Bristol Bay red king crab

Final SAFE

September 2023

Katie J. Palof

ADF&G

katie.palof@alaska.gov

1

Summary

- Mature male biomass decreased from 2022, still low compared to long term average
- Directed fishery was closed in 2021/22 and 2022/23 seasons due to low mature female abundance.
- Estimated mature female biomass is higher recent years but still lower than it's been since the mid-90s
- 2023 area-swept and State of Alaska LBA model estimates of female abundance are above the State Harvest strategy thresholds (8.4 million) this year.
 - ADF&G will complete the process of determining an appropriate TAC, if applicable, after the CPT and Council process.
- Low recruitment in recent years (last 8-12 years), projected decline in biomass without a large recruitment event

CPT / SSC comments

- Comments on document formatting were addressed this cycle
- Bering Sea red king crab stock structure template finalized
- Many addressed in May 2023, work will be continued for 2024 proposed model work
 - Growth
 - Q
 - BSFRF data used as a prior on Q
- Focus here on models recommended for specification in May 2023

Data extent and new data for 2023

Retained and bycatch mortality (t)

Survey legal male abundance and CPUE for directed BBRKC fishery

Length composition from NMFS survey

Model explorations

21.1b: 2022 model has base M for males fixed at 0.18, starts in 1975, mortality event in 80s, stable in GMACS since 2018

+ GMACS updated version (version 2.01.M.01, 2023-03-13)

+ New 2022/23 data (fishery, bycatch, survey, etc.).

23.0a: model 21.1b + base M for males *estimated* in the model

22.0: model 21.1b + starting in 1985.

• Model fits to survey data are similar in all 3 models.

NMFS Trawl

Female

Residuals of total NMFS survey biomass

Model

21.1b (2023)

22.0 1985

23.0a Mest

9

- Error bars show additional error
- BSFRF survey catchability is assumed to be 1.0
- Similar fits

Mortality biomass (equal to catch biomass times handling mortality rate)

Catch

Natural Mortality

Table 14	4.	Natural	mortality	estimates	for	three	model
scenario	s d	luring di	fferent yea	ar blocks.			

		1975-1979,		
Model	Sex	1985-2022	1980-1984	1985-2022
21.1b	Females	0.24	1.17	
	Males	0.18	0.89	
22.0	Females			0.23
	Males			0.18
23.0a	Females	0.27	1.15	
	Males	0.23	0.99	

Year

Molting probabilities

Size composition fit

- Similar for all models in bycatch and directed fisheries
 - See document for all size composition fits
- Survey data suggests some build up of plus group since 2014 in size comps, expected with low recruitment

Mid-point of size-class (mm)

Mid-point of size-class (mm)

Comparison of residuals for NMFS survey males

Comparison of residuals for NMFS survey females

Recruitment

Recruitment to exclude from reference point calculations

22

Table 17: Comparisons of negative log-likelihood values and some parameters for all model scenarios.

Prior density values and total negative likelihood values without prior densities (model 22.0 cannot be compared here)

Component	base m21.1b	m23.0a	m22.0
Pot-ret-catch	-60.77	-61.84	-34.83
Pot-totM-catch	28.49	27.75	28.42
Pot-F-discC	-57.44	-57.45	-57.44
Trawl-discC	-65.13	-65.14	-52.67
Tanner-M-discC	-43.54	-43.54	-26.12
Tanner-F-discC	-43.48	-43.51	-26.07
Fixed-discC	-37.42	-37.42	-37.42
Traw-suv-bio	-37.28	-38.98	-46.15
BSFRF-sur-bio	-2.94	-4.82	-3.37
Pot-ret-comp	-3991.77	-3998.15	-3191.10
Pot-totM-comp	-2443.63	-2444.35	-2444.63
Pot-discF-comp	-1493.90	-1494.87	-1493.41
Trawl-disc-comp	-5937.57	-5945.91	-4782.21
Tanner-disc-comp	-1274.30	-1276.69	-1273.35
Fixed-disc-comp	-3486.24	-3483.07	-3487.49
Trawl-sur-comp	-7130.66	-7137.97	-5651.22
BSFRF-sur-comp	-843.09	-844.78	-841.91
Recruit-dev	72.95	73.83	43.06
Recruit-ini	0.00	0.00	0.00
Recruit-sex-R	78.49	78.50	62.18
$Log_f dev_0$	0.00	0.00	0.00
M-deviation	43.92	40.42	0.00
Sex-specific-R	0.00	0.01	0.13
Ini-size-struct	30.82	33.58	50.80
PriorDensity	265.30	250.58	231.58
Tot-likelihood	-26429.18	-26473.80	-23033.23
Tot-likeli-no-PD	-26163.88	-26223.23	-22801.65
Tot-parameter	378.00	379.00	314.00
MMB_{35}	21718.77	19361.24	19967.36
MMB-terminal	16480.20	14975.92	16481.06
F_{35}	0.30	0.40	0.30
F_{ofl}	0.22	0.30	0.24
OFL	3522.29	4424.14	3916.66
ABC	2817.83	3539.32	3133.32
NMFS Q	0.97	0.94	0.94

