GOA Pacific ocean perch

Pete, Dana, Chris, Ben, Darin

- No model changes this year
- Outline:
- Input data (Biomass \& Catch)
- Model fits
- Model results
- Recommendations
- Apportionment
- Risk matrix
- Future work

POP - Input Data

Survey Biomass

POP Trawl Survey Catch

Historical Trawl Surveys

Recent Trawl Surveys

POP - MACE survey (new section)

- MACE summer acoustic survey
- 2017 estimate $=215,074$ t
- 2019 estimate $=140,668 \mathrm{t}(-35 \%)$
- NOT a POP survey, should expect variability

Catch

Economic performance

Ex-vessel	$\begin{gathered} \text { Avg } \\ 2009-13 \end{gathered}$	2014	2015	2016	2017	2018
Total catch (thousands of mt)	24.74	28.9	29	34	31.8	34.2
Retained catch (thousands of mt)	22.6	25.8	26.7	30.8	26.9	31.4
Catcher Processors \#	14.4	9	8	12	11	9
Catcher Vessels \#	179	173	139	130	126	112
Catcher Vessel Share of Retained	45\%	46\%	46\%	49\%	42\%	47\%
Ex-vessel value (millions of US\$)	\$10.0	\$11.9	\$12.4	\$13.9	\$12.1	\$14.8
Central Gulf share of GOA rockfish catch	70\%	84\%	84\%	87\%	84\%	84\%
POP share of GOA rockfish catch	58\%	59\%	65\%	67\%	73%	72\%
First-wholesale	$\begin{gathered} \text { Avg } \\ 2009-13 \\ \hline \end{gathered}$	2014	2015	2016	2017	2018
First-wholesale value (millions of US\$)	\$33.18	\$34.10	\$34.20	\$40.00	\$39.20	\$45.40
POP share of value	58\%	58\%	63\%	62\%	72\%	71\%

Age comps

POP - Model fits

POP - Likelihoods

Likelihoods	17.1 (2017)	17.1 (2019)
Catch	0.18	0.21
Survey Biomass	13.23	13.90
Fishery Ages	19.28	20.83
Survey Ages	19.55	22.34
Fishery Sizes	65.51	66.42
Maturity	103.52	103.52
Data-Likelihood	221.27	227.23
Penalties/Priors		
Recruitment Devs	15.92	16.26
F Regularity	5.08	5.43
σ_{r} prior	6.64	6.69
q prior	1.39	1.22
M prior	3.73	3.26
Objective Fun Total	254.04	260.09

Survey Biomass

Survey Age Comps

Fishery Age Comps

POP - Model results

Parameter Ests.
$17.1 \quad 17.1$ (2017) (2019)

Active parameters 158162
$2.11 \quad 2.01$
$0.066 \quad 0.065$
σ_{r}
0.82
0.82

Mean Recruitment
60.84
62.09
$F_{40 \%}$
0.094 0.09

Selectivity/Maturity

Recruitment (age-2)

Recruitment (age-2)

Estimated biomass

Retrospective biomass

Management path

Projection \& uncertainty

Key parameter uncertainty

POP - Recommendations

Pacific ocean perch

$\square A B C \square$ Female spawning biomass (t) \square Projected catch (t) —B_40\% 250,000

200,000

150,000

100,000

50,000

Pacific ocean perch

	As estimated or		As estimated or	
Quantity	specified last year for:		recommended this year for:	
M (natural mortality)	2019	2020	2020	2021^{1}
Tier	0.066	0.066	0.065	0.065
Projected total (age 2+) biomass (t)	396,922	381,608	544,569	32 a
Projected Female spawning biomass	176,934	172,345	201,518	194,795
$B_{100 \%}$	293,621	293,621	319,837	319,837
$B_{40 \%}$	117,448	117,448	127,935	127,935
$B_{35 \%}$	102,767	102,767	111,943	111,943
$F_{O F L}$	0.113	0.113	0.108	0.108
maxF $F_{A B C}$	0.094	0.094	0.090	0.090
$F_{A B C}$	0.094	0.094	0.090	0.090
OFL (t)	33,951	32,876	$\mathbf{3 7 , 0 9 2}$	35,600
maxABC (t)	28,555	27,652	$\mathbf{3 1 , 2 3 8}$	29,983
ABC (t)	28,555	27,652	$\mathbf{3 1 , 2 3 8}$	29,983
Status	As determined last year for:	As determined this year for:		
	2017	2018	2018	2019
Overfishing	No	n/a	No	n/a
Overfished	n/a	No	n/a	No
Approaching overfished	n/a	No	n/a	No

POP - Apportionment

Apportionment - ABC

	Western	Central	Eastern	Total
2019 ABC	3,240	$\mathbf{1 9 , 6 7 8}$	5,687	28,605
2020 ABC	$\mathbf{1 , 4 3 7}$	$\mathbf{2 3 , 6 7 8}$	$\mathbf{6 , 1 2 3}$	$\mathbf{3 1 , 2 3 8}$
2021 ABC	$\mathbf{1 , 3 7 9}$	$\mathbf{2 2 , 7 2 7}$	$\mathbf{5 , 8 7 7}$	$\mathbf{2 9 , 9 8 3}$

