and 
OFL, and thus FOFL and FABC, are calculated separately for SST and non-SST. Apportionments between 
the AI and the EBS are based on survey biomass estimates in those regions. 
 
The alternative models result in the following estimates of biomass, OFL, and maximum permissible 
ABC (max ABC), with the author-preferred model highlighted in bold: 
 

Model Year Biomass (t) OFL (t) 
max 

ABC (t) 

Percent change 
in biomass from 

Model 20 

Percent change in 
OFL/ABC from 

Model 20 
Model 20 2020 53,248 1,751 1,313 -- -- 

Model 20.a 2020 53,364 1,758 1,318 0.22% 0.41% 
Model 22 2020 55,793 1,831 1,373 4.78% 4.58% 

 
The alternative models resulted in the following apportionment of max ABC by management area: 
 

Model AI EBS 
Model 20 30.0% 70.0% 

Model 20.a 29.8% 70.2% 
Model 22 28.0% 72.0% 

 
Model 22 produced a small (<5%) increase in total predicted biomass and estimated OFLs and ABCs 
when compared to Model 20 and it’s TMB equivalent, Model 20.1. The author-preferred model is 
Model 22, because it is informed by recent abundance trends in that region. Model 22 resulted in a 
small (2%) shift in apportioned biomass from the AI to EBS). 
 

Analytic approach 

Model structure 
Biomass in the BSAI other rockfish assessment is estimated using the multivariate version of the random 
effects (REM) model, where a single model is fit to multiple strata (i.e., multiple areas or surveys) 
simultaneously (Model 20). Two REM models are fit (one for SST and non-SST), and biomass for each 
species group is stratified by survey and Fishery Management Plan (FMP; i.e., BS and AI). The SST 
biomass is estimated with three strata, where the AI BTS is split into two strata, the AI (eastern, central, 
and western AI combined) and southern Bering Sea (SBS), and the EBS slope BTS is treated as a single 
stratum. The non-SST biomass is estimated using four strata, where the AI BTS biomass is split into the 
AI and SBS, and the EBS slope and shelf BTS biomass are estimated as unique strata. There are no SST 
on the EBS shelf, therefore the EBS shelf survey data is not used for that component of the stock. Process 
error is shared across all strata for both species groups.  
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Zero biomass observations 

The EBS shelf survey frequently does not catch non-SST, and 14 out of 39 survey years are zero biomass 
observations. Consistent with past assessments, we assume these zeros are failed surveys and treat them 
as NAs in the model. Alternative approaches to handling zeros were analyzed in the section titled 
Exploration of the Tweedie distribution for zero biomass observations of the main document, and a 
reproducible example focusing on non-SST on the EBS shelf is available in the rema R library’s 
Strategies for handling zero biomass observations vignette.  
 
Addition of the NMFS longline survey (LLS) Relative Population Weights (RPWs) 

The inclusion of LLS RPWs for SST in the EBS slope region was prompted by concerns over the 
cessation of the EBS slope BTS in 2016 (e.g., Sullivan et al. 2020, Monnahan et al. 2021), coupled with 
declining biomass trends in the Gulf of Alaska (GOA) SST stock (Appendix A). Biomass of SST in the 
EBS slope region is currently estimated to be 65% of the entire BSAI other rockfish stock (Sullivan et al. 
2020). We recommend including the EBS slope LLS RPWs to inform abundance trend information in 
recent years, thus reducing reliance on the 2016 estimate of biomass in that region. The LLS is conducted 
biennially along the EBS slope, and SST are considered to be well-sampled by the gear (Echave et al. 
2018, Hulson et al. 2021). The potential use of LLS RPWs in the AI was explored; however, we do not 
recommend using the AI RPWs at this time due to a mismatch in the spatial extent and resolution of the 
AI BTS and LLS. 
 
Methods for including the additional LLS RPW index into the model are described in the Model 
development section of the main document and in Hulson et al. (2021). Alternative models that estimate 
additional observation error for the BTS biomass or LLS RPW data (i.e., using equation 7 in the main 
document) were explored during model development. These models either exhibited convergence issues 
(e.g., hitting parameter bounds) or were not statistically supported using Akaike Information Criteria for 
model selection. We therefore do not present results for these more complex models. 
 

Results 
Bridging from ADMB to TMB and to the multivariate version of the random effects model  

For both SST and non-SST components of the stock, the differences between the ADMB (Model 20) and 
TMB (Model 20.a) versions of the model were negligible (<0.1% for total predicted biomass in all years; 
Figures C-1 and C-2; Table C-2). These small changes were attributed to differences in the optimization 
algorithms and implementation of the Laplace approximation in ADMB versus TMB. Although point 
estimates were roughly equivalent in Models 20 and 20.a, there were noticeable differences in the 
estimated 95% confidence intervals for stratum-specific and total predicted biomass (Figures C-1 and C-
2). These changes were the result of different methods used to estimate the variance of summed log-
biomass in the ADMB and TMB versions of the REM model. Specifically, the ADMB version of the 
REM model uses the Marlow method, whereas the TMB model uses the standard delta method. More 
details about variance estimation methods and model bridging from ADMB to TMB are available in the 
Model development section of the main document. 
 
