Phylogenetic imputation of reproductive, behavioral, and morphometric traits, and their use in joint species distribution models to understand community assembly

Thorson, Maureaud, Frelat, Mérigot, Friedman, Palomares, Pinsky, Price, Wainwright 2023, Methods in Ecology and Evolution

phylosem: a fast and simple R package for phylogenetic inference and trait imputation using structural equation models

James Thorson and Wouter van der Bijl Jonny Armstrongin press, Journal of Evolutionary Biology

phylosem: Phylogenetic Structural Equation Model

Applies phylogenetic comparative methods (PCM) and phylogenetic trait imputation using structural equation models (SEM), extending methods from Thorson et al. (2023) <<u>doi:10.1111/2041-210X.14076</u>>. This implementation includes a minimal set of features, to allow users to easily read all of the documentation and source code. PCM using SEM includes phylogenetic linear models and structural equation models as nested submodels, but also allows imputation of missing values. Features and comparison with other packages are described in Thorson and van der Bijl (In revisions).

Version:	1.0.0				
Depends:	<u>TMB</u> , R (\geq 4.0.0)				
Imports:	sem, ape, phylobase, phylopath				
LinkingTo:	RcppEigen, TMB				
Suggests:	phylosignal, DiagrammeR, semPlot, phytools, TreeTools, Rphylopars, phylolm, phyr, knitr, rmarkdown, ggplot2,				
	testthat				
Published:	2023-08-25				
Author:	James Thorson 🔟 [aut, cre], Wouter van der Bijl 🝺 [ctb]				
Maintainer:	James Thorson <james.thorson at="" noaa.gov=""></james.thorson>				
License:	<u>GPL-3</u>				
NeedsCompilation: yes					
Materials:	README NEWS				
CRAN checks:	phylosem results				
Documentation:					
Reference manual:	phylosem.pdf				
Vignettes:	Comparison with other packages				
]	Demonstration of selected features				
]	Detailed comparison with 'phylopath'				
Vignettes:	Comparison with other packages Demonstration of selected features				

User-friendly R-package phylosem:

- Input format:
 - ape: specify phylogeny / taxonomy trees
 - sem: specify structural equation models
- Output format:
 - phylopath: model selection and averaging
 - phylolm: coefficient estimates
 - *phylo4d*: plot traits and trees
 - sem: plot path coefficients


```
# Load data set
library(phylopath)
# Run phylosem
model = "
 DD -> RS, p1
 BM -> LS, p2
 BM -> NL, p3
 NL -> DD, p4
П
psem = phylosem( sem = model,
     data = rhino,
     tree = rhino_tree )
```

plot(as(psem, "fitted DAG"))

Features available in alternative software

Resolve life-history tradeoffs:

- Leaf energy budget
- two relationships hypothesized by Shipley et al. (2006) among four measured leaf traits
 - Amass: photosynthetic rate
 - Nmass: leaf nitrogen content
 - LMA: leaf mass per area
 - LL: leaf lifespan
- Estimates parsimony and imputes values jointly

User-friendly R-package phylosem:

- Applied to PanTHERIA for 8 traits and 3734 species
- Takes 120 sec
 - Approx. 1000 times faster than joint-Gibbs method from Hassler et al. (2022)

Adult_mass Gestation Weaning Birth_massRepro_age Lifespan Litter_size Litter_freq

Trees for fishes: The neglected role for phylogenetic comparative methods in fisheries science

Thorson Revisions in review, Fish and Fisheries

Comparative life-history methods in fisheries:

- Widely used to infer:
 - Biological reference point proxies (e.g., F_msy / M)
 - Natural mortality rate (e.g., Hoenig method)
 - Fecundity parameters (e.g., EJ Dick rockfish model)

- Could be used more for:
 - Ecosystem parameters (e.g., Q/B from Palomares and Pauly 1998)
 - Energy density (borrowed from similar species)

- Approaches:
- 1. Linear model $lm(log(M) \sim 1 + log(Tmax))$
- 2. "Nested taxonomic" linear mixed model lmer($log(M) \sim 1 + (1|Family) + (1|Genus) + log(Tmax)$)
- 3. Phylogenetic linear model $plm(log(M) \sim 1 + log(Tmax), phy = tree)$

Approaches:

4. Phylogenetic structural equation model

Advantages of PSEM

- Includes taxonomic mixed model as submodel
 - E.g., convert taxonomy to a tree (see on right)
- Estimates missing values and relationships jointly
- Avoids separate models depending on data availability