	WYAK (24\%)	EYAK/SE (72%)	Total
2019 ABC	3,298	2,389	5,687
2020 ABC	$\mathbf{1 , 4 7 0}$	$\mathbf{4 , 6 5 3}$	$\mathbf{6 , 1 2 3}$
2021 ABC	$\mathbf{1 , 4 1 0}$	$\mathbf{4 , 4 6 7}$	$\mathbf{5 , 8 8 8}$

Apportionment - ABC

	Western	Central	Eastern	Total
2019 ABC	3,240	19,678	5,687	28,605
2020 ABC	$\mathbf{1 , 4 3 7}$	$\mathbf{2 3 , 6 7 8}$	$\mathbf{6 , 1 2 3}$	$\mathbf{3 1 , 2 3 8}$
2021 ABC	$\mathbf{1 , 3 7 9}$	$\mathbf{2 2 , 7 2 7}$	5,877	$\mathbf{2 9 , 9 8 3}$

	WYAK (24\%)	EYAK/SE (72%)	Total
2019 ABC	3,298	2,389	5,687
2020 ABC	$\mathbf{1 , 4 7 0}$	$\mathbf{4 , 6 5 3}$	$\mathbf{6 , 1 2 3}$
2021 ABC	$\mathbf{1 , 4 1 0}$	$\mathbf{4 , 4 6 7}$	$\mathbf{5 , 8 8 8}$

Apportionment - WYAK

■Western Fraction —Long term Avg —Apport

Apportionment - Random Effx

Apportionment - WG

Apportionment - Random Effx

- Keep bumping into this problem of chasing small values with small variance...
- Don't think using fishery CPUE good idea in this case
- Problem with 4:6:9 weighting: didn't deal with uncertainty formally
- Hybrid method: fit 4:6:9 weighted mean (with variance of weighted mean) in RE model

Apportionment - Random Effx

Apportionment - Random Effx

Apportionment - Random Effx

- Good chance we get a couple large hauls in 2021, then back at $\sim 12 \%$, do we want the variability in apportionment?
- But, nothing apparently wrong with survey we didn't miss them, actually caught them more frequently
- Hybrid attractive option, but not in SAFE
- If working towards VAST for index \& apportionment, would be at $\sim 5 \%$ anyway (with preferred model)

Apportionment - OFL

	W/C/WYAK	EYAK/SE	Total
2019 OFL	31,170	2,840	34,010
2020 OFL	31,567	5,525	37,092
2021 OFL	30,297	5,303	35,600

Risk matrix

- No recommended reductions from maxABC
- Was not a 5 min exercise, but...
- Highlighted interesting aspects of the 'one-way' recommendation in this case
- Served to unite programs at ABL, special thanks to Ellen Yasumiishi for helping with the Environmental/ecosystem considerations

Risk matrix - Assessment

Assessment-related considerations
Level 1: Normal
Typical to moderately increased uncertainty/minor unresolved issues in assessment.
Level 2: Substantially increased concerns

Substantially increased assessment uncertainty/ unresolved issues.

- Consistent underestimation of index since 2013
- Worsening retrospective pattern
- Both cause assessment uncertainty and unresolved issues
- Level 2

Risk matrix - Pop dy

Population dynamics considerations

Level 1: Normal

Level 2: Substantially increased concerns

Stock trends are typical for the stock; recent recruitment is within normal range. Stock trends are unusual; abundance increasing or decreasing faster than has been seen recently, or recruitment pattern is atypical.

Risk matrix - Env/eco

Environmental/ecosystem considerations

Level 1: Normal	No apparent environmental/ecosystem concerns
Level 2: Substantially increased	Some indicators showing adverse signals relevant to the stock but the pattern is not consistent across all indicators.

- 2019 summer sea surface temps all time high in GOA - indicate similar conditions to heat wave in 2015-2016 (Morgan et al 2019)
- Often indicate smaller and less lipid rich species within zooplankton community in GOA
- Bad? Good? Can’t say...
- Level 1

Risk matrix - Fishery

Fishery Performance

Level 1: Normal	No apparent fishery/resource-use performance and/or behavior concerns
Level 2: Substantially increased	Some indicators showing adverse signals but the pattern is not consistent across all concerns
indicators	

- In general, CPUE follows trawl survey trends (exception in WGOA)
- No adverse indicators
- Level 1

Risk matrix

| Assessment-
 related | Population
 dynamics
 considerations | Environmental/
 econsiderations | Fishery
 considerations | Overall score
 Performance
 considerations |
| :--- | :--- | :--- | :--- | :--- | | (highest of the |
| :--- |
| individual scores) |

- Overall, level 2, but no recommendation for decrease
- Healthy pop'n, not driven by single year class, biomass underestimated
- Highlights case of risk matrix usage that could indicate increasing rather than decreasing ABC

Risk matrix

- How is the assessment tracking increase?

POP - Summary/Future work

- All sources of information indicate healthy pop’n
- Coming up on the horizon:
- CIE in spring: VAST, Acoustics, alt models suggested by PT/SSC
- Continue to try and get model to explain increase