Impact of adding the EBS Slope longline survey (LLS) relative population weights (RPW) 

During overlapping years, the LLS and BTS indices are highly positively correlated, consistently tracking 
the increase in SST abundance in the early 2000s up through the cessation of the EBS slope BTS in 2016 
(Figure C-3). The 2015 LLS RPW and 2016 BTS biomass estimates were the maximum values in both 
time series, and in recent years the LLS RPWs has showed steady declines (Table C-1, Figure C-3). 

https://afsc-assessments.github.io/rema/articles/ex3_zeros.html
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Estimates of process error were higher in Model 22, which generated more variability in the predicted 
biomass trajectory through time (Table C-2). Despite declines in RPWs in recent years, the addition of the 
SST LLS RPWs in the EBS slope region had minimal impact on model results for 2020 and the overall 
biomass trajectory (Table C-2, Figure C-3). As shown in the ABC summary table in the Executive 
summary, Model 22 resulted in an approximately 5% increase in biomass relative to Models 20 and 20.a.  

Recommendations for November 2022 
For November 2022, we recommend transitioning to the TMB version of the model using the rema R 
library. The inclusion of the LLS RPW index uses the most current data on SST abundance in the EBS 
slope region, and therefore, Model 22 is the author-preferred model. Although adding this new data 
source does not change our current understanding of SST abundance on the EBS slope, recent declines in 
the RPWs and declines in the SST stock in the GOA, suggest there may be continued changes to the 
dynamics of this stock (Appendix A; Echave et al. 2020). 
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Tables 
Table C-1.  NMFS longline survey (LLS) relative population weights (RPWs) with estimated coefficients of variation (CV) for 
the shortspine thornyhead in the eastern Bering Sea (EBS) slope region.  

 
Year EBS Slope 
1996 NA 
1997 12,110 (0.23) 
1998 NA 
1999 4,192 (0.12) 
2000 NA 
2001 9,444 (0.24) 
2002 NA 
2003 11,050 (0.27) 
2004 NA 
2005 13,503 (0.15) 
2006 NA 
2007 13,135 (0.28) 
2008 NA 
2009 16,118 (0.22) 
2010 NA 
2011 28,630 (0.17) 
2012 NA 
2013 24,760 (0.09) 
2014 NA 
2015 31,782 (0.14) 
2016 NA 
2017 28,295 (0.14) 
2018 NA 
2019 26,073 (0.16) 
2020 NA 
2021 25,497 (0.18) 
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Table C-2.  Parameter estimates and their associated standard errors (SEs) and 95% confidence intervals for the candidate 
random effects models. All values have been transformed to an arithmetic scale for ease of interpretation. The models are fit 
separately by species group, including shortspine thornyhead (SST) and all non-SST species. Model 20 is the status quo 
multivariate random effects (REM) model fit in AD Model Builder, Model 20.a is the same REM model but fit in Template 
Model Builder, and Model 22 is Model 20.a fit to an additional index (REMA), the longline survey in the eastern Bering Sea 
slope region for SST only. Note that for non-SST, there is no difference between Models 20.a and 22.  

 
Species group Model Parameter Estimate SE LCI UCI 

non-SST Model 20 Process error 0.701 0.130 0.488 1.007 
non-SST Model 20.a Process error 0.738 0.126 0.529 1.031 
non-SST Model 22 Process error 0.738 0.126 0.529 1.031 

SST Model 20 Process error 0.121 0.029 0.076 0.193 
SST Model 20.a Process error 0.128 0.027 0.084 0.195 
SST Model 22 Process error 0.176 0.033 0.121 0.255 
SST Model 22 Scaling parameter (q) 0.705 0.064 0.589 0.843 

 
 



 
 

Figures 
 

 
Figure C-1. Model fits by survey region (top) and total predicted biomass for shortspine thornyhead (SST). Results are show for 
Model 20, the status quo multivariate random effects (REM) model fit in AD Model Builder, and Model 20.a, the same REM 
model but fit in Template Model Builder. 
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Figure C-2. Model fits by survey region (top) and total predicted biomass for all species in the other rockfish complex except 
shortspine thornyhead (SST). Results are show for Model 20, the status quo multivariate random effects (REM) model fit in AD 
Model Builder, and Model 20.a, the same REM model but fit in Template Model Builder. 
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Figure C-3. Model fits to the bottom trawl survey by survey region (top), fits to the EBS slope longline survey relative population 
weights (RPWs; middle), and total predicted biomass for shortspine thornyhead (SST; bottom). Results are show for Model 20.a, 
the status quo multivariate random effects (REM) model fit in Template Model Builder, and the Model 22, which also fits to the 
EBS slope RPWs. 
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