Retrospective analysis and projections

- Retrospective analysis done for all model runs
- Jitter run on all models, >95% of jitter runs converged to MLE and those that didn't were worse model fits
- MCMC runs to look at model variability
 - Performed on all models model 21.1b (base/reference model) highlighted here
 - Other models were similar, nothing unexpected in results
- Projections
 - To inform population trajectory and the probability of "approaching an overfished condition"
 - Used low recruitment since 2013

Retrospective patterns

MCMC output (Model 21.1b)

Cumulative probabilities of estimated ratios of MMB in 2023 (Feb. 15^{th} , 2024) to corresponding estimated $B_{35\%}$ values under model 21.1b with the MCMC approach.

Projections for future status (21.1b MCMC output) [2023 = projected MMB Feb 15th , 2024]

Last 6 years of size compositions NMFS survey data

Summary & Recommendations

- Models have similar output, some differences in model 23.0a due to estimated base M value for males
- Trend in mature male biomass similar
- Stock is not overfished in 2023 and not likely "approaching an overfished condition" in the next two years
- Recommend reference (base) model 21.1b OR model 23.0a for status determination
 - Is estimation of M for males appropriate?
 - Model 23.0a has a strong prior.
 - Other king crab stocks use 0.18 (Amendment 24 FMP)
 - Life history methods M ~0.23
 - Southeast RKC M~0.30
 - PIRKC M = 0.21
 - Increased OFL

Table 1: Status and catch specifications (1000 t) for the base model (21.1b).

		Biomass		Retained	Total		
Year	MSST	(MMB_{mating})	TAC	catch	male catch	OFL	ABC
2019/20	12.72	14.24	1.72	1.78	2.22	3.40	2.72
2020/21	12.12	13.96	1.20	1.26	1.57	2.14	1.61
2021/22	12.01	16.64	0	0.02	0.10	2.23	1.78
2022/23	10.86	18.52	0	0.02	0.07	3.04	2.43
2023/24		16.48				3.52	2.82

Table 3: Basis for the OFL (1000 t) from the base model (model 21.1b).

			Biomass				Natural
Year	Tier	B_{MSY}	(MMB_{mating})	B/B_{MSY}	F_{OFL}	Basis for B_{MSY}	mortality
2019/20	3b	21.2	16.0	0.75	0.22	1984-2018	0.18
2020/21	3b	25.4	14.9	0.59	0.16	1984-2019	0.18
2021/22	3b	24.2	14.9	0.62	0.17	1984-2020	0.18
2022/23	3b	24.03	17.0	0.71	0.20	1984-2021	0.18
2023/24	3b	21.72	16.48	0.76	0.22	1984-2022	0.18

All model specifications

Table 15: Management quantities for all models. Report quantities are derived from maximum likelihood estimates. Average recruitment (Avg Rec) is males and females combined in millions of animals.

Model	Current MMB	B35	MMB/B_{MSY}	F35	$F_{\rm OFL}$	OFL	Avg Rec	Male M
21.1b (2023)	16.48	21.72	0.76	0.30	0.22	3.52	14.85	0.18
$22.0\ 1985$	16.48	19.97	0.83	0.30	0.24	3.92	13.62	0.18
23.0a Mest	14.98	19.36	0.77	0.40	0.30	4.42	21.18	0.23

Buffer considerations

- Current at 20% recommend 20% for upcoming year
- Cold pool distributional shifts
- Declining trend or low levels of mature male biomass and mature female biomass
- Lack of recruitment events
- Retrospective pattern

Tier 4 simple modeling workgroup option

- Based on the simpler modeling working group discussions
- Mature male biomass (legal size + one growth increment below = mature for BBRKC)
- Average B calculated using MMB from 1984 to 2022 (matches current Tier 3 assessment B_{35%} calcs)
- Assume 20% buffer likely this would be different if we went with a Tier 4 option.

avgBb (t)	Current B	MMB/B _{ms}	Μ	F _{OFL}	OFL	ABC
28191.68	17377.32	0.61	0.18	0.10	1785.67	1428.54