Natural mortality prediction

Gold-standard database:

- Then et al. (2015) contains 200 "quality" estimates of natural mortality rate
- Conventional analysis:
 - With longevity:

 $\log(M) \sim 1 + \log(Tmax)$

- Without longevity $\log(M) \sim 1 + \log(K) + \log(Linf)$
- Phylogenetic SEM:

$$log(K) \rightarrow log(t_{max})$$

$$log(L_{inf}) \rightarrow log(t_{max})$$

$$log(t_{max}) \rightarrow log(M)$$

- i.e., log(M) is independent of growth conditional on longevity

Natural mortality prediction Alternative models

- Model #1: Exclude natural mortality
- Model #2: Exclude natural mortality and longevity

Jackknife experiment

- 1. Exclude data and fit model
- 2. Predict excluded value and compare with known value
- 3. Repeat for each datum

Natural mortality prediction

Using longevity:

- ... results in high PVE
- … has little phylogenetic signal

Using growth parameters:

- ... results in lower PVE
- ... shows large improvement from using PSEM

PVE: Percent variance explained (0% is bad; 100% is good)

Grey: Null model (prediction = mean of data) Blue: Linear model Red: Phylogenetic structural equation model Frequency

Natural mortality prediction

Beta_logtmax

- Intercept when predicting Tmax from Linf and K
- High for rockfishes

Beta_logM

- Intercept when predicting logM from logTmax
- Not evolutionarily conserved

Natural mortality prediction Application to AFSC flatfishes (provided by Meaghan Bryan) and Pacific cod (provided by Steve Barbeaux)

Amax (average										
	Common name	Current M	of top 5 speciments)	K (estimated or assumed)	Linf (estimate	ed Sex	PSEM using longevity	PSEM using growth		
Scientific.name					or assumed)					
	Greenland									
Reinhardtius hippoglossoides	turbot	0.112	48.8	0.109604	891.318	Female	0.119912	0.194795		
	Greenland									
Reinhardtius hippoglossoides	turbot	0.112	48.8	0.178908	707.48	Male	0.119897	0.264549		
	Kamchatka									
Atheresthes evermanni	flounder	0.11	53	0.098	796	Female	0.097394	0.218989		
	Kamchatka									
Atheresthes evermanni	flounder	0.11	53	0.149	607.3	Male	0.097483	0.29321		
	northern rock									
Lepidopsetta polyxystra	sole central	0.2	31.8	0.225	503.84	Female	0.172265	0.325518		
	northern rock									
Lepidopsetta polyxystra	sole west	0.2	31.8	0.227	404.014	Female	0.172279	0.358415		
	northern rock									
Lepidopsetta polyxystra	sole central	0.232	31.8	0.285	412.687	Male	0.172288	0.39155		
	northern rock									
Lepidopsetta polyxystra	sole west	0.254	31.8	0.342	333.564	Male	0.172322	0.462853		
	southern rock									
Lepidopsetta bilineata	sole central	0.2	28	0.158	515.768	Female	0.195973	0.277147		
	southern rock									
Lepidopsetta bilineata	sole west	0.2	28	0.201	460.14	Female	0.195982	0.322206		
	southern rock									
Lepidopsetta bilineata	sole central	0.253	28	0.181	414.74	Male	0.195986	0.321794		
	southern rock									
Lepidopsetta bilineata	sole west	0.271	28	0.267	371.75	Male	0.196011	0.397816		
Gadus macrocephalus	Pacific cod	0.34	14	0.11	1129.58	Both	0.386623	0.201187		
Gadus macrocephalus	Pacific cod	0.435	14	0.109	1132.17	Both	0.386626	0.200212		

Acknowledgements

Collaborators on related work

- Steve Munch
- Olaf Jensen
- Jason Cope
- Wesley Patrick
- Jin Gao
- Daniel Pauly
- Rainer Froese

Co-authors

- Maureaud, Frelat, Mérigot, Friedman, Palomares, Pinsky, Price, Wainwright
- Wouter van der Bijl

Explorations

- Steve Barbeaux
- Meaghan Bryan

Questions/Requests for Plan Team

Endorsement:

 Any concerns or additional research needed before using phylosem for imputing life-history parameters in council process?

Prioritization:

- Is it worth the effort to explore estimators for M across a larger set of AFSC stocks?
- Any suggests for parameters that are worth imputing (e.g., thermal minima/maxima, age at maturity, etc)?